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Abstract

In this work, molecular dynamics (MD) simulation based on the environment-dependent interatomic potential is carried out

to explore the structure, atomic energy distribution, and thermophysical properties of single-wall Si nanotubes (SWSNTs). The unique

structure of SWSNTs leads to a wider range energy distribution than crystal Si (c-Si), and results in a bond order in the range

of 4.8–5. The thermal conductivity of SWSNTs is much smaller than that of bulk Si, and shows significantly slower change

with their characteristic size than that of Si films. Out of the three types of SWSNTs studied in this work, pentagonal SWSNTs

have the highest thermal conductivity while hexagonal SWSNTs have the lowest one. The specific heat of SWSNTs is a little larger

than that of bulk c-Si. Pentagonal and hexagonal SWSNTs have close specific heats, which are a little larger than that of

rectangular SWSNTs.

r 2007 Elsevier B.V. All rights reserved.
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1. Introduction

In the past decade, nanotechnology has been developed
and applied broadly in various fields. The small scale of
nanomaterials provides a lot of advantages for miniature
device design and manufacture. As a result, various
properties of nanomaterials have been studied. It is well
documented that properties of nanomaterials can be much
different from those of the bulk counterparts due to the
unique structure and dimension of nanomaterials. After the
discovery of carbon nanotubes (CNTs) [1], a wide spectrum
of research has been carried out to study this kind of one-
dimensional (1D) nanostructure. It is shown the thermal
conductivity of CNTs strongly depends on their length due
to significant boundary scattering of energy carriers at the
CNT ends [2]. Despite the similarity in the atomic structure
between Si and C, Si nanotubes with a similar structure to

CNTs or bulk crystal Si (c-Si) have not been found.
Recently, single-wall Si nanotubes (SWSNTs) with stable
structure of different cross-section shapes: rectangular,
pentagonal and hexagonal have been predicted using
atomistic simulations [3]. The local geometric structure of
SWSNTs is very different from that of bulk Si and surface-
passivated 1D Si nanowires. It is also different from the
‘‘hypothetical’’ carbon-nanotube-like SWSNTs which are
assumed to be composed of sp2 and sp3 bonds. Moreover,
the ab initio calculation showed an entirely opposite trend
in bond gap change compared with 1D Si nanowires [4].
SWSNTs are more likely metallic than semiconducting. It
will be of great interest to explore the unique structure of
SWSNTs, which is different from that of c-Si and to show
how their unique structure affects their thermophysical
properties. This knowledge is required in functionality and
dependability design of SWSNT-based materials and
devices in the future.
In the past, both experiments and simulations have been

reported on studying the thermal conductivity of nanotube
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materials, largely CNTs. Experimentally, Hone et al. [5]
measured the thermophysical properties of single-wall
CNTs (SWCNTs) and gave the temperature dependence
of the thermal conductivity from 8 to 350K. Yang et al. [6]
and Wang et al. [7] studied the thermal conductivity of
multiwall CNTs using photothermal experiments and
found the thermal conductivity of multiwall CNTs is
much less than the theoretical prediction. For numerical
studies, molecular dynamics (MD) simulation has been
widely employed to study the thermal transport in
CNTs [2,8]. Previous study by Volz and Chen [9] explored
the thermal conductivity of another 1D structure
allotrope of Si nanowires using equilibrium MD (EMD)
simulation. The result showed the thermal conductivity
was about two orders of magnitude smaller than that of
bulk Si. In 1999, Volz and Chen [10] also used EMD to
study the thermal conductivity of bulk c-Si. Recent
work on MD simulation of the thermal transport in c-Si
includes that by Gomes et al. [11] (for bulk Si), Feng [12]
and Wang and Lawrence [13] (for c-Si thin films).
Basically, there are two main methods in MD simulation
to predict the thermal conductivity of materials. One
method is EMD simulation using the Green–Kubo
formula. This method has been used to study the
thermophysical properties of amorphous [14] and crystal-
line [10] Si. The other one is nonequilibrium MD (NEMD)
simulation, which involves establishing a temperature
gradient in the material. Using this method, the thermal
conductivity of a 2D crystal [15] and vitreous silica has
been studied and the results are in good agreement with the
experimental data [16].

Each method reviewed above has its own advantages
and drawbacks. Work by Schelling et al. [17] shows that
the simulation time is a more significant consideration for
the Green–Kubo method, where very slow convergence of
the heat current correlation function is observed. The
NEMD method can greatly reduce the computational cost
to obtain the same statistical errors as the EMD method.
Especially in systems with very small finite-size effect due
to the very small mean free path of phonons, rather small
systems sizes are required by the NEMD method. The
NEMD method is more suitable to study interfacial effects.
The drawback of NEMD is that the use of large
temperature gradients may introduce significant nonlinear
effects.

In this work, NEMD simulation is used to explore
the thermal conductivity of SWSNTs and EMD simu-
lation is used to study the specific heat of SWSNTs. In
addition to thermophysical properties, the structure and
energy distribution of atoms in SWSNTs are also
investigated to obtain better ideas about how and to what
extent the structure of SWSNTs affects their thermophy-
sical properties. Section 2 of this paper provides a brief
introduction to the MD simulation method used in this
work. Section 3 discusses the calculation results for
SWSNTs and the comparison with crystal Si (c-Si) thin
films.

2. Methodologies

2.1. MD simulation of Si using the environment-dependent

interatomic potential

In late 1990s, Bazant et al. [18,19] and Justo et al. [20]
developed an empirical potential for bulk Si, named
environment-dependent interatomic potential (EDIP). This
potential contains two and three-body interactions with
theoretically motivated functional forms that give a better
prediction of bulk defect and disordered phase of Si. The
numerical parameters in the function are obtained by
fitting a set of ab initio results. Work by Justo et al. [20]
using the EDIP predicted structural and thermodynamic
properties of liquid and amorphous Si that are in good
agreement with experimental and ab initio results.
The expression of the EDIP is a summation over the

energy of each atom, and consists of two-body and three-
body interaction terms [20]:

Ei ¼
X
jai

V2ðRij ;ZiÞ þ
X
jai

X
kai;k4j

V 3ð~Rij ; ~Rik;ZiÞ. (1)

V2 (Rij,Zi) stands for the two-body interaction potential

energy between atoms i and j. The term V3ð~Rij ; ~Rik;ZiÞ

represents the three-body potential energy among atoms i, j

and k centered at i. The interaction of both types depends
on the effective bond order, which is defined as Zi ¼P
mai

f ðRimÞ. In the definition of the effective bond order, the

function f(Rim) is called cutoff function, a measurement of
the contribution of the neighboring atom m to atom i in
terms of their distance Rim. Definitions of the functions and
values of parameters used in the EDIP can be found in
work by Justo et al. [20].
In this work, the physical domain of interest is divided

into computational cells based on the cutoff distance of the
potential energy to improve the computational efficiency
[21]. If the distance between two atoms is longer than the
cutoff distance, both the two-body and three-body inter-
actions are ignored and set to zero. The cutoff distance for
Si has been given in earlier work [20]. In this work, the
computation is organized using the cell structure and the
linked-list method.

2.2. NEMD for thermal conductivity calculation

In this method, a temperature gradient is established
across the material. The thermal conductivity is calculated
based on the heat flux and the temperature gradient
established in the sample. The first step of calculation is the
equilibrium process to adjust the system to an expected
temperature, which is 300K in this work. In the equi-
librium calculation, the scaling factor Sf introduced by
Berendsen et al. [22] is used to adjust the velocity:

Sf ¼ 1þ
Dt

t
T0

T
� 1

� �� �1=2
, (2)
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where Dt is the time step in the simulation. Although a
short time step will ensure accurate and reliable calcula-
tion, it will make the total computational time not
practical. In this work, we take the time step 2 fs
(1 fs ¼ 10�15 s) based on our calculation experience and
literatures. In Eq. (2), t is the relaxation time, which is 2 ps
(1 ps ¼ 10�12 s) in this work, T is the current kinetic
temperature, and T0 ( ¼ 300K) is the expected equilibrium
temperature. This process takes 0.5 ns to ensure the system
reaches equilibrium. The computational domain is sche-
matically shown in Fig. 1. For the SWSNTs studied in this
work, periodical boundary conditions are used in the y

(axial) direction. In the two other directions, free boundary
conditions are used to give the sample certain freedom to
move in space.

In the original NEMD method developed by Evans [23],
the equation of motion for each particle has an external
force term. In our work, we employ hot and cold domains
in the material [24] and adjust the velocities of atoms in the
domain to achieve local heating and cooling [25]. The
equation used to obtain the thermal conductivity (k) in
NEMD is k ¼ q00/(qT/qx), where qT/qx is the temperature
gradient and q00 is the heat flux. Fig. 1 shows how we
establish a temperature gradient in the material. At each
time step, a certain amount of energy is added in domain
A and the same amount of energy is taken away from
domain B. Since the nanotube has periodical boundary
conditions in the axial direction, two heat fluxes will flow
along both positive and negative directions from domains
A to B. To establish the heat source and heat sink, the
velocities of atoms in domains A and B are scaled with a
factor f. During this velocity scaling, the momentum of
atoms in domains A and B is conserved by only scaling the
random movement of atoms, not their average velocity.

The size (dy) of domains A and B is chosen based on the
length of the nanotube and ease of calculation. In this
work, computation of the force between an atom and its
neighbors is arranged by the cell structure and the linked-
list method. The ‘‘cell size’’ used in this work is referred to
the one used in the linked-list method. For SWSNTs longer
than 0.5 mm, the typical values of dy are 40–60 cell sizes
(12–18 nm). For short tubes, the size of domains is 5–10 cell
sizes. In the NEMD technique, a sufficiently long compu-
tational time is needed to establish a stable temperature
gradient in the material. In our work, the computa-
tional time (t) is estimated by calculating the thermal
diffusion time from domains A to B: t ¼ (L/2)2/a, where a
( ¼ k/(rcp)) and L are the thermal diffusivity and length of
the SWSNT, respectively. In the estimation, r and cp take
the bulk values and k takes the value of a shorter SWSNT

calculated previously. In this work, the computational time
for the shortest (34 nm) SWSNT is 0.5 ns.
The temperature gradient in the tube is determined by

linear fitting of the temperature distribution curve in the
material. The thermal conductivity (k) of the SWSNT can
be calculated as

k ¼ �
q00

ðqT1=qxÞ � ðqT2=qxÞ
, (3)

where qT1/qx and qT2/qx are the temperature gradients in
the positive and negative y directions along the tube. The
temperature of the nanotube is calculated as

1

2

XNj

i

mv2i

* +
¼

3

2
NjkBTMD, (4)

where / �S denotes the statistical average over the entire
simulation (chosen to be much longer than the typical
fluctuation time), kB is the Boltzmann’s constant, and Nj is
the number of atoms in the layers for temperature
calculation. Fifteen to 40 atomic layers (depending on the
total length of the nanotube) along the y direction are
chosen to calculate one temperature point.
It is expected that the thermal conductivity of SWSNTs

is directly related to how its cross-sectional area is defined.
In this work, an annulus consisting of atoms in the
SWSNTs is defined as the cross-sectional area. The annulus
thickness takes two times the covalent radius of Si atoms,
which is 1.175 Å [26].
In addition to thermal conductivity, we also study the

specific heat of SWSNTs to attain the idea about how their
unique structure affects their capability of storing thermal
energy. The method used for specific heat calculation is the
same as that employed in work by Wang and Xu [27]. In
the calculation, a certain amount of energy DE is added to
the system. This energy addition is achieved through a
large number of time steps (10,000) to minimize the
thermal and mechanical disturbance introduced to the
system. Then the system is simulated for 0.3 ns to reach
thermal equilibrium. The specific heat is calculated as

cp ¼
DE

mðT final � T initialÞ
� � , (5)

where m is the mass of the entire tube, Tinitial is the
temperature before adding the energy, and Tfinal is the
temperature after energy addition. In our simulation, the
temperature is calculated every 2 ps. Tinitial and Tfinal are
obtained by averaging the temperatures of the last 120 ps.

3. Results and discussion

In this work, SWSNTs with three different structures are
studied. Fig. 2 shows the SWSNT structure and the bond
length. Table 1 lists the length and number of atoms
simulated for each type of nanotubes in this work. In
our thermal conductivity study (Section 3.2), comparison
is also made with Si films of different thicknesses.
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Fig. 1. Schematic of the computational domain. Arrows in the tube

represent the heat flux direction.
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The thickness and number of atoms for the simulated Si
films are also summarized in Table 1. The initial
temperature of the nanotube is set to 300K, and the time
step takes 2 fs. The system is first calculated for 500 ps to
reach the thermal equilibrium state. Then calculation is
carried out to establish a steady temperature gradient in the
material. This calculation takes 0.5–8 ns, depending on the
length of the nanotube as described in Section 2.2.

3.1. Structure of SWSNTs

In order to have a better understanding of the structure
of the three kinds of SWSNTs, the radial distribution
function g(ri) and the atomic energy distribution are
calculated and compared with those of bulk Si. Fig. 3
shows the radial distribution function with r up to 8a, a is a
parameter in the EDIP potential and takes 3.1213820 Å.
The position of the first peak for SWSNTs shows that the
distance between an atom and its nearest neighbor is
2.34 Å, close to the bond length of c-Si at 300K (2.35 Å).
This result suggests that SWSNTs have bond length almost
the same as that of bulk c-Si. The second peak of both
SWSNTs and bulk Si represents the distance to the second
nearest neighboring atom. For SWSNTs, the distance
between an atom and its second nearest neighboring atom
is shown in Fig. 2b. The ab initio prediction of the second
nearest neighboring distance is 3.384 Å (1.084a), 3.386 Å
(1.085a), and 3.360 Å (1.076a) for rectangular, pentagonal,
and hexagonal SWSNTs, respectively. Fig. 3 shows that

using the bond length provided by ab initio calculations,
the classical MD simulation based on the EDIP works well
to preserve the structure of SWSNTs. The number of the
second nearest neighboring atoms for an atom in
pentagonal and hexagonal SWSNTs is 4, and 5 for
rectangular SWSNTs. In our MD simulation, the outside
of the SWSNT has no constraint. Some weak stress due to
the initial configuration will twist the tube in space a little
bit. Our careful observation of the tube structure confirms
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Fig. 2. Schematic of the structure of (a) rectangular, (b) pentagonal, and (c) hexagonal SWSNTs.

Table 1

Thickness (nm) of Si films and length (nm) of SWSNTs simulated in this work

Si thin film Rectangular SWSNTs Pentagonal SWSNTs Hexagonal SWSNTs

10 (16,000) 75.2 (1240) 68 (1400) 74.1 (1860)

32.5 (48,000) 148.4 (2500) 136 (2800) 149.4 (3750)

53.7 (79,200) 263.2 (4400) 272 (5600) 286.8 (7200)

70.1 (104,800) 526.5 (8800) 485.8 (10,000) 501.9 (12,600)

100 (148,800) 1052.9 (17,600) 971.6 (20,000) 1003.8 (25,200)

200 (297,600) 1579.4 (26,400) 1457.4 (30,000) 1505.7 (37,800)

300 (446,400) 2105.8 (35,200) 1943.2 (40,000) 2007.6 (50,400)

The number of atoms in the sample is indicated in the parentheses.
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this point. This twist will affect the tube structure to a
certain extent and make the second peak of SWSNTs lower
and wider. Since the equilibrium angle of bulk Si is 1091,
the second peak of bulk Si is shifted to a further distance
(compared with SWSNTs), which is about 3.85 Å (1.233a).

The atomic energy distribution is related to the bond
length and the physical properties of the material. It also
indicates the probability of finding an atom at a certain
energy level. In our work, after the system reaches thermal
equilibrium, the kinetic energy distribution is calculated by
counting the number of atoms in a certain energy range.
After normalizing the distribution, we confirm that the
kinetic energy closely follows the Maxwellian distribution.
Therefore, only the potential energy distribution is
discussed in detail, especially the two-body potential,
which plays a major role in the overall energy distribution.
Eq. (1) reveals that Z and R play major roles in deter-
mining the two-body potential energy. The sharpness of the
first peak in the radial distribution of bulk Si (shown in
Fig. 3) demonstrates that the first nearest neighboring
distance is quiet uniform. Therefore, the major factor
affecting the two-body potential is the value of Z. In this
work, the value of Z is calculated for both SWSNTs and
bulk c-Si.

Fig. 4(a) shows the two-body potential energy distribu-
tion for SWSNTs and bulk Si. It can be seen that bulk Si
has a sharp peak at �2.33 eV. The energy of the two-body
potential of two Si atoms at equilibrium for bulk Si should
be �1.16 eV for Z ¼ 4 [20], meaning the two-body
potential energy for bulk Si will be �2.32 eV since each
atom has four neighboring atoms. This value is close to the
energy of the first peak for bulk Si shown in Fig. 4. The two
small peaks of energy distribution in Fig. 4(a) for bulk Si
are related to the atoms at the boundary whose Z values
are 3 or 2. In order to give a clearer view of the sharp peak
energy of bulk Si, the first peak of the atomic energy
distribution for bulk Si is detailed in the inset. It can be
seen that the most prominent range for the two-body
potential energy is �2.30 to �2.325 eV.

As we stated before, SWSNTs were twisted a little bit
during the calculation. This makes the distance between
atoms reach the range where the cutoff function follows the
exponential form in the EDIP, leading to non-integer Z

values. Our calculation shows that the Z of SWSNTs
largely falls in the range of 4.8–5.0, leading to a smoother
and wider distribution of the two-body potential energy
than bulk Si as shown in Fig. 4. In addition, the range of
bond length distribution of SWSNTs is also an important
reason for the smoother and wider distribution of the two-
body potential energy. When Z is equal to 5, the theoretical
two-body potential energy should be about �0.9 eV [20],
meaning that the two-body potential energy for SWSNTs
will be around �2.25 eV since SWSNTs have five neigh-
boring atoms within the cutoff distance. The calculated
peak of the two-body potential energy for SWSNTs is
around �2.30 eV, close to the predicted value of �2.25 eV
[20]. The value of Z reflects the electronic properties of

materials. According to work by Justo et al. [20], Z larger
than 4 means metallic bonds among atoms. When Z is less
than or equal to 4, the atomic bonds tend to be covalent.
The value of the effective bond order Z obtained in our
work for c-Si (which is 4) reflects the semiconducting
nature of c-Si. On the other hand, the Z for SWSNTs is
from 4.8 to 5.0 based on our calculation. This agrees with
the ab initio prediction that metallic Si structures have a
bond order larger than 4 [3].
Fig. 4(b) shows the overall energy (including kinetic,

two-body potential, and three-body potential energies)
distribution of bulk Si and SWSNTs. The overall energy
distribution for bulk Si has a wider and smoother distri-
bution than the two-body potential energy. Our calculation
shows that the three-body potential energy for bulk Si has
a sharp peak close to 0 eV, agreeing with the result by Justo
et al. [20]. In comparison with the two-body potential
energy, the peak of the total energy does not shift too much
because both the three-body potential and kinetic energies
are relatively small. In contrast to the small value of the
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Fig. 4. Energy distribution of atoms in SWSNTs in comparison with that

in bulk Si: (a) two-body potential energy, and (b) total atomic energy. The

inset in (a) is a close view of the two-body potential energy distribution for

bulk Si around the peak. A finer resolution is used for calculating the

energy distribution shown in the inset.
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three-body potential energy for c-Si, our calculation
concludes that the three-body potential energy of SWSNTs
is around 0.23 eV. The reason is that the angle of the three-
body potential in SWSNTs is different from that of c-Si,
causing the three-body potential energy of SWSNTs
to shift further from zero. Hence, the peaks of the total
energy distribution of SWSNTs have a significant shift to
right in comparison with their two-body potential energy
distribution.

3.2. Thermal conductivity and specific heat of SWSNTs

In NEMD for thermal conductivity calculation, a stable
temperature gradient has to be established in the material.
Fig. 5 shows a typical temperature distribution in a
485.8 nm long pentagonal SWSNT. It is evident that a
sound linear temperature distribution is established in the
material. In our work, since the number of atoms used for
temperature calculation is small due to the small size of the
tube, a large temperature differential between domains A
and B (refer to Fig. 1) is needed to suppress the statistical
uncertainty. The temperature differential between domains
A and B is about 150K, depending on the size of SWSNTs
under study. In the area close to domains A and B, abrupt
temperature drops (as shown in Fig. 5) usually exist due to
the heating and cooling effects in these domains. These
abrupt temperature drops are out of consideration in final
data reduction to obtain a sound linear temperature distri-
bution. Also shown in Fig. 5 is the linear fitting of the
temperature distribution. It provides the temperature gra-
dient used in Eq. (3) to determine the thermal conductivity
of SWSNTs.

In this work, SWSNTs with different lengths are studied
to explore their thermal conductivity. Table 1 shows the
length of SWSNTs studied in this work as well as the
number of atoms in the tubes. In addition, the thermal
conductivity (keff) in the thickness (L) direction for Si thin
films is also calculated and compared with that of

SWSNTs. The thickness of the films is listed in Table 1
as well. It is found the keff�L relationship closely follows
that obtained by LBM [28]:

keff

kB
¼ 1þ 2

l

L

� ��1
, (6)

where l is the mean free path of phonons in bulk Si.
To obtain the idea about how the structure of SWSNTs

affects their thermal conductivity, we plot out the thermal
conductivity of three different types of SWSNTs in one
plot for purpose of comparison (Fig. 6). Also shown in
Fig. 6 is the error bar for uncertainty analysis. This
uncertainty is evaluated by dividing the overall tempera-
ture differential across the sample with the standard
deviation in linear fitting of the temperature gradient.
Our study of the linear fitting for different samples reveals
that the uncertainty is well within 15%. For Si thin films,
the uncertainty for thermal conductivity calculation is
smaller (10%). It is observed in Fig. 6 that the thermal
conductivity of SWSNTs is strongly dependent on their
length. When the length reaches about 1 mm, the thermal
conductivity reaches a level of about 30W/(mK), which is
still significantly less than the thermal conductivity of bulk
c-Si at 300K (148W/(mK)) [29]. On the other hand, the
thermal conductivity of SWSNTs shown in Fig. 6 is much
larger than that of Si nanowires (from 1 to 4W/(mK)) as
reported in work by Volz and Chen [9]. This is attributed to
the entirely different atomic structure of SWSNTs from Si
nanowires. In Si nanowires, strong phonon boundary
scattering occurs on the wire surface, leading to a much-
reduced thermal conductivity. In SWSNTs, the wall of the
tube is a single atomic layer, and the phonon movement is
largely constrained in the axial direction. Therefore, very
little surface phonon scattering is permitted.
Fig. 6 shows that SWSNTs with hexagonal cross-

sections have the lowest thermal conductivity, and the
pentagonal SWSNTs have the highest one. It is clear that
the thermal conductivity of Si thin films is very different
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from that of SWSNTs. The thermal conductivity of Si thin
films increases quickly with the thickness and reaches
116.3W/(mK) at the thickness of 300 nm. This thermal
conductivity is only 17% less than the bulk value.
However, with the similar characteristic size, the thermal
conductivity of SWSNTs is 14.1W/(mK) for recta-
ngular SWSNTs (263.2 nm), 19.8W/(mK) for pentagonal
SWSNTs (272.00 nm), and 8.0W/(mK) for hexagonal
SWSNTs (250.95 nm). The striking difference between Si
thin films and SWSNTs about how the thermal conductiv-
ity changes with their thickness/length suggests that the 1D
structure of SWSNTs leads to a stronger phonon boundary
scattering effect at the tube end.

Recently, the relationship between the 1D anomalous
heat conduction and the material dimension has been
investigated by Li and Wang [30]. They proposed a thermal
conductivity (k)–length (L) relationship of k ¼ cLb with
b ¼ 2�2/a (0oap2). For normal diffusion a is equal to 1,
and for superdiffusion a is greater than 1, meaning a
divergent thermal conductivity (b40). Subdiffusion (ao1)
gives a convergent thermal conductivity (bo0). It is
reported by Wang and Li [31] that in many 1D chains
with momentum conservation, 1/3 and 2/5 are the generic
exponent for the divergent thermal conductivity. The
coupling between the transverse motion of the atoms with
the longitudinal motion will lead to a thermal conductivity
diverging against the system size with 1/3 power law. On
the other hand, in the weak-coupling regime, a 2/5 power
law is observed. One new work [32] showed that a finite
thermal conductivity can be reached only when disorder
exists in the 1D chain. Furthermore, Zhang and Li [33]
reported the value of the exponent for (5, 5) and (10, 10)
SWCNTs at 300 and 800K. Their results showed that at
300K the (5, 5) SWCNT follows the law of 2/5 and the
exponent of (10, 10) SWCNT is 0.36. Recently, the thermal
conductivity of (10, 0) SWCNTs was suggested to be
proportional to L1/2 [34]. In work by Maruyama [2], the
thermal conductivity of (5, 5) SWCNTs is divergent with a
power of 0.32. Maruyama pointed out that the structure
will strongly affect the power. The b exponents for (5, 5),
(8, 8) and (10, 10) are quite different, where the (5, 5)
SWCNT has the biggest value and the (10, 10) has the
smallest one. Our results indicate that the pentagonal
SWSNTs follow the curve with a power of 2/5. On the
other hand, the thermal conductivity of hexagonal and
rectangular SWSNTs is proportional to L0.68 and L0.62,
respectively. The difference in the power probably is due to
the cross-section structures of the SWSNTs which favor
different coupling between the transverse and longitudinal
movements of atoms.

For specific heat, we first calculate the value of bulk c-Si
at 300K to explore the validity of the developed MD
program. The sample of interest measures 6.52 nm in the x,
y, and z directions, and consists of 13,824 atoms. The
calculated specific heat for c-Si is 830 J/(K kg), a little larger
than the experimental result of 712 J/(Kkg) [29]. In order
to check the influence of the tube length on the calculated

specific heat, three pentagonal SWSNTs samples have been
studied, which are 136.0, 233.1 and 485.8 nm long. Table 2
shows the calculated specific heat for c-Si and SWSNTs. It
is clear that the largest difference between the three
pentagonal SWSNTs is about 5%. As can be seen from
Table 2, the specific heat of SWSNTs is a little larger than
that of bulk c-Si. Rectangular SWSNTs have the lowest
specific heat, i.e. close to that of bulk Si, and pentagonal
and hexagonal SWSNTs have similar specific heats. The
uncertainty of specific heat calculation is estimated using
the root mean square (RMS) of equilibrium temperature
vibration as RMS/DT, where DT is the average tempera-
ture increase after the system is heated. The uncertainty for
specific heat calculation is estimated to be around 5%.

4. Conclusion

In this work, MD simulation was conducted to explore
the structure and thermophysical properties of SWSNTs of
different cross-section structures and lengths. The structure
of SWSNTs led to a wider range of energy distribution
than c-Si. It was found that the unique structure of
SWSNTs resulted in a bond order in the range of 4.8–5.
This range agreed with the ab initio prediction that metallic
Si structures have a bond order larger than 4. The
calculation showed that the thermal conductivity of
SWSNTs was much smaller than that of bulk Si. There
was a significant difference between SWSNTs and c-Si
films on how their length/thickness affected the thermal
conductivity. This striking difference probably is due to the
strong longitudinal movement of atoms in SWSNTs and
weak coupling between the transverse and longitudinal
movements. Out of the three types of SWSNTs under
study, pentagonal SWSNTs had the highest thermal
conductivity while hexagonal SWSNTs had the lowest
one. Our study showed that the specific heat of SWSNTs
was a little larger than that of bulk c-Si. Pentagonal and
hexagonal SWSNTs had close specific heats, which were a
little larger than that of rectangular SWSNTs.
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Table 2

Specific heat of bulk Si and SWSNTs

Materials Specific heat (J/Kkg)

Bulk c-Si (experiment) 712

Bulk c-Si (MD) 830

Rectangular SWSNT (526 nm) 856

Pentagonal SWSNT (136 nm) 937

Pentagonal SWSNT (233 nm) 906

Pentagonal SWSNT (486 nm) 891

Hexagonal SWSNT (502 nm) 896
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