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Direct synthesis of single-walled carbon nanotubes bridging metal
electrodes by laser-assisted chemical vapor deposition
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Direct synthesis of single-walled carbon nanotubes (SWNTs) bridging prepatterned Mo electrodes
has been achieved using laser-assisted chemical vapor deposition (LCVD). The synthesized SWNTs
are found predominantly semiconducting. By controlling the spot size of the focused laser beam,
synthesis of SWNTs can be achieved in a localized manner, which is governed by the thermal and
optical properties of materials as well as the laser parameters. The synthesis process is fast and can
be achieved in both far- and near-infrared laser wavelength regions. LCVD method provides a
potential approach to in situ remove SWNTs with specific chiralities during the growth. © 2006
American Institute of Physics. [DOI: 10.1063/1.2338005]

Since the demonstration of the room-temperature carbon
nanotube (CNT) field effect transistor,l intensive studies
have been carried out in the improvement of CNT-device
fabrication processesz’3 and device performances.“f6 From
the early postgrowth assembly method"”’ to the electrical-
field-directed thermal chemical vapor deposition (CVD)
tec:hnique,g’9 there have been significant advances in the con-
trol of position and orientation in CNT synthesis.

Among various CNT synthesis methods, laser-assisted
chemical vapor deposition (LCVD) is a promising alternative
that has emerged recently.lo’14 LCVD technique, in general,
uses laser to locally create a hot spot on the substrate sur-
faces. CVD occurs at the gas-substrate interface when the
reactant molecules are catalytically pyrolyzed at the catalysts
within or in the vicinity of the hot spot, leading to the sub-
sequent formation of CNTs. LCVD process has several
unique features over other conventional CVD techniques.
First, LCVD is inherently a cold-wall process, in which laser
can be focused on a preferred location to induce local heating
instead of overall chamber/substrate heating which is com-
mon in conventional CVD techniques.12 Second, it is a fast
heating process (laser can instantly heat the substrate to a
desired high temperature), which is particularly beneficial to
the growth of long and well-aligned single-walled carbon
nanotubes (SWNTs)."” Third, by expanding or focusing the
laser beam, the process can be switched between large-area
and local modes. Most importantly, due to the resonant ab-
sorptions of SWNTs at specific Van Hove singularities,16 la-
sers can potentially affect the chiralities of SWNTs during
the growth process when the wavelength of the incident laser
matches the resonant absorption wavelength of the SWNTs.
Recent results for SWNT chirality selection by laser resonant
oxidation'’ justified such feasibility. Utilizing both thermal
and optical effects, the LCVD technique, thus, provides the
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possibility to combine SWNT growth and chirality selection
in a single process.

In this study, we demonstrated position-controlled syn-
thesis of SWNTs which can bridge the predefined electrodes
using the LCVD technique. The synthesized SWNTs showed
predominantly semiconducting characteristics. The synthesis
process is very fast and can be conducted in both far- and
near-infrared wavelength regions. By controlling the focused
laser beam size, SWNTs can be synthesized in a localized
manner.

Figure 1 shows the schematic diagram of the electrical-
field-directed LCVD system. Heavily doped p-type silicon
substrates with a 2-um-thick thermal oxide were used in the
experiments. Mo electrodes were fabricated by first deposit-
ing a 100-nm-thick Mo films on patterned photoresist on
substrates using dc sputtering, followed by a lift-off process.
Due to its high melting point (2625 °C), Mo is suitable for
the process having localized high temperature under focused
laser irradiation. The catalyst used for SWNT growth was
Fe—Mo-alumina porous structures'®  [a  mixture  of

Focused laser beam

Catalyst island

Vae " Resistor -
N C Y

FIG. 1. Schematic diagram of electrical-field-directed laser-assisted CVD
system.
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FIG. 2. (a) SEM micrograph of patterned Mo electrodes. Circle “A” is the
typical unfocused 2 mm CO, laser beam irradiated on the substrate, while
circle “B” is the typical focused laser beam with beam size of 340 um using
a 10 cm ZnSe lens. (b) Magnified electrode pairs inside circle B shown in
(a). (c) SEM micrograph of two SWNTs bridging the electrodes inside circle
“C” shown in (b). (d) Raman spectroscopy of SWNTs shown in (c). (e) [-V
curve of the SWNTs shown in (c).

Fe(NO;)5-9H,0, MoO,(acac),, and alumina nanopowder in
de-ionized water]. Shipley 1813 was used as the photoresist
in patterning of both catalyst islands and electrodes. The
LCVD process was conducted in a vacuum chamber. A con-
tinuous wave (cw) CO, laser (Synrad, firestar v40, wave-
length of 10.6 wm) or a cw Nd:YAG (yttrium aluminum gar-
net) laser (Quantronix Inc., condor 200M, wavelength of
1064 nm) was used to irradiate the substrate respectively. A
dc power supply and an ampere meter were connected in the
circuit, as shown in Fig. 1. In the experiments, a dc bias was
applied across the electrodes to introduce a directing electri-
cal field for aligned growth of SWNTs.® The magnitude of
the dc bias varied according to the gap width, with typical
values of 1-1.5 V/um. The ampere meter was used to de-
tect the current flow in the circuit when SWNTs bridged
electrodes, which enabled in situ monitoring of the growth
condition and detection of the end point of the process. A
10 kQ resistor was connected in the circuit to protect
SWNTs from being burnt due to a large short current. Before
the CVD process, the vacuum chamber was first pumped
down to 1 X 1073 Torr. Acetylene and ammonia (C,H,/NH;)
gas mixture with a volume ratio of 1/10 were then intro-
duced into the chamber. The gas pressure was stabilized dur-
ing the process with a process window between 1 and
100 Torr. During the laser irradiation, a pyrometer (Omega,
single color OS 3750) was used to monitor the substrate
temperature at the laser spot. The reaction temperature was
controlled in a range from 690 to 720 °C. The growth period
varied from 3 to 6 min.

Figure 2(a) shows the scanning electron microscope
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(SEM) micrograph of the patterned Mo electrodes. Circle
“A” indicates a typical unfocused 2 mm CO, laser beam
irradiated on the substrate. Circle “B” indicates a typical fo-
cused laser spot (340 wum) using a ZnSe lens (focal length of
10 cm), which covers a single bar. An enlarged view of circle
B is shown in Fig. 2(b). Usually, three to four pairs of par-
allel electrodes were fabricated with gap widths varied from
1 to 4 um depending on the lithography. After the growth,
each pair was isolated for individual measurement of electri-
cal transfer characteristics. Figure 2(c) shows a typical SEM
micrograph of two long SWNTs bridging the electrodes un-
der an unfocused laser beam. Typical CO, laser power was
about 20-25 W, corresponding to a power density of
6.4—8.0 MW/m?2. During the process, the region under the
laser beam turned red and reached the desired temperature
almost immediately after the laser started irradiation. Sharp
temperature gradient on the sample was observed, indicating
that a localized heating was achieved. The temperature of the
sample stage remained at about 200 °C during the laser ir-
radiation. We observed that such bridging process typically
took only about 20—30 s, after which the current started to
flow in the circuit on an order of several microamperes.
SWNTs could sustain continuous laser irradiation without
getting burnt after bridging the electrodes. However, when
we intentionally increased the laser power, particularly when
the beam center temperature was above 1000 °C, current
flowing in the circuit quickly dropped to zero. SEM micro-
graphs confirmed the discontinuity of long SWNT at the
edges of the electrodes. At a proper laser power density, Mo
electrodes were free of damage. When the laser power den-
sity was increased, the electrode surface became roughened
and the resistance of the electrodes increased by two orders
of magnitude. Figure 2(d) shows the Raman spectrum of the
SWNTs which were shown in Fig. 2(c). The sample was
excited by an argon ion laser at 514.5 nm. At the high fre-
quency region, a sharp G band at around 1591 cm™! is ob-
served. The presence of a D band at 1350 cm™! indicates that
there might be some amorphous carbon synthesized. In the
low frequency region, the feature at about 300 cm™! is attrib-
uted to Si02.19 The peak at about 178 cm™! is attributed to
the characteristic radial breathing mode (RBM) of the
SWNTs. By applying the relationship between the SWNT
diameter d (nm) and Raman shift X (cm™), d=248/\,% the
average diameter of the SWNTs is estimated to be 1.4 nm.
Figure 2(e) shows the I-V curve of the SWNTs shown in Fig.
2(c). A voltage bias scanning from -3 to 3 V was added be-
tween two electrodes of the structure, as shown in Fig. 1. The
gap-related nonlinearity indicates that the SWNTs are semi-
conducting. From the I-V characteristics, so far, all the
SWNTs synthesized using CO, laser based LCVD system
are found to be semiconducting. Further investigations are
needed to reveal the mechanisms behind the preferred syn-
thesis of semiconducting SWNTs.

By focusing the laser beam, local synthesis of SWNTs
which bridged two electrodes was also achieved. In this case,
the applied laser power was 12 W with a focused spot size of
about 340 um achieved using a ZnSe lens (focal length of
10 cm). The focused beam covered one of the five vertical
bars, with the area approximately same as circle B shown in
Fig. 2(a). Figure 3 shows the SEM micrograph of SWNTs
bridging a pair of electrode under a focused CO, laser beam.
The arrow shown in Fig. 3 indicated two blurred lines which
were suggested to be part of the SWNTs lying on the sub-
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FIG. 3. SEM micrograph of two SWNTs bridging the electrodes synthesized
by a focused CO, laser beam with a beam size of 340 um in diameter.

strate. The height difference between the substrate and elec-
trodes resulted in the lack of focus in the SEM micrograph of
those SWNTs. SWNTs were observed only in the area under
the focused laser beam, where other electrodes with the same
catalyst islands remained intact. Note that it is possible to
push the localization to a few microns in diameter by select-
ing lasers with shorter wavelengths, lens with high numeric
aperture, and appropriate laser power densities.'”

We have also grown SWNTs using a near-infrared
Nd:YAG laser at 1064 nm. The typical laser power was
60 W, with a beam size of 6 mm in diameter. Individual
SWNTs grew radially out of the catalyst island. The corre-
sponding Raman spectrum has a characteristic RBM peak at
204 cm™!. The average diameter of SWNTs is estimated to
be about 1.2 nm.

In summary, we have demonstrated synthesis of SWNTs
over predefined electrodes using the LCVD technique. The
synthesis can be conducted using both far-infrared CO, laser
(10.6 wm) and near-infrared Nd:YAG laser (1064 nm). We
have also demonstrated localized synthesis of SWNTs by a
focused laser beam. Due to the unique advantages of LCVD
process, such as fast and local heating, as well as its potential
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to select chiralities during the grow, it may provide addi-
tional features and versatilities in the device fabrication.
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