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In this work, the thermal conductivity of nanofilms, nanowires, and nanoparticles are

studied using molecular dynamics simulation. It is found that their thermal conductivity

depends significantly on the characteristic size until it reaches a large value. Comparison

with results of the lattice Boltzmann method reflects strong effects of surface structure,

especially when the film thickness is comparable to the mean free path of phonons. Study of

the phonon thermal transport in nanowires and nanoparticles reveals much stronger

boundary-scattering effect on thermal transport than in nanofilms, which is attributed to the

more confined phonon movements in these two- and one-dimensional nanomaterials.

1. INTRODUCTION

In the past decade, much attention has been attracted to the thermal transport
in nanoscale materials. Due to the strong boundary scattering of energy carriers
(phonons and electrons), the thermal transport in nanomaterials can be reduced
substantially. Many experimental techniques have been developed to investigate the
thermal transport in nanomaterials. Examples of these techniques include the 3o
method for measuring the thermal conductivity of dielectric films [1, 2] and silicon
films [3], the photo-thermal reflectancemethod [4], and the photo-acoustic technique [5].

As for the theoretical study, the method based on the Boltzmann transport
equation (BTE) has become a powerful technique and has been used by many
researchers. It has been extensively applied to study thermal transport in dielectric
materials [6, 7]. In the BTE method, physical understandings of heat transfer and
phonon scattering are needed, such as the velocity and relaxation time of energy
carriers. On the other hand, it is hard to know the physical properties in some cases,
which makes it difficult to capture the structural effect on thermal transport.
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Molecular dynamics (MD) simulation, which directly simulates the trajectory
of each atom=molecule in the system, does not have the limitation of the BTE
method and becomes more popular. In the 1950s, MD simulation was first applied to
calculate the inharmonic one-dimensional chains of atoms [8]. Early work on MD
simulation was carried out by Alder et al. [9], Gibson et al. [10], and Rahman [11].
The MD technique has been applied to liquids and gases, giving reasonable results
[12–14] and determining the phonon spectra and nanoscale solid structure [15–17].
Work has also been done in studying the thermal conductivity of materials [18, 19].
Recently, Lukes et al. [20] used MD simulation to study the thermal conductivity of
solid thin films, showing that the thermal conductivity decreased as film thickness
was reduced. Using MD simulation, Volz and Chen [21] investigated the thermal
conductivity of silicon nanowires and found that the simulated thermal conductivity
was about two orders of magnitude smaller than that of bulk silicon crystals. They
also studied the thermal conductivity of silicon crystals and the effect of the domain
size and boundary conditions [22]. To date, little MD work has been reported on
studies of the anisotropic nature of the thermal transport in nanofilms and
nanowires. For nanoparticles, little research has been conducted to address the effect
of boundary phonon scattering on thermal transport.

In this article, MD simulation is employed to study the phonon thermal
transport in nanofilms, nanoparticles, and nanowires, which have strong phonon
scattering at boundaries. For nanofilms and nanowires, the thermal conductivities in
all the three directions are reduced by boundary scattering while they show some
anisotropic nature. The results indicate a strong reduction of thermal transport in the
constrained direction compared with that in the unconstrained direction. In addition
to thermal conductivity, the relaxation time of phonons in thin films is studied as

NOMENCLATURE

a lattice constant

c sound velocity

cv specific heat

Cv r�cv
E total energy of an atom

dE2 fluctuation of E2

F interaction force

k thermal conductivity

kB Boltzmann’s constant

k0 thermal conductivity of bulk

material

L thickness of the film

L0 mean free path of phonons

m atomic mass

N number of atoms; number density

of atoms

P probability of atomic velocity

distribution

q heat flux

qF heat flux in the Fourier law

r position of the atom

rcut cutoff distance

r0 distance between nearest atoms

t time

Dt time step

T temperature

u potential energy

du2 fluctuation of u2

v velocity of the atom

V volume

x, y, z coordinate directions

e LJ well depth parameter

r density

s LJ equilibrium separation

t phonon relaxation time

f LJ 12-6 potential

Subscripts

i, j index of the atom

m index of the direction

NVT system with constant atomic

number, volume, and temperature
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well using three methods. The values of the phonon relaxation time obtained from
the three methods deviate slightly, while the trends of variation with the thickness are
the same.

2. METHODOLOGIES

2.1. Basis of the MD Technique

Argon crystal is chosen as the material under study for the reason of simplicity
of computation while the fundamental physical phenomena can still be captured.
The basis of the MD simulation is to solve the Newtonian equations to obtain the
position, force, and velocity of each atom in the system. Each atom has the following
movement equation:

mi
d 2ri
dt2

¼
XN
i6¼j

Fij ð1Þ

where mi is the mass and ri is the position of atom i, and N is the total number of
atoms in the system. Fij is the interaction force between atoms i and j, which can be
obtained from the Lennard-Jones (LJ) 12-6 potential [12]:

fijðrijÞ ¼ 4e
s
rij

� �12
� s

rij

� �6
" #

ð2Þ

Fij ¼ �
@fij

@rij
¼ � 4e

rij
12

s
rij

� �12

� 6
s
rij

� �6
" #

ð3Þ

where fij is the LJ potential between two atoms, e is the LJ well depth, s is the
equilibrium separation parameter, and rij is the distance between two atoms
(rij ¼ ri � rj). When rij is much larger than s, the two terms in the potential will
become very small. In our calculation, we adopt a widely used cutoff distance,
rcut ¼ 2:5s [23]. When the distance between two atoms is larger than the cutoff
distance, the force will not be considered, which will greatly reduce the computa-
tional time.

To solve Eqs. (1)–(3), various methods can be applied. In our program, we
adopt one of the widely used Verlet algorithms, in which the half-step leapfrog
scheme is used. This algorithm can be expressed as [12]

vi tþ Dt
2

� �
¼ vi t� Dt

2

� �
þ FijðtÞ

mi
Dt ð4aÞ

riðtþ DtÞ ¼ riðtÞ þ vi tþ Dt
2

� �
Dt ð4bÞ

Fijðtþ DtÞ ¼ �
@fijðtþ DtÞ
@rijðtþ DtÞ ð4cÞ
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viðtÞ ¼
viðtþ Dt=2Þ þ viðt� Dt=2Þ

2
ð4dÞ

where vi is the velocity of atom i, and Dt is the time step, which should be chosen to
be much smaller than the phonon relaxation time. In our calculation, we choose Dt
as 5 fs, which is much smaller than the typical value of the relaxation time of
phonons (�1 ps) in this work.

2.2. Thermal Equilibrium Calculation

Before studying thermal transport, the system should be in equilibrium state
with the minimum value of potential energy. The temperature is calculated using the
kinetic energy of the system, which can be written as [19]

T ¼
PN

i¼1
1
2mv2i

3
2NkB

ð5Þ

where kB(¼1:38�10�23J=K) is Boltzmann’s constant.
In this work, we set the initial temperature as 30K, which can keep the argon

crystal in solid state. The distance between nearest neighboring atoms is dependent
on temperature, which can be expressed using the following expression [24]:

r
0
ðTÞ
s

¼ 1:0964þ 0:054792
kBT

e

� �
þ 0:014743

kBT

e

� �2

þ 0:083484
kBT

e

� �3

� 0:23653
kBT

e

� �4

þ 0:25057
kBT

e

� �5

ð6Þ

where r0 is the nearest distance between atoms. For the face-centered cubic (fcc)
crystal structure studied here, the lattice parameter a has the form a ¼

ffiffiffi
2

p
r0. When

temperature is chosen as 30K, the lattice constant a is equal to 0.5355 nm.
To reach the thermal equilibrium state in an efficient manner, we initialize the

velocities of atoms with the Maxwellian distribution [23]:

PðvÞ ¼ 4pv2
m

2pkBT

� �3=2

e�mv2=2kBT ð7Þ

where PðvÞ is the density of probability for an atom moving with a velocity v.

2.3. Calculation of Thermal Conductivity

In traditional heat transfer, the heat flux can be calculated using Fourier’s law
of heat conduction as [19]

qF ¼ �k � HT ð8Þ

where qF is the heat flux and k is the thermal conductivity. This equation represents
the relationship between qF and the temperature gradient only when the time scale is
much greater than the phonon relaxation time. When a temperature gradient is
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suddenly established, in the very beginning the heat flux q evolves according to the
relaxation law [25, 26]

dq

dt
¼ qF � q

t
ð9Þ

where t is the relaxation time of phonons. For the equilibrium MD simulation
conducted in this work, the heat flux qF is zero, because there is no macro-temperature
gradient in the sample. For this reason, the heat flux q in Eq. (9) can be written as

qmðtÞ ¼ qmð0Þ exp
�t

t

� �
ð10Þ

where qmðtÞ is the heat flux in the m (m ¼ x, y, z) direction. qm(0) is the heat flux at a
certain instant and is not zero, due to the statistical oscillation of the system around
its equilibrium state. As a result, the time autocorrelation function of the heat flux
can be expressed as

hqmð0ÞqmðtÞi ¼ hqmð0Þqmð0Þi exp
�t

t

� �
ð11Þ

Furthermore, the Green-Kubo expression of the thermal conductivity, which is
related to the long-time autocorrelation function, is given as [19]

km ¼ V

kBT 2

Z 1

0

hqmð0ÞqmðtÞidt ð12Þ

where V is the volume of the system.
From the equation of energy conservation,

1

V

qE
qt

þ H � q ¼ 0 ð13Þ

and the energy of an atom in terms of the atomic kinetic and potential energies,

Ei ¼
XN
j¼1

1

2
fij þ

1

2
mv2i ð14Þ

we can write the expression of heat flux q as
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XN
i¼1
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3. RESULTS AND DISCUSSION

3.1. Thermal Transport in Nanofilms

In this section, thermal transport in nanofilms of different thicknesses is stu-
died. The nanofilms studied consist of 20 fcc unit cells in the x and y directions, and 2
to 64 fcc unit cells in the z direction. Periodical boundary conditions are applied to
the x and y directions, and free boundary conditions to the z direction. The total
computational time is 2 ns for thermal conductivity calculation. The parameters used
in the calculation are listed in Table 1.

Figure 1 shows the lattice structure in the x–z plane for a nanofilm of 8 cells
(� 4.28 nm) in the z direction after it reaches the thermal equilibrium state. It is
evident that atoms are regularly located around their equilibrium positions,
reflecting the crystal structure in the film. At the top and bottom surfaces, however, a
few atoms are not so regular because of the free boundary conditions.

3.1.1. Thermal conductivity. Figure 2 presents the evolution of the heat flux
autocorrelation function for the nanofilm shown in Figure 1. The autocorrelation
function becomes close to zero when the time reaches 3 ps for the z direction and
6 ps for the x and y directions. This indicates that phonon transport in the z
direction experiences stronger scattering and relaxation than in the x and y
directions. The first part of the curves looks exponential, which is consistent with
the prediction of Eq. (11). However, there are some vibrations in the long-time
part, which take a long time to eliminate. It needs to be pointed out that the
autocorrelation function hq(0)q(t)i shown in Figure 2 is averaged over a large time
span of 2 ns, which is intended to smooth out the oscillation in the curve. After
this long-time calculation, the oscillation of the curve is weak and has negligible
effect on the integration of hq(0)q(t)i over time.

Figure 3 shows the thermal conductivity in three directions for the nanofilm of
4.28nm thickness (shown in Figure 1). The curves indicate that the thermal conductivity
in the z direction is much smaller than those in the x and y directions. This is caused by
the small size and free boundary conditions in the z direction, which introduce phonon
confinement and diffuse relaxation of phonons at the boundary. Figure 3 demonstrates
that a computational time of 2 ns is sufficient to give a converged thermal conductivity.

Table 1. Values of parameters used in the calculation

Parameter Value

LJ well depth parameter, e 1:653� 10�21 J

LJ equilibrium separation, s 3.406 Å

Argon atomic mass, m 6:63� 10�26 kg

Boltzmann constant, kB 1:38� 10�23 J=K

Lattice constant, a 5.355 Å

Cutoff distance, rcut 8.515 Å

Temperature, T 30K

Size of the sample—x 10.71 nm

Size of the sample—y 10.71 nm

Size of the sample—z 1.071–34.272nm

Time step, Dt 5 fs
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In this section, we calculate the thermal conductivities in the x, y, and z
directions for films of different thicknesses. The relationship between the thermal
conductivities in the three directions and the thickness of nanofilms is shown in
Figure 4. It is observed that the thermal conductivities in the x, y, and z directions

Figure 1. Lattice structure in the x–z plane for a nanofilm 4.28 nm thick in the z direction.

Figure 2. Evolution of heat flux autocorrelation function for the nanofilm of 4.28 nm thickness.

PHONON THERMAL TRANSPORT IN NANOMATERIALS 435



decrease with the decreasing thickness of the film. This reflects the fact that boundary
scattering at the top and bottom surfaces introduce diffuse phonon relaxation in the
three directions. The thermal conductivity in the z direction is more affected by the
thickness, which is caused by the smaller size and the free boundary condition
applied in this direction. When the thickness is comparable to the mean free path of
phonons (�1.5 nm as calculated latter), the thermal conductivity in the z direction
varies significantly with thickness, due to the strong boundary scattering. After the
thickness reaches large values, the portion of phonons experiencing boundary
scattering becomes much smaller. As a result, the thermal conductivity tends to be
constant and becomes close to the values in the x and y directions. The thermal
conductivity at large film thicknesses is around 0.55 W=mK, which is close to the
measured thermal conductivity of argon crystal at 30K, 0.78 W=mK [27]. The
difference between them could be attributed to the potential used for argon crystal,
which is very appropriate for liquid argon. From this figure, it is evident that the
thermal conductivity in the x and y directions is also affected by the thickness, which
is caused by the diffuse boundary scattering of phonons. It demonstrates that the
diffuse scattering of phonons at the top and bottom surfaces of thin films not only
reduces the thermal conductivity in the thickness direction, but also reduces the in-
plane thermal conductivity. When the thickness of the film becomes smaller, the
surface area-to-volume ratio, which is proportional to the inverse of the film
thickness, becomes larger. This means that a larger portion of phonons will
experience diffuse surface scattering, making their mean free path in the x and y
directions smaller. Therefore, like the thermal conductivity in the z direction, the
thermal conductivity in the x and y directions also becomes smaller when the film
thickness decreases.

Figure 3. Thermal conductivities in the three directions for the nanofilm of 4.28 nm thickness.
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For the thermal conductivity in the thickness direction of thin films, Figure 5
presents a comparison between the results of MD simulation and those of the
Boltzmann transport equation, which has the form [6]

k

k0
¼ 1

1þ aðL0=LÞ
ð16Þ

Recently, by solving the BTE using the lattice Boltzmann method (LBM), Xu
[28] stated that a was equal to 2.0. When using Eq. (16), the mean free path of
phonons is estimated as L0 ¼ 3k0=(rcvc), where k0 is the thermal conductivity of
bulk argon, cv is the specific heat, and c is the speed of sound in argon. A close look
at Figure 4 reveals that when the thickness reaches 34.27 nm, the thermal con-
ductivity is almost constant. We estimate that the thermal conductivity at 34.27 nm
thickness is about 0.95k0, based on the curve trend. cv is calculated using the MD
simulation and is detailed in Section 3.1.2. The speed of sound in argon crystal is
taken as 1,518 m=s in the [100] direction (thickness direction) at 30K [29]. Figure 5
demonstrates that the variation trends predicted by the MD simulation and the LBM
are close. It is found that the thermal conductivity predicted by MD simulation
for thin films is smaller than those predicted by the BTE method, which could be
attributed to the loose intermolecular bonding at the top and bottom boundaries,
which is not taken into account in the LBM. The other possible reason for the
difference between the MD simulation and the LBM is that when solving the BTE
using the LBM, only one thermal relaxation time (mean free path) is used. On the
other hand, it is evident in Figure 2 that the thermal relaxation time of phonons has a
wide span (discussed in Section 3.1.2), which complicates the boundary scattering

Figure 4. Thermal conductivities of nanofilms versus their thickness.
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effects and is not accounted for in the LBM. When the phonon movement is solved
using the LBM, diffuse boundary scattering is assumed. This boundary condition
may not hold true for the MD simulation conducted in this work and will introduce
difference between the MD and LBM results.

3.1.2. Relaxation time of phonons. In this work, three methods are
employed to determine the relaxation time of phonons based on the MD
simulation results.

In the first method, by substituting Eq. (11) into Eq. (12) and conducting the
integration, we obtain the following equation for the phonon relaxation time:

t ¼ k � kB � T2

hqð0Þqð0ÞiV ð17Þ

In the second method, it is evident that Eq. (11) proposes an exponential
evolution of the autocorrelation function of the heat flux. Since our results give the
values of hqð0ÞqðtÞi at each time step, the phonon relaxation time t can be obtained
by curve-fitting of hqð0ÞqðtÞi using the exponential function.

In the third method, according to the simplified kinetic theory of heat transfer
by phonons, the relaxation time t can also be determined from the calculated
thermal conductivity k with the following equation [19]:

t ¼ 3k

rcvc2
ð18Þ

Figure 5. Comparison of the thermal conductivity in the thickness direction of thin films for MD simu-

lation and the BTE method. k0 is the thermal conductivity of bulk materials, L is the film thickness, and L0

is the mean free path of phonons in bulk materials.

438 Z. ZHONE ET AL.



where c is the sound velocity, r is the density of argon crystal, and cv is the specific
heat, which can be determined by the fluctuations in the total energy [12],

kBT
2Cv ¼ hdE2iNVT ð19Þ

where Cv ¼ rcv. The fluctuations in the total energy are divided into uncorrelated
kinetic and potential parts,

hdE2iNVT ¼ 3

2
NðkBTÞ2 þ hdu2iNVT ð20Þ

where

hdu2iNVT ¼ hu2iNVT � hui2NVT ð21Þ

in which u is the potential energy and N is the number density of atoms. Figure 6
presents the time evolution of the specific heat of the thin film 8.57 nm thick. At the
beginning, the curve of specific heat displays some vibration due to the vibration of
the system energy. After 1.0 ns, it tends to be constant, which can be used to
determine the phonon relaxation time.

Figure 7 shows an example of the process to estimate the phonon relaxation
time in the z direction by the curve-fitting method for a film of 8.57 nm thickness. We
found that the exponential curve fitting applies only to the early part of the phonon
thermal relaxation process, which is shown in Figure 7. From Figure 2, it is seen that
some phonons have much longer relaxation times, which cannot be fitted using a
single thermal relaxation time.

Figure 6. Evolution of the specific heat of the thin film of 8.57 nm thickness.
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The relation between the phonon relaxation time (in the z direction) and the
film thickness is shown in Figure 8. Each curve represents the result using one
method as specified in the figure. It indicates that the phonon relaxation time
increases with increasing film thickness, meaning less constraint on the movement of
phonons in thicker films. When the thickness becomes large enough, the phonon
relaxation time tends to be constant. The results obtained using the three methods
are not identical, whereas the variation trends are close. When using Eq. (17) to
determine the phonon relaxation time, it is assumed that the autocorrelation of heat
flux decays with time exponentially. However, Figure 2 shows that this assumption
does not hold for the long time period. Therefore, Eq. (17) gives an averaged thermal
relaxation time considering both the short- and long-time relaxations. When using
curve-fitting to determine the phonon relaxation time, only the short-time thermal
relaxation is fitted, while the long-time thermal relaxation is neglected. Therefore, the
curve-fitting method predicts a smaller phonon relaxation time as demonstrated in
Figure 8. Equation (18) gives another averaged relaxation time for phonons based on
the specific heat. It is observed the phonon relaxation time predicted using Eq. (18) is
even smaller than the curve-fitting result. In this work, the specific heat cv is calcu-
lated using free boundary conditions at the top and bottom surfaces, which cannot
make the volume constant. Our previous work has proved that this can overpredict
the specific heat cv to a large extent [30]. As a result, the phonon relaxation time
determined using this specific heat is smaller.

3.2. Thermal Transport in Nanoparticles and Nanowires

A big benefit of MD simulation is that it can be readily applied to different
shapes of nanomaterials. In addition to nanofilms, thermal transport in

Figure 7. Curve-fitting of hqð0ÞqðtÞi to determine the phonon relaxation time.
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nanoparticles and nanowires is also studied in this work. Figure 9 shows the lattice
structure of a nanoparticle with 8.57 nm diameter. Free boundary conditions are
applied to the three directions, which makes the surface a little irregular.

Because of the symmetry of the nanoparticle, the thermal conductivities in the
three directions are close to each other. Figure 10 shows the relationship between the
thermal conductivities in the x, y, and z directions and the diameter of nanoparticles.
The values of the thermal conductivity are different from those of the nanofilms
(detailed in Figure 13), whereas the trend of variation of the thermal conductivity
versus the characteristic size of the material is the same. When the diameter becomes
large enough, the thermal conductivity tends to be constant. This is because when the
diameter of the particle becomes much larger than the mean free path of phonons,
the number of phonons experiencing boundary scattering will become negligible in
comparison with the total number of phonons in the particle. Therefore, the mean
free path of phonons will be close to that of bulk material and independent of the
particle size.

Figure 11 shows the lattice structure in the x–z plane for a nanowire, which is
21.42 nm long in the longitudinal (z) direction and 4.28 nm wide (diameter) in
the transverse (x and y) directions. Free boundary conditions are applied to the
boundaries in the x and y directions and periodic boundary conditions to the
boundaries in the z direction. In the computation, it is found that some atoms tend
to escape from the system surface because of their high kinetic energy at the free
surface of the sample. However, the number of atoms escaping from the sample
surface is much smaller than the number of total atoms in the system.

Figure 12 shows the variation of the thermal conductivity in the three direc-
tions against the diameter of nanowires. Despite the large domain size in the axial

Figure 8. Relaxation time of phonon movement in the z direction for different film thicknesses.
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Figure 9. Lattice structure of a nanoparticle with 8.57 nm diameter.

Figure 10. Relation between the thermal conductivities and the diameter of nanoparticles.
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direction (z) of the nanowire, the thermal conductivity in this direction is sig-
nificantly reduced by the phonon scattering at boundaries in the x and y directions.
It is evident that the phonon boundary scattering reduces the thermal transport more
in the x and y directions than that in the z direction. When the diameter is small, the
thermal conductivity decreases significantly with decreasing diameter. When the
diameter becomes large enough, the thermal conductivity tends to be constant,
which is similar to the situations of nanofilms and nanoparticles. This variation trend
is also consistent with that of silicon nanowires, which was studied by Volz and Chen
[21, 31]. With the same diameter and thickness, the surface area-to-volume ratio of
nanowires is about two times that of thin films, so the effect of the diffuse boundary
scattering of phonons in nanowires has a much stronger effect on the movement of
phonons than that in thin films. Thus, as Figure 12 indicates, the thermal con-
ductivity in the z direction varies with the diameter much more than the in-plane
thermal conductivity of thin films (as Figure 4 indicates).

As a summary, variations of the thermal conductivity in the thickness or
diameter direction with the characteristic size of different nanomaterials are com-
pared in Figure 13. It is found that with the same characteristic size, the thermal
conductivity of nanofilms is larger than that of nanoparticles and nanowires. The

Figure 11. Lattice structure in the x–z plane for a nanowire 21.42 nm long and 4.28 nm wide (diameter).
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reason is that the portion of phonons experiencing boundary scattering in nanofilms
is less than that in nanoparticles and nanowires. It is understandable that with the
same diameter, nanoparticles should introduce more boundary scattering than

Figure 12. Thermal conductivities of nanowires versus their diameter.

Figure 13. Variations of thermal conductivity versus the characteristic size of different nanomaterials.
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nanowires. However, our results show that the difference of this constraint induces
marginal difference in the thermal conductivity only when the diameter of nano-
wires=particles is small.

4. CONCLUSIONS

In this work, thermal conductivities of nanofilms, nanowires, and nano-
particles were studied using equilibrium MD simulation. It was found that the
thickness of films and diameter of nanoparticle=wires strongly constrain the move-
ment of phonons by introducing boundary scattering, thereby reducing the
thermal conductivity. When the characteristic length becomes large enough, the
thermal conductivity tends to be constant. Furthermore, it was found that
the thermal conductivity of nanowires in the axial direction and nanofilms in the x
and y directions was also influenced by the diameter and thickness, which could be
attributed to the surface structure and diffuse scattering of phonons at boundaries.
We demonstrated that the relaxation time of phonons could be calculated through
curve-fitting of the autocorrelation function of heat flux. The autocorrelation
function revealed that thermal relaxation could not be simply represented with an
exponential function, since a large number of phonons thermally relax with a longer
relaxation time.
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