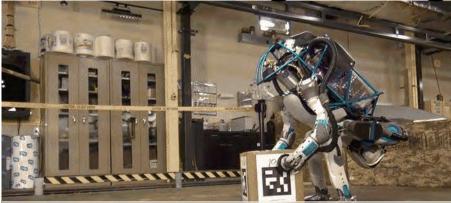


Human Interaction with Complex and Autonomous Systems and Vehicles Advanced Interaction Research Lab at Drexel

Erin T. Solovey, Ph.D.

Assistant Professor of Computer Science College of Computing and Informatics School of Biomedical Engineering, Science & Health Systems Drexel University

Increasing Usage of Automation



Search and Rescue Robots

Human + Autonomy

Human Strengths:

- Inference
- Adaptation
- Intuition
- Judgment
- Morality

Autonomy Strengths:

- Fast
- Does not get bored
- Consistent
- Good for Predictable cases

Human Limits:

- Response Time
- Bandwidth
- Cognitive Capacity
- Inconsistency
- Endurance
- Training

Autonomy Limits:

- Adaptability
- Data requirements
- Interface with System
- Need Rules

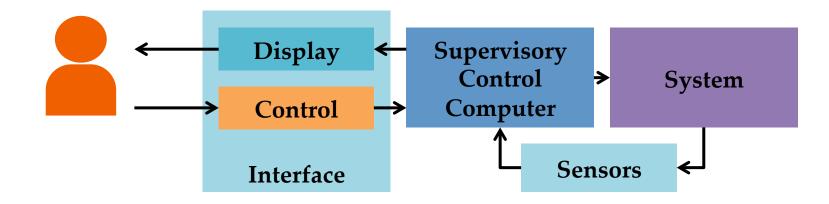
Using brain and body sensing for implicit interfaces

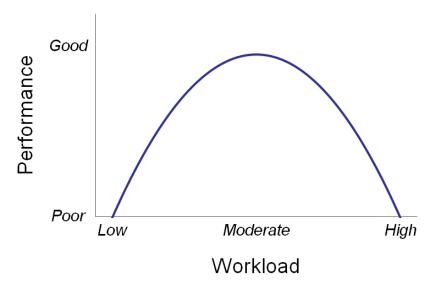
Goal: expand bandwidth between human & computer

Approach: identify signals people naturally give off and adapt systems appropriately

When are these signals useful in human supervisory control? How do you use them effectively?

Human Supervisory Control





The brain as explicit and primary input

BrainGate System at Brown University

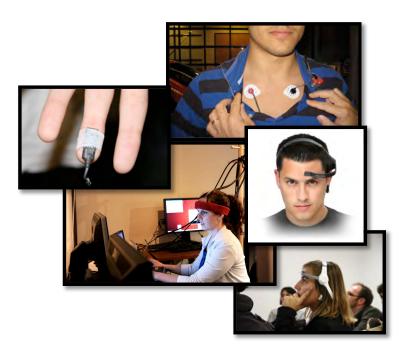
Brain & body as implicit, supplementary input

Brain & body as implicit, supplementary input

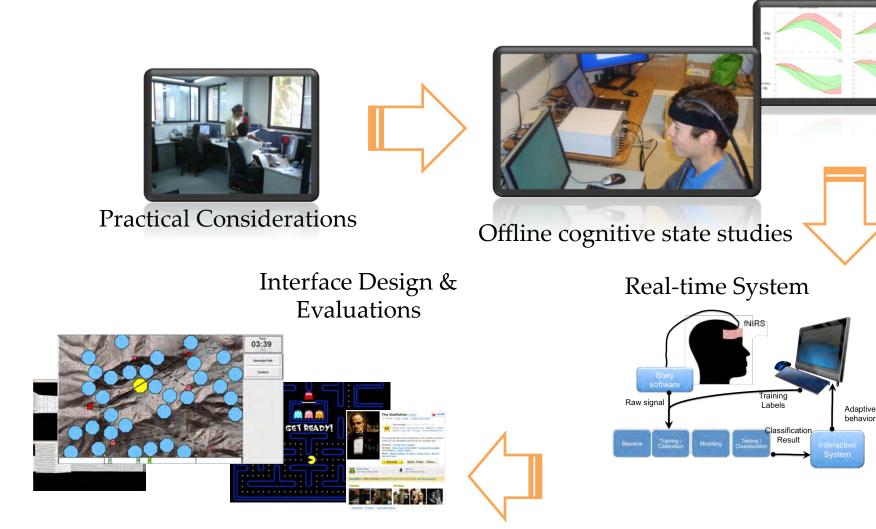
- Augment traditional input devices
- Wider group of users, beyond disabled
- Passive, implicit input channel
- Capture **subtle** cognitive state changes
- Input to **adaptive** interactive system
- Real-time, continuous data

Examples

- Adapting autonomy levels
- Modifying quantity of information
- Transform modality of info presentation
- Task allocation, manage task load, difficulty
- Offline evaluation of user interfaces, systems



Brain & Body Signals as Input



E.T. Solovey, et al. Designing Implicit Interfaces for Physiological Computing: Guidelines and Lessons Learned using fNIRS. *ACM Transactions on Computer-Human Interaction*. Vol. 21, Iss. 6. 2015x.

Offline Feasibility Studies

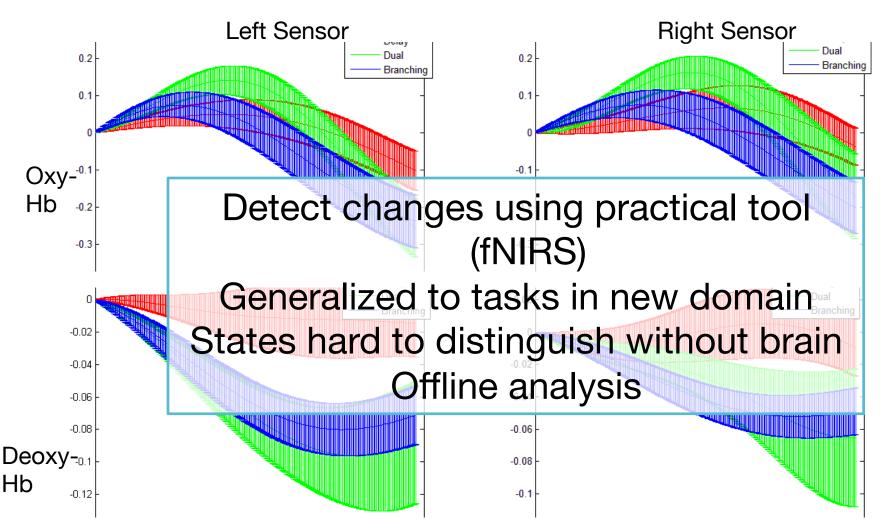
Questions:

Can we detect relevant signals within brain and physiology that would be otherwise difficult to observe?
Are there generic brain processes that can be detected in multiple tasks and domains?

Photo by totalaldo

E.T. Solovey, K. Chauncey, F. Lalooses, M. Parasi, D. Weaver, M. Scheutz, P. Schermerhorn, A. Sassaroli, S. Fantini, A. Girouard, R.J.K. Jacob, "Sensing Cognitive Multitasking for a Brain-Based Adaptive User Interface," Proc. ACM Conference on Human Factors in 0 Computing Systems CHI'11, ACM Press (2011).

Different Activation Patterns



Feasibility Studies on the Road

1) Within Individuals

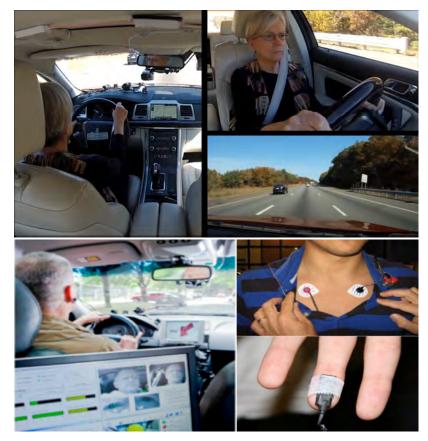
- Natural driving
- 2-back task
- Physiological and vehicle data
- 20 subjects

2) Across Individuals

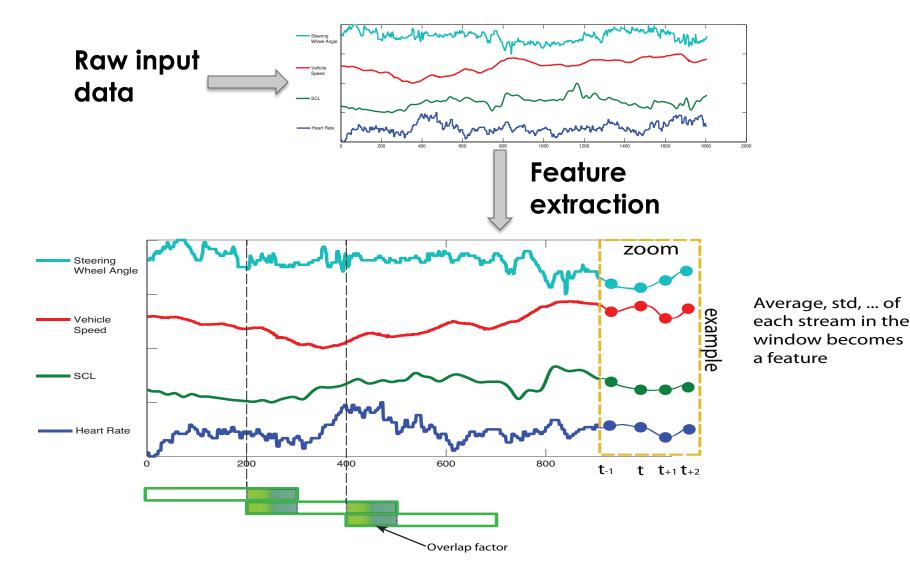
- Natural driving
- n-back tasks
- Physiological and vehicle data
- 99 subjects

3) Experiment 3: Brain Sensing

- Simulator driving
- Simple driving, Blank-back, 0-back, 1-back, 2-back tasks
- 3 blocks of these tasks
- 19 subjects



Feature extraction



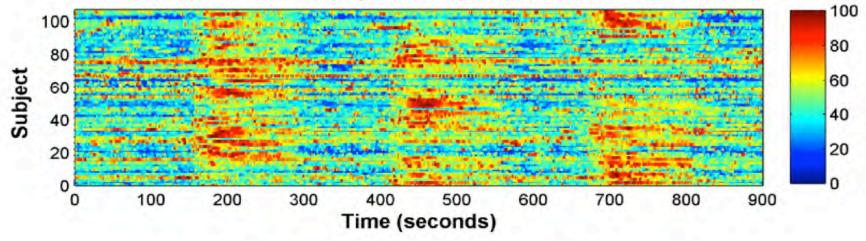
Experiment 1 results

	All Features		Heart Rate	
	Mean	S.D.	Mean	S.D.
Decision Tree	75.0	10.8	72.8	12.8
Logistic Regression	75.5	10.9	73.9	11.3
Multilayer Perceptron	75.7	10.9	74.0	12.4
Naïve Bayes	75.0	12.5	74.1	11.8
Nearest Neighbor	69.4	11.6	71.5	10.3

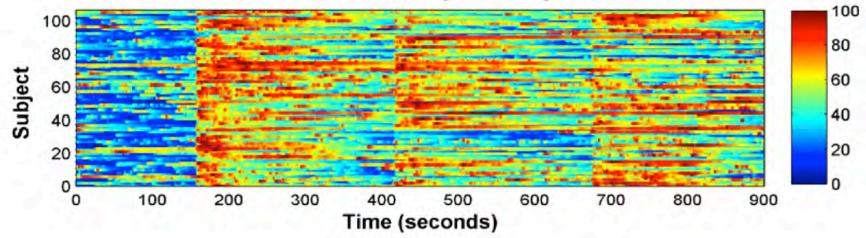
- Reasonable accuracy, using simple features and classification methods, HR alone even has promise
- 24 trials = ~48 minutes of data, training on 43 minutes
 - Okay for proof-of-concept, not ideal for real-world
 - Future: improved methods to shorten this
 - Classification across individuals may reduce/eliminate this training time (Exp 2)

Experiment results

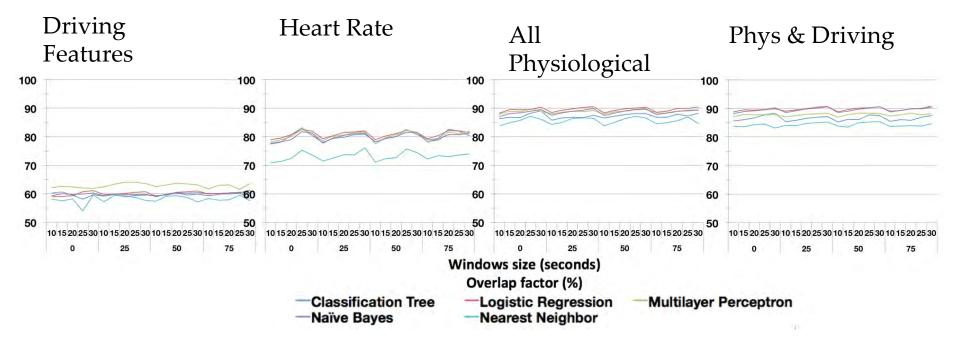
Heart rate change during experiment drive



Skin conductance level change during experiment drive

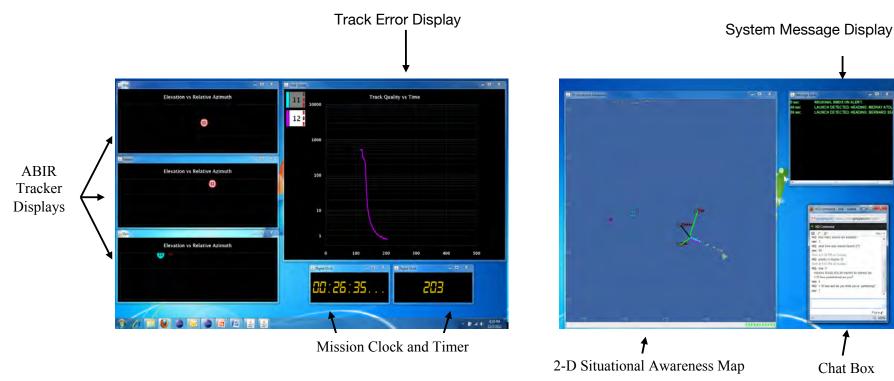


Experiment 2 Classification Results

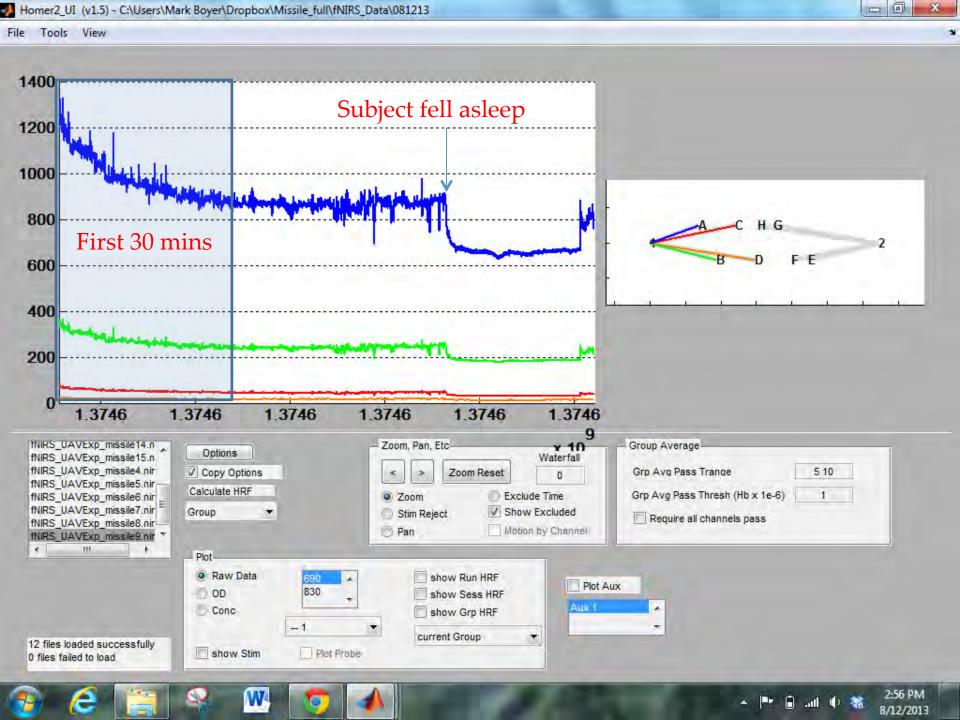


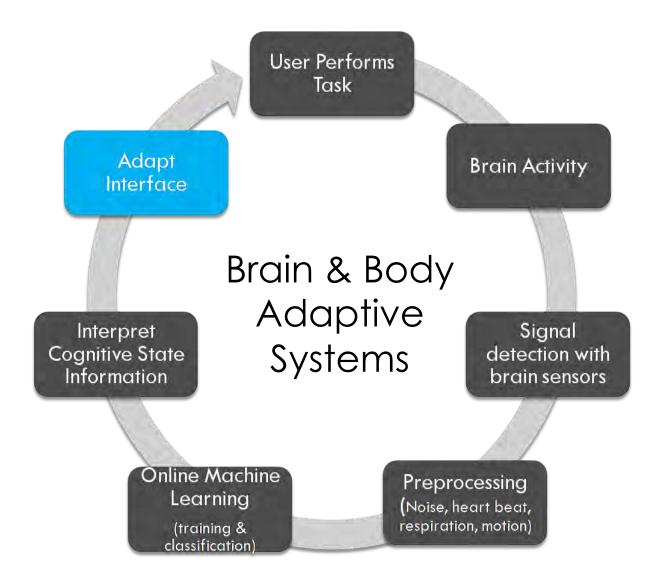
- Type of features had a clear effect on the classification results
 - HR had big improvement over driving only (64% -> 80%)
 - Adding SCL also improves

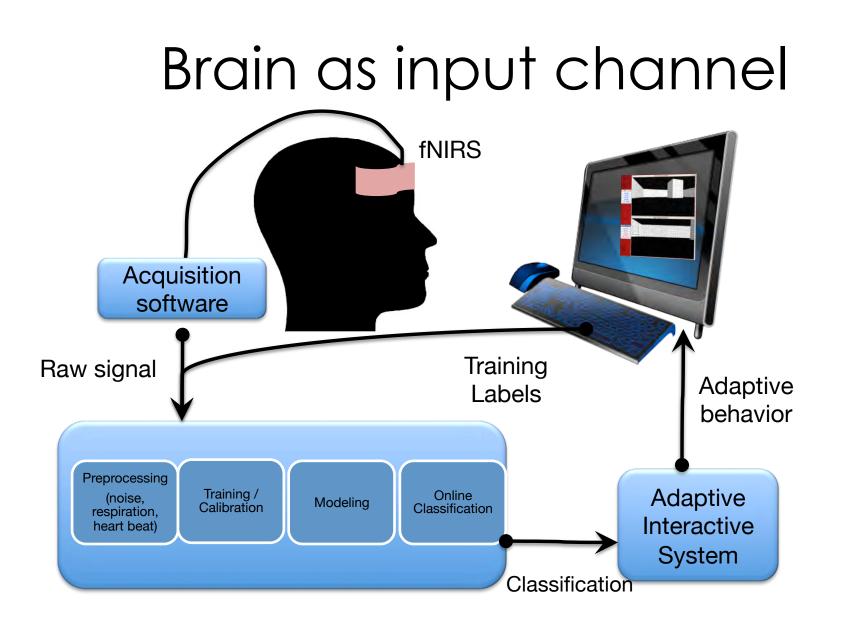
Long Duration, Low Workload



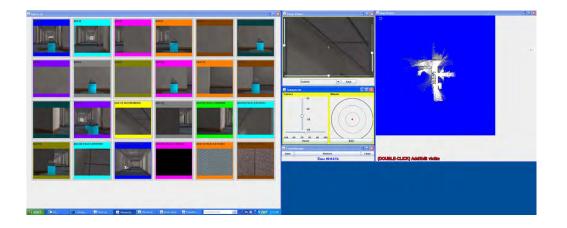
- 3.5 hour session
- controlling the sensors for 3 Unmanned Aerial Vehicles
- job is to direct which UAV will track which missile
- mission is to achieve sufficient track accuracy on every missile
- Targets begin to appear at 40, 100, or 160 minutes
- 3 or 6 targets at a time

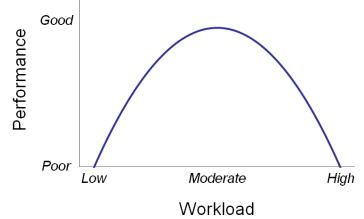




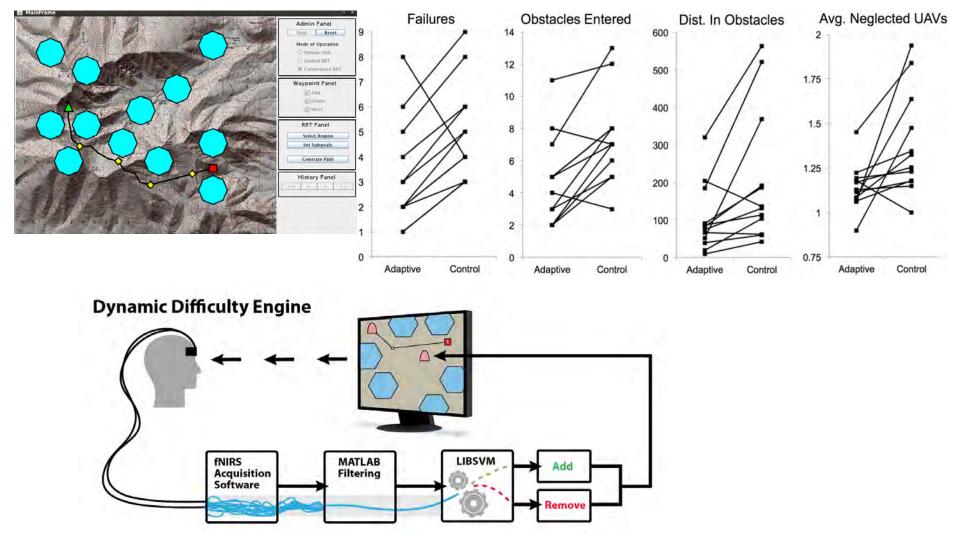


Case Study: Humans and Autonomy





Case Study: Dynamic Difficulty & Task Allocation



User Interface Guidelines

- Augment other input devices
- Subtle, helpful changes to interface
- Not disruptive if signal is misinterpreted
 - Imperfect classification, noisy data
 - Avoid irreversible, mission-critical adaptations

Examples

- Adapting **autonomy** levels
- Modifying quantity of information
- Transform **modality** of information presentation
- Task allocation, manage task load, difficulty

Tradeoffs in Teamwork

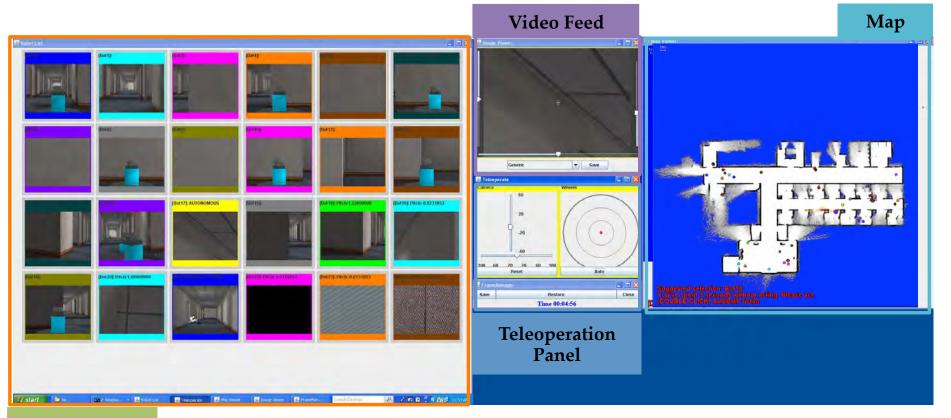
Process Gain Synergy Adaptability & Flexibility Productivity

Process loss Breakdown in internal team processes Collaboration overhead

Human-in-the-loop experiment: Effect of team structure and scheduling notification on operators' performance, subjective workload, work processes, and communication

Teamwork Experiments

Urban Search & Rescue Task: find as many victims as possible and mark their position on the map.

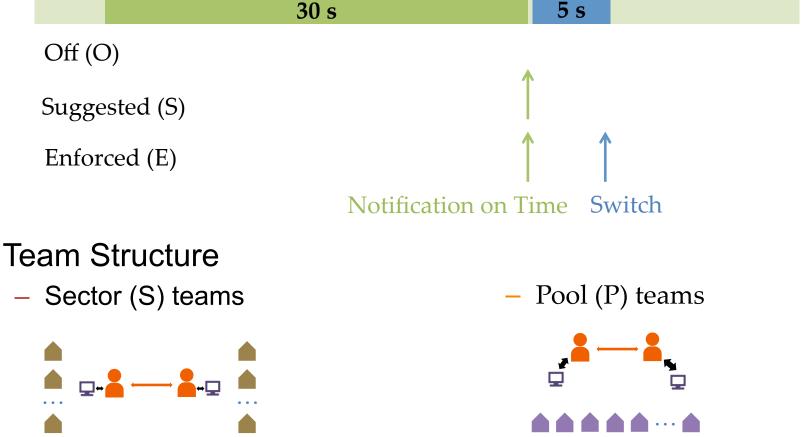


Robot List

Independent Variables

Robot Usage Notification

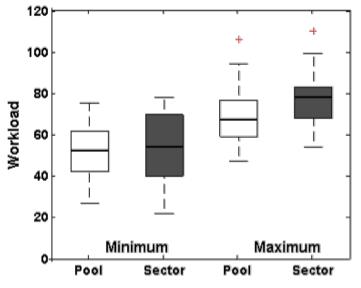
Robot selected



Results

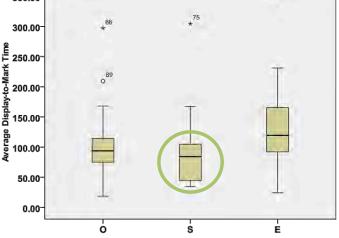
Teamwork

 Pool structure results in lower workload (NASA-TLX).



 Communication time was moderately negative correlated with errors in Pool teams (r = -0.309, p = 0.008).

Notification



In Sector Teams, those with

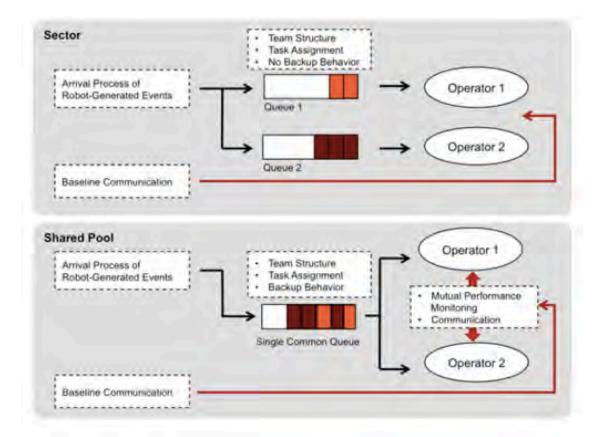
and mark victims faster as

Suggested notification identify

measured by display-to-mark

Team Performance Modeling

Discrete-Event Simulation (DES)



Team Structure Conclusions

- Lower workload reported with *Pool*
- Similar performance with both structures
- *Pool*: more communication, balanced workload from backup behavior
- DES model:
 - replicate experiment
 - Explore uncertainty & backup
 - *Pool* balanced workload, but more coordination
 - Backup meaningful only when the task load is unevenly distributed

Human Interaction with Complex and Autonomous Systems and Vehicles

Acknowledgments

Thanks to:

- Robert J.K. Jacob, Audrey Girouard, Leanne Hirshfield, Michael Horn, Orit Shaer, Jamie Zigelbaum, Michael Poor
- Daniel Afergan, Evan M. Peck, Samuel W. Hincks,
- Beste Filiz Yuksel, Tomoki Shibata, Francine Lalooses,
- A.J. Jenkins, Sergio Fantini, Angelo Sassaroli
- Remco Chang & VALT Lab
- Missy Cummings, Fei Gao, Mark Boyer & HAL
- Shelby Keating, Calan Farley
- Bryan Reimer, Bruce Mehler, Daniel Belyusar

