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How does prior experience inform 

decision-making?

Machine observables Mental State

’

[1] M.S. Cohen, J.T. Freeman, and S. Wolf. Metarecognition in time-stressed decision making: Recognizing, critiquing, and correcting. Human Factors, 1996. .

[2] A. Newell and H.A. Simon. Human problem solving. Prentice-Hall Englewood Cliffs, 1972 

[3] G.A. Klein. Do decision biases explain too much. HFES, 1989. 

examples (prototypes) and 

subspaces (important features)
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How does prior experience inform 

decision-making?

Posterior distribution

Level set

Soln clusters 

data well

Soln clusters data equally 

well but corresponds 

better to human mental 

model

• Joint inference on prototypes, subspaces and cluster 

labels

Kim, Rudin & Shah NIPS’14
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Classification Performance on Standard 
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20Newsgroups 

dataset

BCM BCM

Gibbs sampling iteration

Kim, Rudin & Shah NIPS’14
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a new data 

point to be 

classified

• Participant’s task is to assign 

the ingredients of a specific 

dish (a new data point) to a 

cluster

• Each cluster is explained using 

either BCM or LDA.

Assessing Compatibility with Human 

Decision-Making
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a new data 

point to be 

classified

Clusters explained using

1.BCM : ingredients of the prototype recipe for each 

cluster without recipe name nor subspaces for 

fairness

2.LDA: representative ingredients of each cluster

Assessing Compatibility with Human 

Decision-Making

• Statistically significantly better performance with Bayesian 

Case Model for clustering (85.9% v.s. 71.3%)

• 384 classification 

questions asked 

to 24 people
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Human Team Planning

Scenario:

• 8 rooms

• B, D, G rooms have patients that need to be rescued

• C, F rooms have leaking valves that need to be fixed

• Robots must inspect the rooms before human crews enter.
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1. Sample a plan from

P
ro

b
a
b
ili

ty

Valid Plans Invalid PlansInvalid Plans

Step 1. Do A  and B

Step 2. Do C,D and E

Step 3. Do F and G

Ordered tuple of sets 

of grounded 

predicates
nth predicate that 

appears in the tth

utterance

relative ordering of 

predicates in tth

utterance as they 

appear in final plan

plan step index 

assigned to each n

predicates in utterance 

t

Generative model with logic-based prior 

improves efficiency of inference process
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N=48 distinct plans

Technique correctly infers 80-90% of plan, on average.

Scenario:
• 8 rooms
• B, D, G rooms have patients 

that need to be rescued
• C, F rooms have leaking 

valves that need to be fixed
• Robots must inspect the 

rooms before human crews 
enter.

Generative model with logic-based prior 

improves efficiency of inference process
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