

Humans and Machines of Like Mind: Augmenting Humans Through Collaboration in Decision-Making Tasks

Julie Shah

Associate Professor

Department of Aeronautics and Astronautics

Computer Science and Artificial Intelligence Lab

Current State in Human-Robot Teaming

Amazon Robotics

BMW Spartanburg, SC

Current State in Human-Robot Teaming

Amazon Robotics



BMW Spartanburg, SC

Penelope Surgical Instrument Server

 Coexistence but *not* Collaboration.

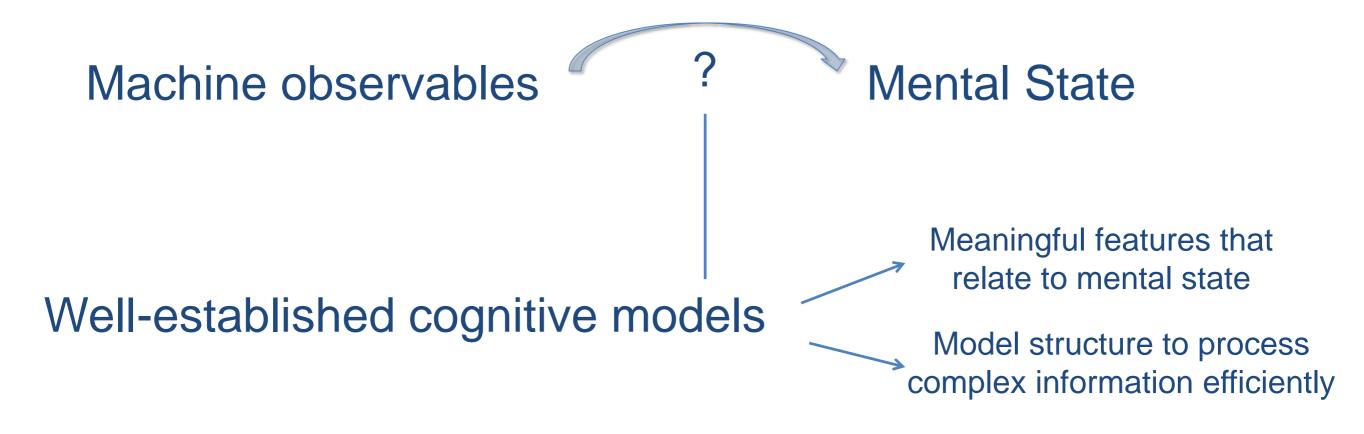
4

 Problem: Current models for HRI and teamwork are based on empirical observation – which works well for highly structured interaction.

- Problem: Current models for HRI and teamwork are based on empirical observation – which works well for highly structured interaction.
- Richer collaborations require inferring human mental state.

- Problem: Current models for HRI and teamwork are based on empirical observation – which works well for highly structured interaction.
- Richer collaborations require inferring human mental state.

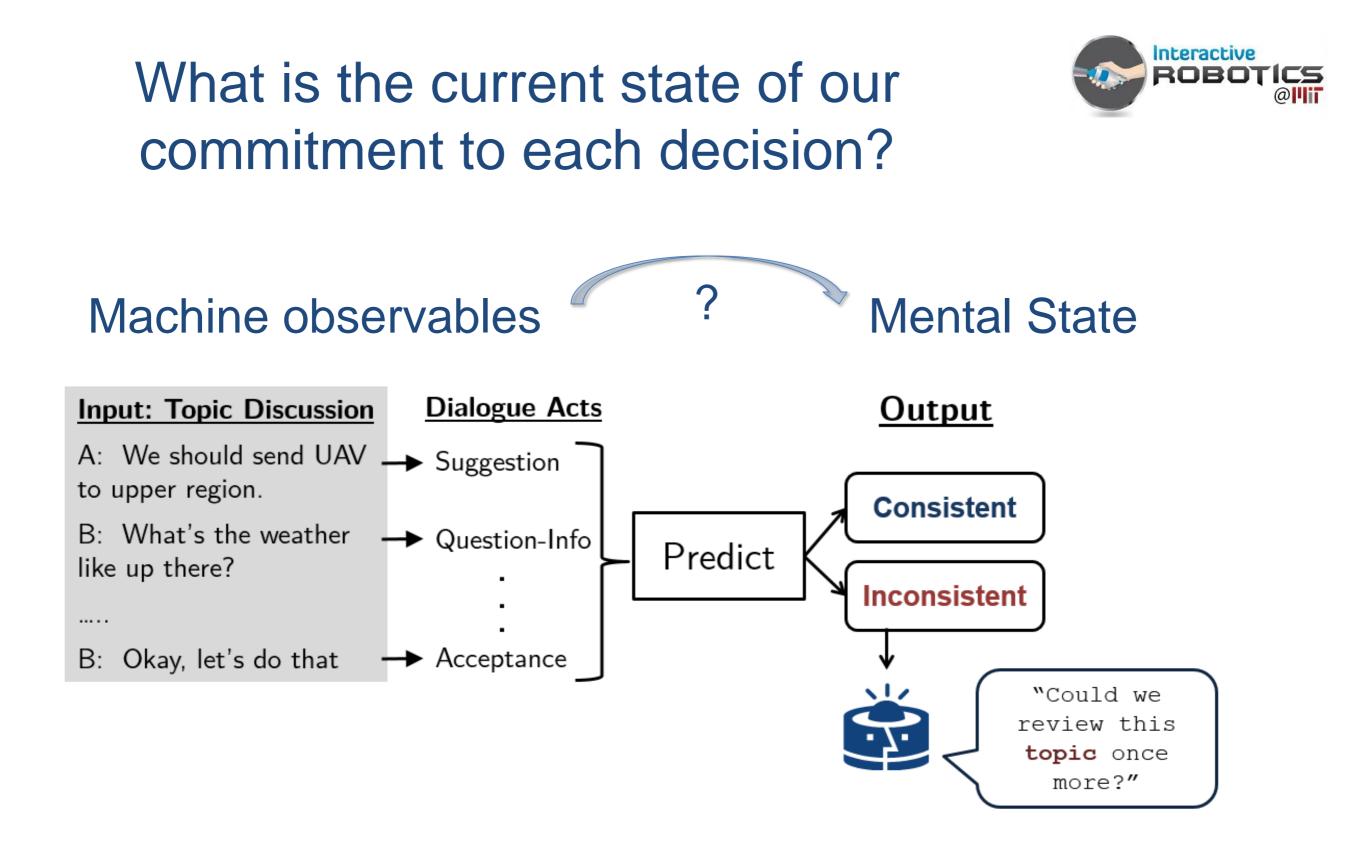
- Problem: Current models for HRI and teamwork are based on empirical observation – which works well for highly structured interaction.
- Richer collaborations require inferring human mental state.



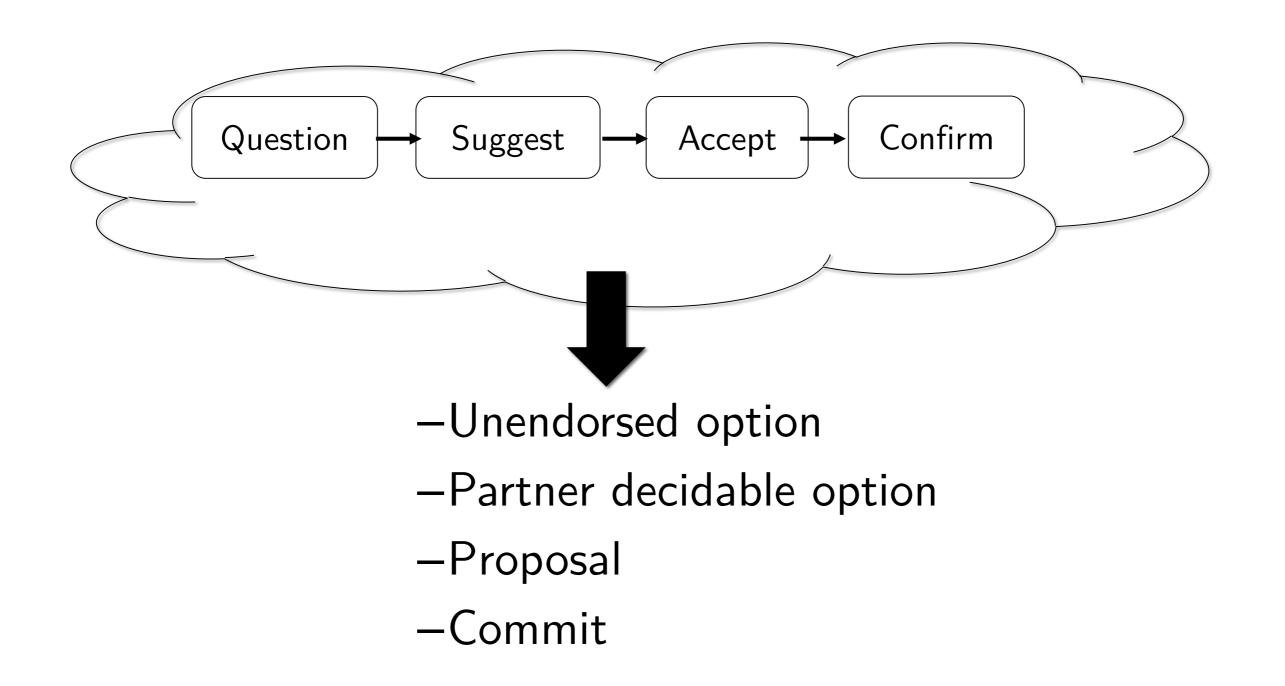
- [Hidden State] What is the current state of our commitment to each decision?
- [Hidden State] How does each teammate's prior experience inform their decision-making?

- [Hidden State] What is the current state of our commitment to each decision? – Do we have consensus?
- [Hidden State] How does each teammate's prior experience inform their decision-making?

- [Hidden State] What is the current state of our commitment to each decision? Do we have consensus?
- [Hidden State] How does each teammate's prior experience inform their decision-making? – How do we aggregate data from prior experience?



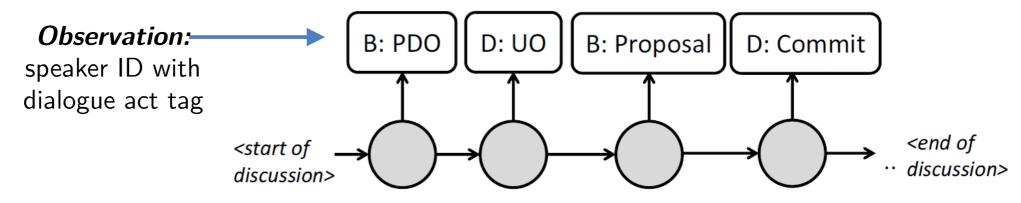
What is the current state of our commitment to each decision?



B. Eugenio et al. (2000) The agreement process: An empirical investigation of human-human computer-mediated collaborative dialogs, International Journal on Human Computer Studies.

Machines that Learn from Listening to the Team

- **Approach:** learn conversational patterns from a large corpus of team meetings (AMI corpus $\sim 100,000$ utterances)
- Features: use of *dialogue acts* focused on capturing speakers' commitment process¹
 - Unendorsed option: speaker "lays" an option with no subsequent actions from others
 - Partner decidable option: speaker presents option that requires further balancing of info.
 - Proposal: speaker presents an option to be accepted/rejected by the group • Commit: speaker indicates a full commitment towards an option
- Low-level classifier: Automatic tagging of dialogue acts ($\sim 80\%$ accuracy)
- High-level classifier:
- HMM inference on group consensus² ($\sim 66\%$ accuracy)



J. Kim and J. Shah (2016) IEEE Transactions on Human-Machine Systems

Machines that Learn from Listening to the Team

	O	Acc. [%]	Rec. [%]	Prec. [%]	F1 [%]	FPR [%]
HMM _{DAs_full}	11	50.7	29.3	23.1	25.8	40.4
HMM _{DAs}	4	51.4	36.5	31.0	33.5	41.1
HMM _{Eugenio}	4	62.1	44.7	43.8	44.2	29.5

PREDICTION PERFORMANCE OF HMM_{EUGENIO} AND BASELINES

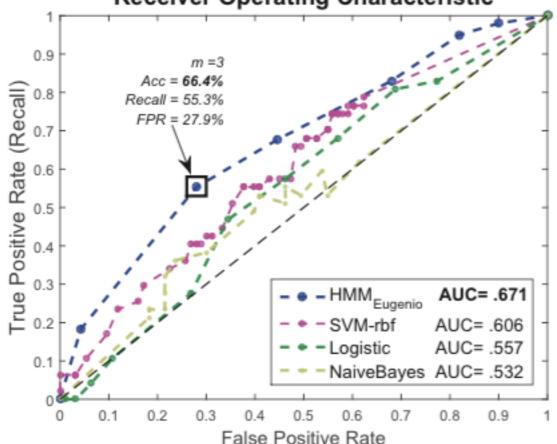
 Meeting Phase
 Discussion

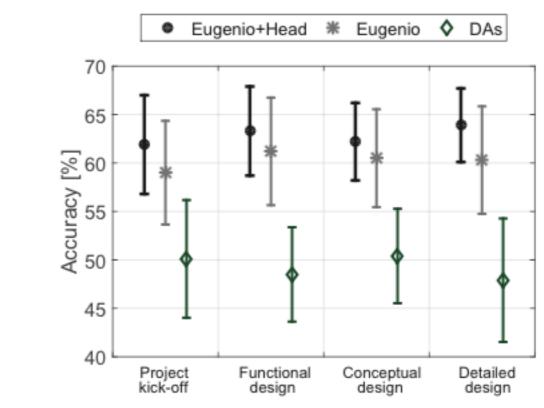
 Project kick-off
 Getting acquainted with one another and discussing the project goals

 Functional design
 Setting user requirements, technical functionality and working design

 Conceptual design
 Determining conceptual specifications for components, properties and materials

 Detailed design
 Finalizing user interface and evaluating the final product

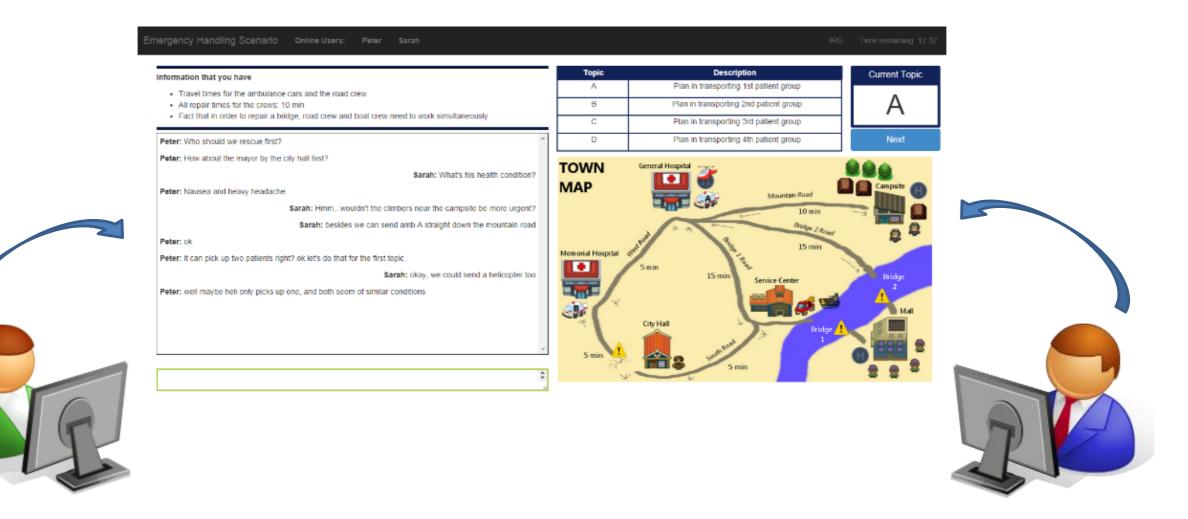




Receiver Operating Characteristic

J. Kim and J. Shah (2016) IEEE Transactions on Human-Machine Systems

Evaluation with Live Teams



• Evaluation: assess utility of review in human team planning³

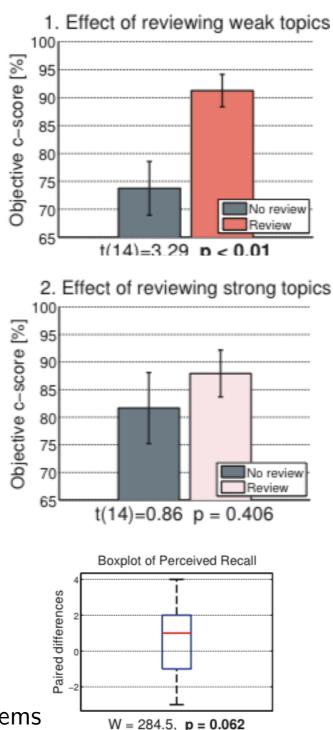
- Simulated disaster response scenario
- Communication through web chat interface (n=15 teams of two)
- System identifies which topics most ideal to review

Evaluation with Live Teams

 Findings: statistically significant improvement (~18%) in objective measures of teams' consistency of understanding with intelligent review system
 1. Effect of reviewing weak topics

Treatment level	Definition
1. Adaptive review	System suggests review of the two topics with the lowest predicted c-scores (<i>weak</i> topics)
2. Maladaptive review	System suggests review of the two topics with the highest predicted c-scores (<i>strong</i> topics).

Request for	Plan Review ×
	 Please review with your partner the following topics. Topic A : Transport for the 1st patient group Topic C : Transport for the 3rd patient group
	Confirm
	TOWN Géneral Hospital
Aeasure	Questionnaire Items
Perceived utility	" " " " " " " " " " " " " " " " " " "
Perceived recall	"The system suggested the two topics where there was potential for lack of understanding between my teammate and I."



J. Kim and J. Shah (2016) IEEE Transactions on Human-Machine Systems

- [Hidden State] What is the current state of our commitment to each decision
- [Hidden State] How does each teammate's prior experience inform their decision-making?

- [Hidden State] What is the current state of our commitment to each decision
- [Hidden State] How does each teammate's prior experience inform their decision-making? – How do we aggregate data from prior experience?

Machine observables

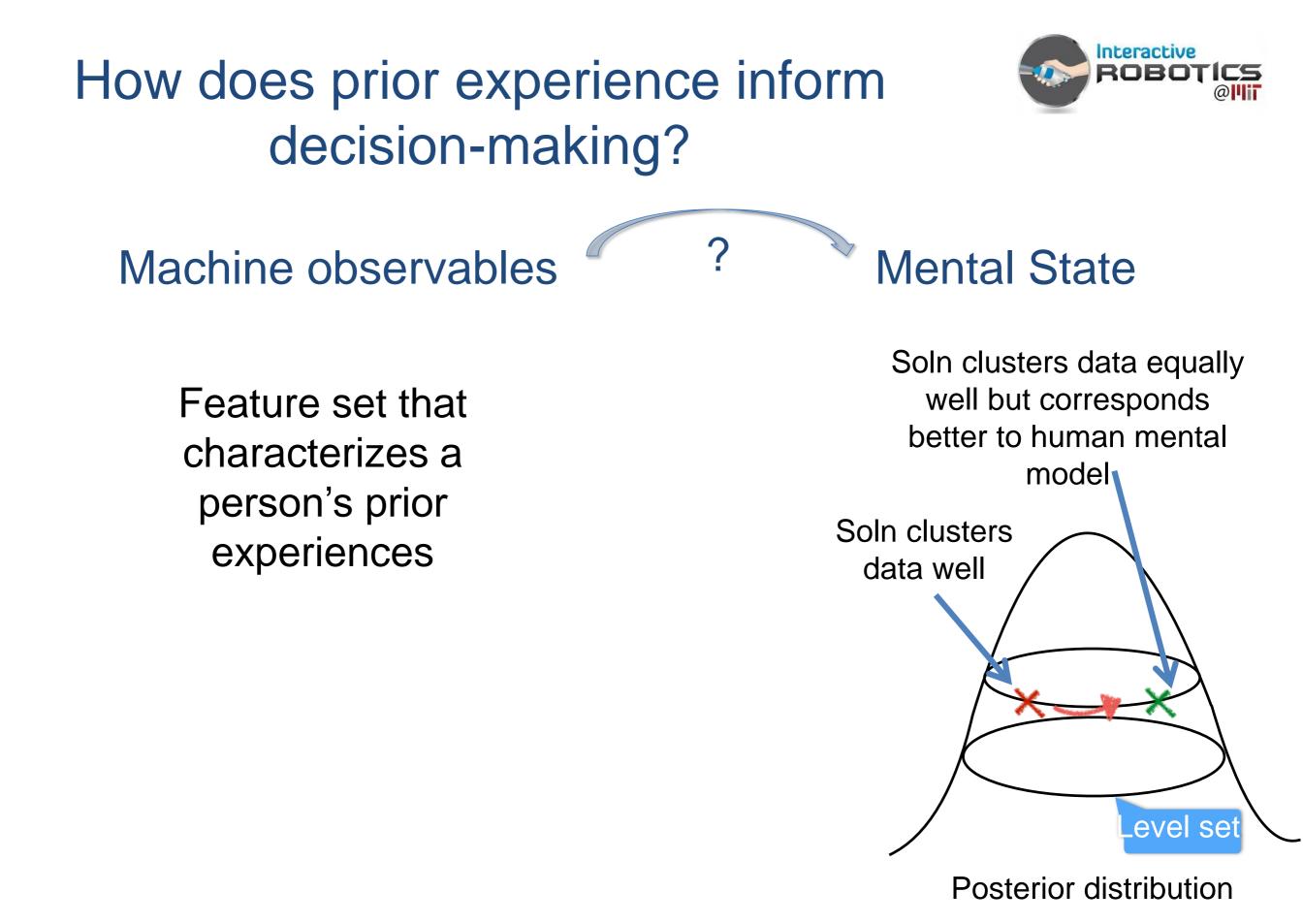
Well-established cognitive models

?

Mental State

Meaningful features that relate to mental state

Model structure to process complex information efficiently



How does prior experience inform decision-making?

Human's tactical decision is based on

 Skilled fire fighters use recognition-primed decision making — a situation is matched to typical cases

exemplar-based reasoning (matching and

Machine observables

prototyping)

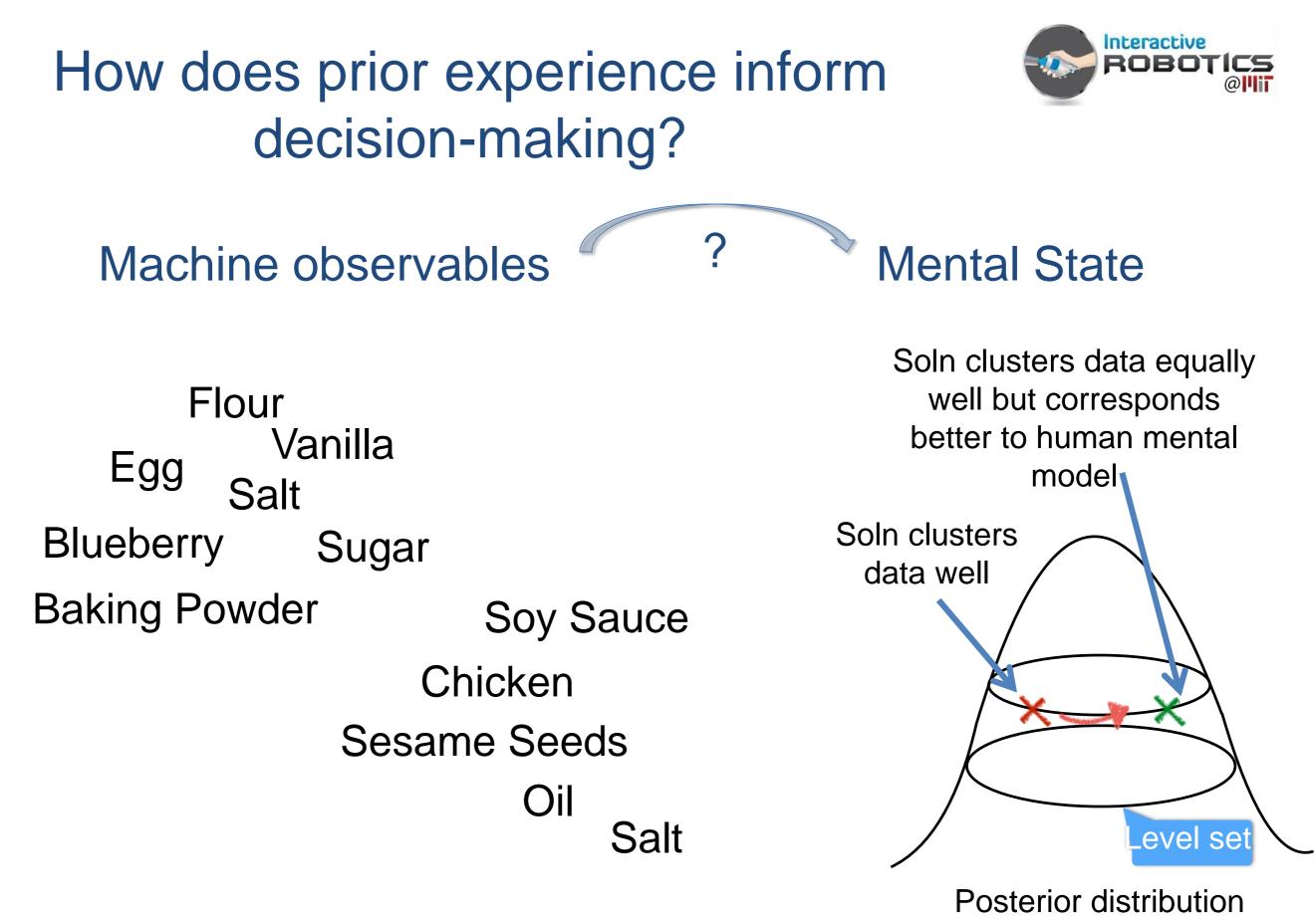
Mental State

examples (prototypes) and subspaces (important features)

[1] M.S. Cohen, J.T. Freeman, and S. Wolf. Metarecognition in time-stressed decision making: Recognizing, critiquing, and correcting. Human Factors, 1996. .

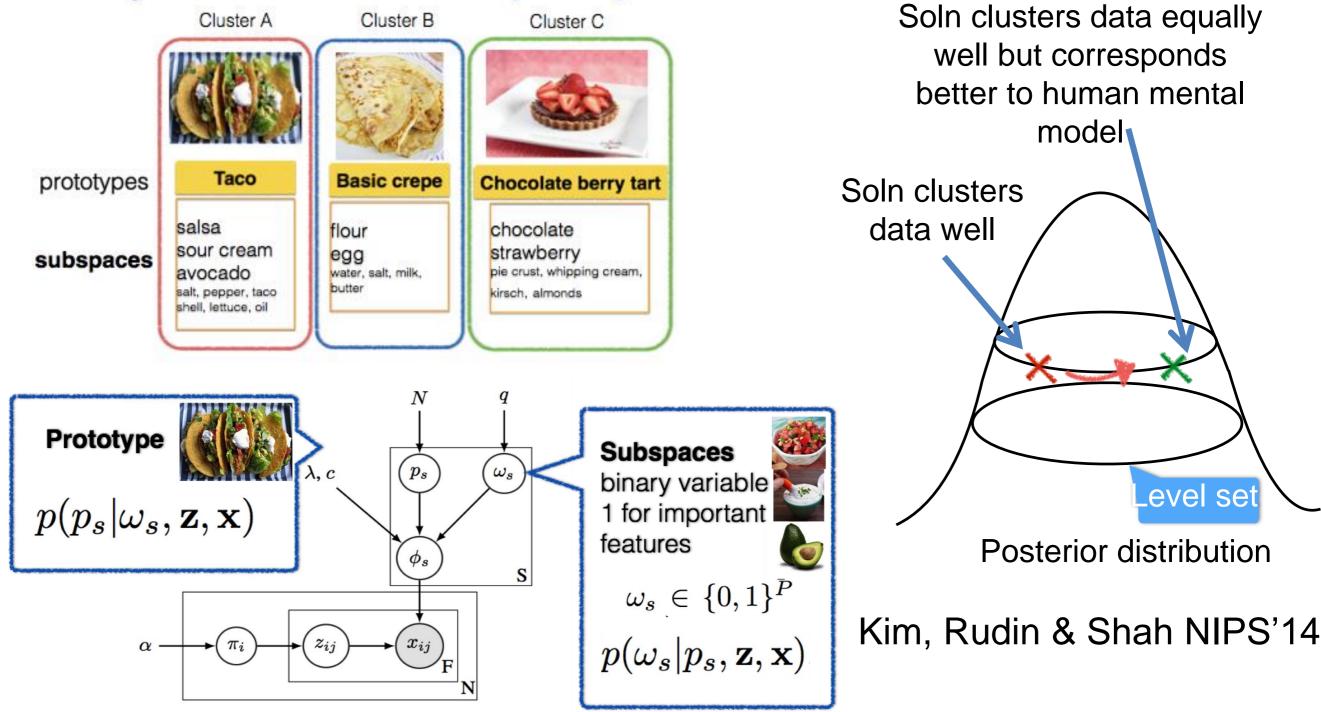
[2] A. Newell and H.A. Simon. *Human problem solving*. Prentice-Hall Englewood Cliffs, 1972

[3] G.A. Klein. Do decision biases explain too much. HFES, 1989.



How does prior experience inform decision-making?

 Joint inference on prototypes, subspaces and cluster labels

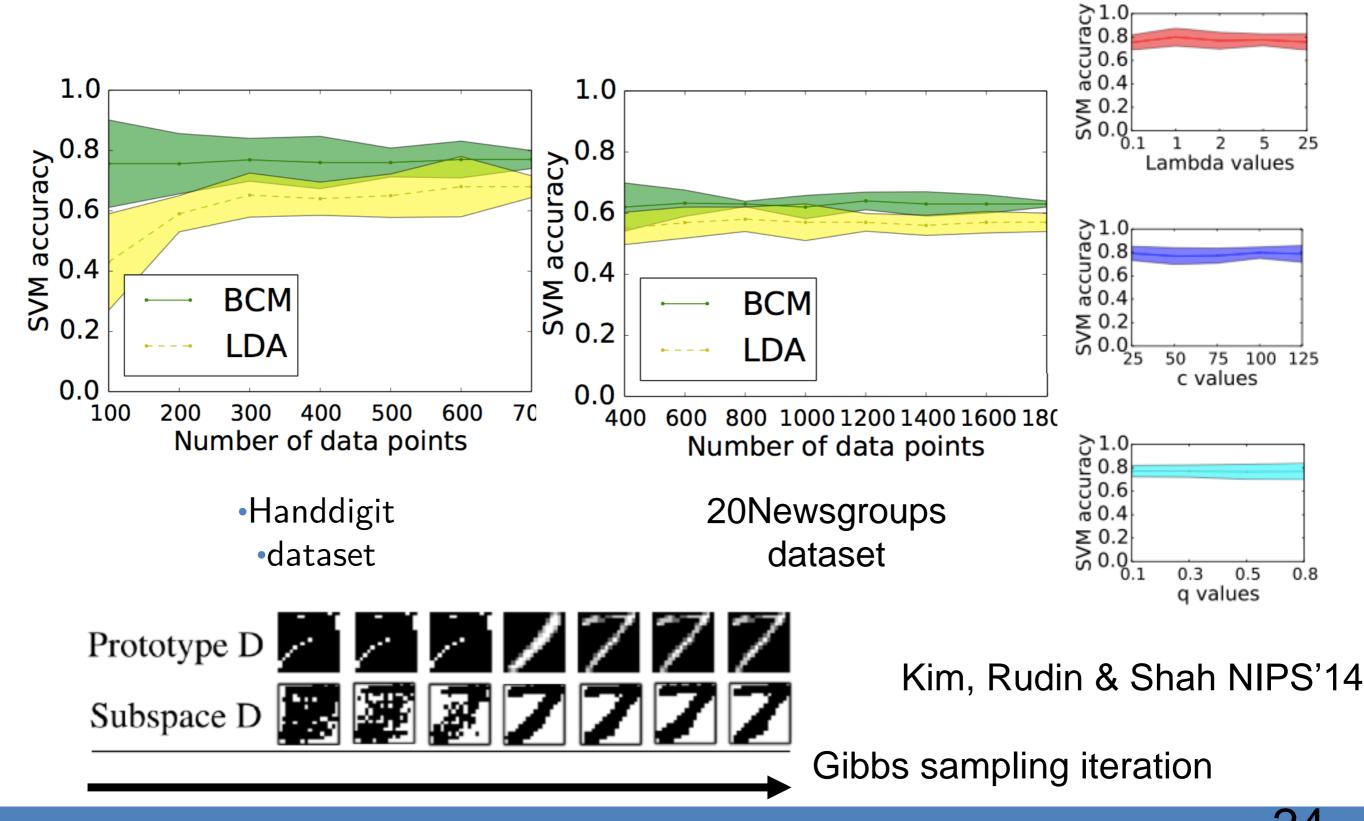


Interactive

ROBOTICS

a

Classification Performance on Standard Datasets



Assessing Compatibility with Human Decision-Making

Specific dish

	flour
	egg
	cranberry
	brown sugar
	pumpkin
	baking powder
	oil
a ne	ew data
poir	nt to be
cla	ssified

- Participant's task is to assign the ingredients of a specific dish (a new data point) to a cluster
- Each cluster is explained using either BCM or LDA.

Assessing Compatibility with Human Decision-Making

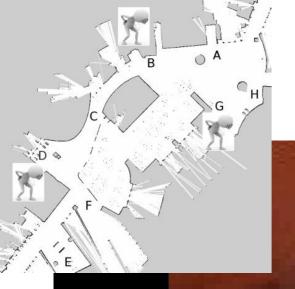
Spec	ific dish	Examples of types of dishes				
flour egg cranberry		Dish 1 ingredients	Dish 2 ingredients			
		flour soy sauce				
		vanila	chicken			
brown suga	ar	egg	sugar	384 classification		
pumpkin		salt	semame seeds	questions asked		
baking pov	vder	sugar	rice	to 24 people		
oil		blue berry	oil			
		baking powder	salt			
		Clusters explained using				
a new data		1.BCM : ingredients of the prototype recipe for each				
point to be		cluster without recipe name nor subspaces for				
classified		fairness				
	2.LDA: representative ingredients of each cluster					

 Statistically significantly better performance with Bayesian Case Model for clustering (85.9% v.s. 71.3%) 26

- [Hidden State] What is the current state of our commitment to each decision? Do we have consensus?
- [Hidden State] How does each teammate's prior experience inform their decision-making? – How do we aggregate data from prior experience?

- [Hidden State] What is the current state of our commitment to each decision? – Do we have consensus?
- [Hidden State] How does each teammate's prior experience inform their decision-making? – How do we aggregate data from prior experience?

- [Hidden State] What is the current state of our commitment to each decision? What did we agree to?
- [Hidden State] How does each teammate's prior experience inform their decision-making? – What will we do next?

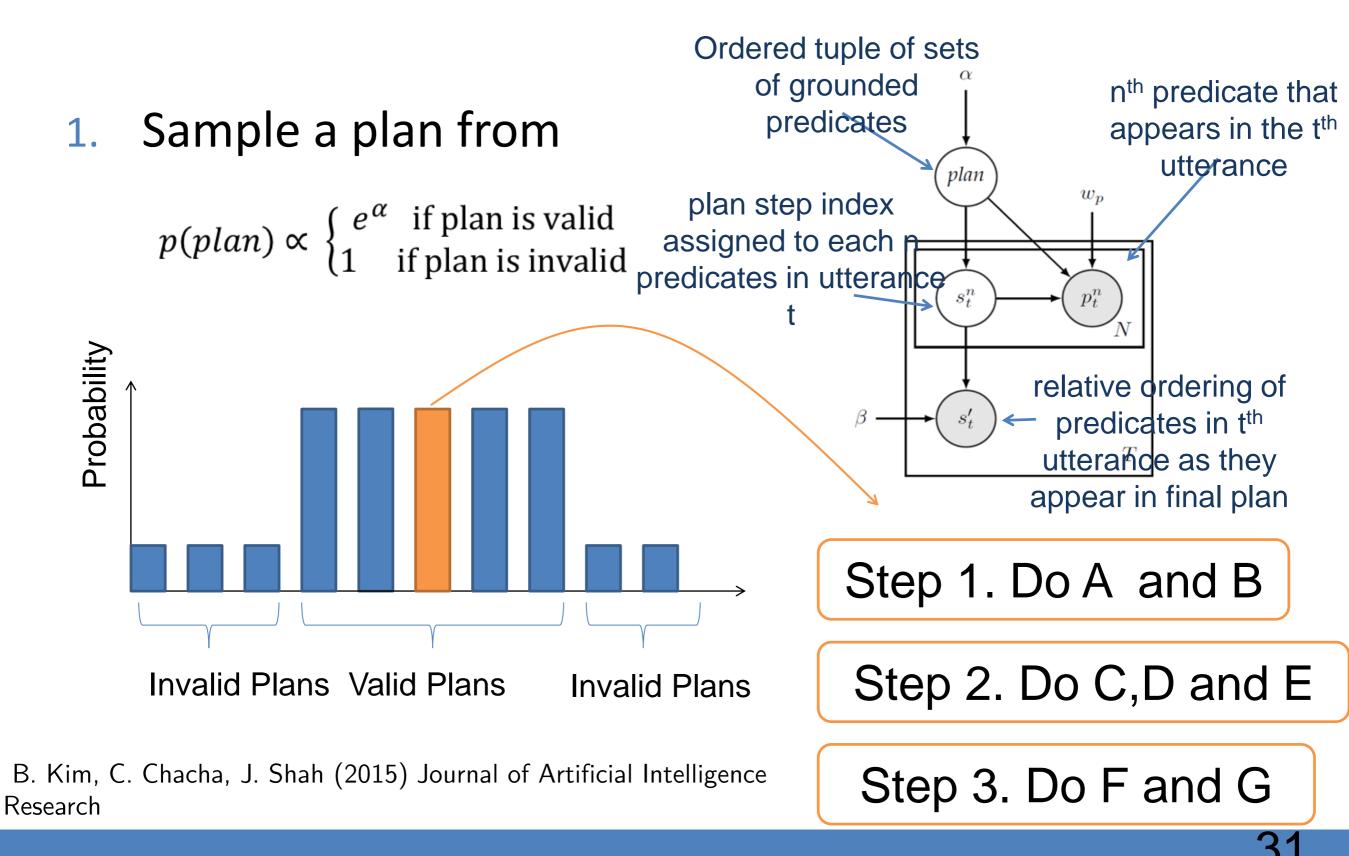


Human Team Planning

Scenario:

- 8 rooms
- B, D, G rooms have patients that need to be rescued
- C, F rooms have leaking valves that need to be fixed
- Robots must inspect the rooms before human crews enter.

Generative model with logic-based prior improves efficiency of inference process



Generative model with logic-based prior improves efficiency of inference process



Scenario:

- 8 rooms
- B, D, G rooms have patients that need to be rescued
- C, F rooms have leaking valves that need to be fixed
- Robots must inspect the rooms before human crews enter.

	Task A	% Seq	Avg.	
	% Inferred	% Noise Rej	70 Deq	Avg.
PDDL	84	100	91	91
PDDL with missing goals and constants	100	54	75	76
PDDL with missing a constraint	88	77	84	83
No PDDL	85	75	87	82

Technique correctly infers 80-90% of plan, on average.

N=48 distinct plans

- [Hidden State] What is the current state of our commitment to each decision? What did we agree to?
- [Hidden State] How does each teammate's prior experience inform their decision-making? – What will we do next?

Machines that Learn from Watching People Solve Resource Allocation & Scheduling Problems IJCAI'16

- Goal: Emulate problem solving capability of human domain experts.
- Approach: Pairwise rank formulation used to train a machine learning model
 - Define a set of scheduling-relevant features for the problem
 - E.g. deadline, duration of task, earliest time task is available, resources required by task
 - Each observation of expert commitment is described by the feature vector
 - Positive and negative training examples computed through pairwise comparison
 - Differences computed for scheduled versus unscheduled tasks
 - Classifiers trained to predict highest priority next action to take, and whether to take action at time t

$$\begin{aligned} {}^{rank}\theta^m_{\langle \tau_i,\tau_x\rangle} &:= \left[\xi_{\boldsymbol{\tau}}, \gamma_{\tau_i} - \gamma_{\tau_x}\right], y^m_{\langle \tau_i,\tau_x\rangle} = 1, \\ \forall \tau_x \in \boldsymbol{\tau} \backslash \tau_i, \forall O_m \in \boldsymbol{O} | \tau_i \text{ scheduled in } O_m \end{aligned}$$
(1)

$$\begin{aligned} {}^{rank}\theta^{m}_{\langle \tau_{x},\tau_{i}\rangle} &:= \left[\xi_{\boldsymbol{\tau}}, \gamma_{\tau_{x}} - \gamma_{\tau_{i}}\right], y^{m}_{\langle \tau_{x},\tau_{i}\rangle} = 0, \\ \forall \tau_{x} \in \boldsymbol{\tau} \setminus \tau_{i}, \forall O_{m} \in \boldsymbol{O} | \tau_{i} \text{ scheduled in } O_{m} \end{aligned}$$
(2)

$$\widehat{\tau_i^*} = \underset{\tau_i \in \boldsymbol{\tau}}{\operatorname{argmax}} \sum_{\tau_x \in \boldsymbol{\tau}} f_{priority}\left(\tau_i, \tau_x\right)$$
(3)

$$y_{\tau_i}^m := \begin{bmatrix} \xi_{\tau}, \gamma_{\tau_i} \end{bmatrix},$$

$$y_{\tau_i}^m = \begin{cases} 1 : \tau_i \text{ scheduled in } O_m \land \\ \tau_i \text{ scheduled in } O_{m+1} \\ 0 : \tau_{\emptyset} \text{ scheduled in } O_m \end{cases}$$
(4)

Machines that Learn from Watching People Solve Resource Allocation & Scheduling Problems

IJCAI'16, RSS'16

Successful application of technique to anti-ship missile defense (with MIT LL)

BY KEVIN MCCANEY • FEB 04, 2015

A Navy ship being under missile fire is no game, but making a game of that scenario can help sailors prepare for it.

• Successful application to coordination of patient care in a hospital

Machines that Learn from Watching People Solve Resource Allocation & Scheduling Problems

30

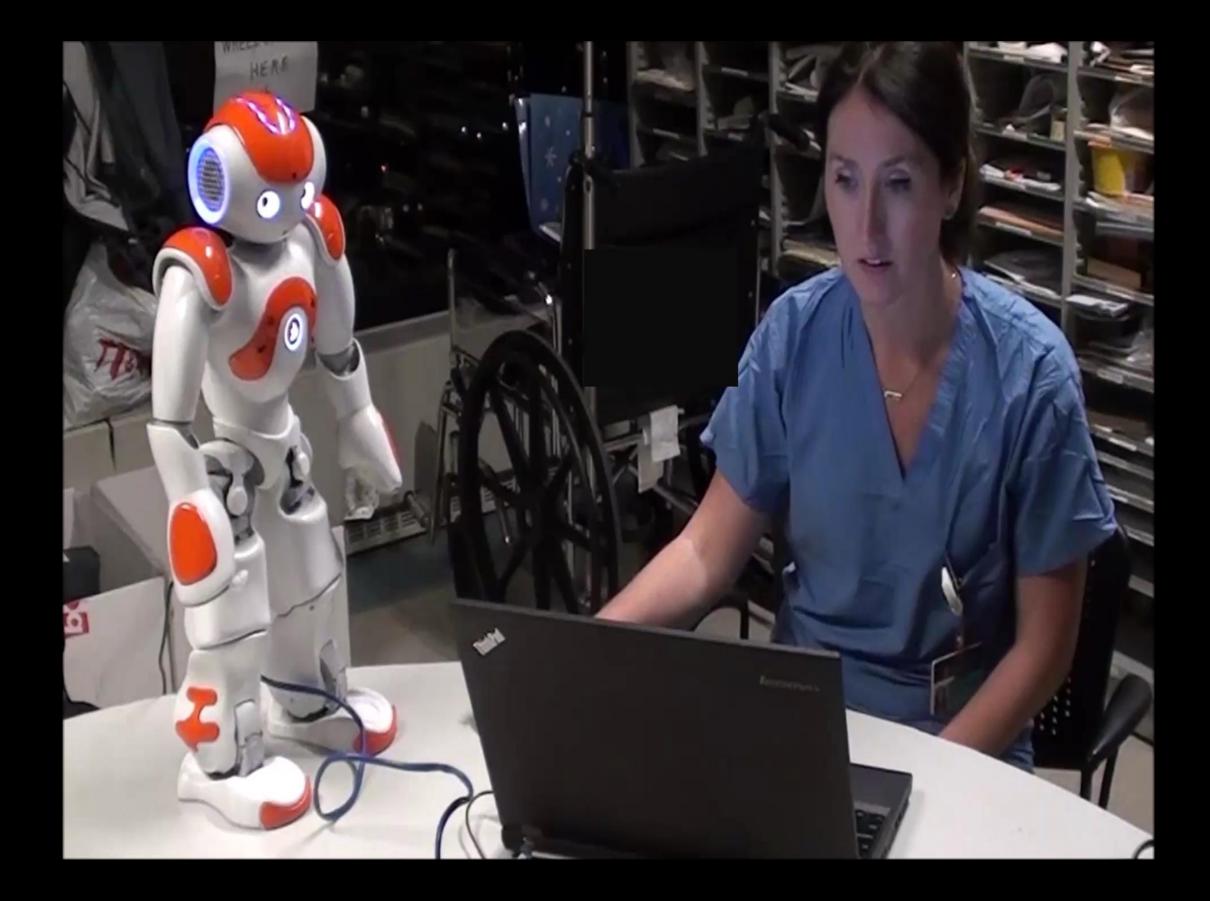
IJCAI'16

Successful application of technique to anti-ship missile defense (with MIT LL)

BY KEVIN MCCANEY • FEB 04, 2015

A Navy ship being under missile fire is no game, but making a game of that scenario can help sailors prepare for it.

- Problem involved 5 decoys, 10 types of threats, 16 game configurations.
- Dataset: 162 games played by 27 human experts with expertise in ASMD.
 - E.g. deadline, duration of task, earliest time task is available, resources required by task
- Model trained on 16 demonstrations in which a player mitigated all enemy missiles
- Average human player's score: 74, 728 \pm 26, 824
- Learned model's average score: 87, 540 \pm 16, 842
- Learned scheduling policy performed better than the human demonstrators on more scenarios than vice versa (12 vs. 4 scenarios, p<0.011)



Contributions

- Approach: translate well-established cognitive models into new computational models that allow machines to
 - infer our mental state

Machine observables

process complex information efficiently

Well-established cognitive models

Meaningful features that relate to mental state

Mental State

Model structure to process complex information efficiently

- Experiments validate that these models yield richer, flexible human-machine teaming
 - making higher quality shared plans [IEEE THMS'16, RSS'16 JAIR'15]
 - making better sense of big data [NIPS'14]
 - learning complex shared plans from observation [IJCAI'16]