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Stay to the right of the car; screen the back of
the building that is behind the car.
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Representations for Robotics

HomePhone
Person Contact
N M |homePhoneID ‘im
?K | personiD int PK,FK1 | personlD
PK,FK2 | homePhonelD nomeNumber | charts)
firstName varchar(s0) PK,FK3
lastName varchar(50) PK,FKA e
dateOfBirth | datetime m
streetAddress | varchar(150) PK ‘muhﬂtphnngm int
suburbAddress | varchar(150)
cityAddress varchar(150) | 4 ‘mobwlcNumber char(10)
photo image
I Emailaddress
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PK | parentiD |int
PKFK1 | personiD fint emailAddress | varchar(150)
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Pk |plaverid |int
PK,FK1 | personlD |int
K2 |schoollD -
i
i
i
I Family
i
H PK,FKL playerlD |int
1 L ogPKKLFK2 | personiD |int
i PKFK2 | parentiD |int
H
i
i
i
i
i
i
i
i
i
ES
L QualificationsSet
School Coach
PKFK2 | teamiD | int - . PKFKL | coachiD |int
PKFK1 | personiD | int PK | schoolid |int PK coachlD int Ly 5qPRF | personip |int
PKFKL | plaverlD | int PKFKL | personiD int PKFK2 |quallD | char(10)
schoolName | varchar(100) |
dateBeginCoaching | datetime

TeamCoachAllocation

Team
PK,FK1 | coachlD
PK teamID int PK,FK1 | personiD
O4pifK2 | teamip CoachQualification
teamName | varchar(50)
teamYear |int PK | qualip int
FK1 |gradelD int 1
qualName | char(50)

' qualGrade | char(50)
FKL |gradeiD  |int

¢

PK | gradelD int

Grade

gradeName | varchar(50)
minWeight | int
maxWeight
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IN DEFENCE OF LOGIC

P.J.

Hayes

Essex University

Colchester,

Introduction

Modern formal logic is the most successful
precise language ever developed to express human
thought and inference. Measured across any reason-
ably broad spectrum, including philosophy,
linguistics, computer science, mathematics and
artificial intelligence, no other formalism has
been anything like so successful. And yet recent
writers in the Al field have been almost unanimous
in their condemnation of logic as a representation-
al language, and other formalisms are in a state of
rapid development.

U.K.

performs inferences:
making of inferences.

But two different systems may be based on the
same notion of inference and the same representa-
tional language. The inference structure of the
language used by a system does not depend on the
process structure. In particular, a system may
have a logical inference structure - may be making
deductively valid inferences - without being a
classical uniform theorem-prover which just "grinds
lists of clauses together".

some of its processes are the




Representations for Robotics
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Portrait used of Bayes in a 1936 book,!'! but it
is doubtful whether the portrait is actually of
him.2l No earlier portrait or claimed portrait

survives.



In Defense of Probability

Peter Cheeseman
SRI International
333 Ravenswood Ave., Menlo Park, California 94025

Abstract

In this paper, it is argued that probability theory, when
used correctly, is suffrcient for the task of reasoning under
uncertainty. Since numerous authors have rejected prob-
ability as inadequate for various reasons, the bulk of the
paper is aimed at refuting these claims and indicating the
scources of error. In particular, the definition of probability
as a measure of belief rather than a frequency ratio is advo-

ratad cinra a franmiianrmv intarnratatinn af nrnhahilitv Arac.

ference is that in probabilistic inference all the relevant
inference paths ("proofs") connecting the evidence to the
hypothesis of interest must be examined and "combined",
while in logic it is sufficient to establish a single path be-
tween the axioms and the theorem of interest. Also, the
output is different, the former includes at least one numer-
ical measure, the latter simply true or false.
Unfortunately, the logical style of reasoning is so preva-
lent in Al that many have attempted to force intrinsically

nrahahilictin citiintinne intAn A lAaninal ctrainht innllat wiith



Graphical Models
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Hidden variables in white

Mathematical Basis of Mapping
and Navigation

p(x,,mlz,,u,)= ff---fp(xmm|Z1:zau1:r) dx,dx,...dx,

Observed variables in grey



Filtering is Weighting by the Present
and Marginalizing out the Past

p(x,,mlz,,u,)= ff---fp(xwm|Z1:w”1:r) dx,dx,...dx,
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Change in Representation: Marginalize
out Measurements Instead




Change in Representation:
Marginalize out Measurements

Xt-2
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Motion Planning
ﬁuild a graph or grid\

in configuration
space that captures

the collision-free AR
space and search for "4,":!7,/
the shortest path. -

As the dimensionality

of the c-space grows,
building and
maintaining this -
representation
Qecomes painful. /




Randomized Motion Planning
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Major change in motion planning: represent the world as a randomly

generated graph in the free space.

Videos courtesy of S. Karaman, MIT
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Convolutional networks and applications in vision

Y LeCun, K Kavukcuoglu... - Circuits and Systems ( ..., 2010 - ieeexplore.ieee.org

... Applications to visual object recognition and vision navigation for off-road mobile robots are
described. ... While the issue of learning features has been a topic of interest for many years ... been
achieved in the last few years with the development of so-called deep learning methods. ...

Cited by 223 Related articles All 21 versions Cite Save

Playing atari with deep reinforcement learning

V Mnih, K Kavukcuoglu, D Silver, A Graves... - arXiv preprint arXiv: ..., 2013 - arxiv.org

... [12] Sascha Lange and Martin Riedmiller. Deep auto-encoder neural networks in reinforcement
learning. In Neural Networks (IJCNN), The 2010 International Joint Conference on, pages

1-8. IEEE, 2010. [13] Long-Ji Lin. Reinforcement learning for robots using neural networks. ...
Cited by 105 Related articles All 24 versions Cite Save

Reinforcement learning for robots using neural networks

LJ Lin - 1993 - DTIC Document

Page 1. AD-A261 434 Reinforcement Learning for Robots Using Neural Networks Long-Ji Lin
January 6, 1993 CMU-CS-93-103 DTIC ... By a .. Reinforcement Learning for Robots DItbfi,”™ o Using
Neural Networks Availability Codes LONG-JI LIN Dist Avail and jor / pca ...

Cited by 357 Related articles All 4 versions Cite Save More



EXPERT OPINION

Contact Editor: Brian Brannon, bbrannon@computer.org

s The Unreasonable
i Effectiveness of Data

Alon Halevy, Peter Norvig, and Fernando Pereira, Google

ugene Wigner’s article “The Unreasonable Ef- behavior. So, this corpus could serve as the basis of
a complete model for certain tasks—if only we knew
how to extract the model from the data.

fectiveness of Mathematics in the Natural Sci-

ences”! examines why so much of physics can be



Exact Models vs Approximate
Models
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Left image, Miller and Allen, IMG 2004 Right image, Lenz et al, IJRR 2014
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Inferring Robot Actions

Given some language z,

— “Go past the elevators, through
the door, down the hallway, the
conference room is on your

‘rZ Fridge

left.” "3

. — e
A set of actions r,., |

Find lowest cost path through
the map

Elevators

And a map m, —

Iy

argminc(nlj 12,7 ,m)
.1

Where T.&{r .}



The Problem of Generalization

Not obvious how to turn this
problem statement:

4 N

Fridge

Given ;
« some language z,.; .

« and a map m...

\_ /

iInto a more general system for
understanding natural language.

L _J
: -
* aset of actions r,., =

Elevators




Grounding Graphs

Stuff in the
World Learned from data

p(¢ lword, piece of the world)
//

Language



Grounding Graphs

Go pas’“Go past the elevators.” N
‘ Elevator for Go past:
ark /




Where does the structure come
from?
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Put|the palletjon the truck.”

11




“Put the pallet on|the truck.|’

Candidate for vy,




“Put the palletlon the truck.|’

Candidate for y,




Place the litted tyre pallet, next to another tyre pallet on the trolley.
Lift the tire pallet in the air, then proceed to deposit it to the right of
the tire pallet already on the table right in front of you.

Place the pallet of tires on the left side of the trailer.

Please 1ift the set of six tires up and set them on the trailer, to the
right of the set of tires already on it.

Place a second pallet of tires on the trailer.

lift the tire pallet you are carrying and set on the truck in front of you
Place the pallet of tires that i1s on the forklift next to the pallet of
tires :

Lift t on on truck. Lower tire pallet.
End.

of the truck.
set 1t on the platform directly
rady there.

Load the skid right next to the other skid of tires on the trailer.

Put the tire pallet on the trailer to the right of the other tire pallet.
Lift pallet up and place the pallet beside the other pallet on the truck
bed. Reverse the forklift slowly from the truck bed.

Raise tire pallet. Move forward to unoccupied location on truck. Lower tire
pallet. Reverse to starting position. Lower forks.

Move the pallet on the ground to the platform; place it to the right of the

e~ T T~ [ P I 4~ P B R R P [ R RN



S. Tellex et al, AAAI 2011, ISER 2012

Generalized Grounding Graphs

https://youtu.be/wzRp4BYO0U1g



A problem with generalization:

This
grounding
variable is a
motion plan.
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\ Planner , «

T. Howard et al, ICRA 2014

Solve the motion planning problem

separately

Pick

\_
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Put

Motion
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Goal state for the
motion planner
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T. Howard et al, ISER 2014

Adding Hierarchy

103
102
101
£ 100 3
£ ¢
2
10"
L
102 7 O pce
Ry _— 4 HDCG
"go to the hydrant behind the cone" 10°8 oG

A Probabilistic Framework for Inferring Maps MIT CSAIL / CMU NREC
and Behaviors from Natural Language -—

100 10! 102 108 10%
https://youtu.be/nGIA8180zBY complexity




Another problem

 No notion of

abstract concepts:

— “pick up the first block in
the row of blocks”

— “grasp the nearest block
in the group”

— “place the tool in the
middle of the circle”




Abstract concepts require reasoning
about large sets of objects

What exactly gets grounded here?
What is even the domain of

these variables?




Reasoning about large sets of
objects is painful




Abstract concepts require abstraction




R. Paul et al, RSS 2016

Inference Speed

Ru s

Objects DCG Baseline Proposed Model
4 0.14 +£0.0031 [ 0.0070 £0.00023
5) 0.21 £0.0092 [ 0.0091 £0.00057
7 0.47 £0.033 0.010 +0.00079
10 2.96 £+0.18 0.010 £0.00010
12 14.25 £0.51 0.011 £0.00072
Total 1.89 0.062

(Inference speed in seconds)
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What we have today What we need

A

Unstructured, flat world representations

Hand-coded concepts in the
representation, hand-coded relations
between perception and planning
Hand-coded behaviors and motion
strategies.

Representations that are not hand-coded but Iearned\
from data, and support wide range of tasks.

» The representations must be able to use context
to focus computation on relevant concepts, and
capture higher-level (abstract) concepts.

Y

State is assumed to be fully observable and
known perfectly

/
Need strategies that can plan to avoid failures due to )

uncertainty, and plan to gather more information when
needed

« These strategies must be computationally
efficient. .

VY4

Learning available only on targeted learning
tasks (no end-to-end learning)

No requirement of real-time response or
model of computational cost of inference
and learning

Need the ability to carry out end-to-end learning, and )
adapt to changes in the world and the model over time.
» These learning algorithms must be efficient

enough to run online and provide guarantees that
performance will not be degraded by learning )




Higher Level Autonomy
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Task and Motion Planning

2011 IEEE International Conference on Robotics and Automation
Shanghai International Conference Center
May 9-13, 2011, Shanghai, China

Hierarchical Task and Motion Planning in the Now

Leslie Pack Kaelbling and Tomés Lozano-Pérez

Abstract—1In this paper we outline an approach to the
integration of task planning and motion planning that has
the following key properties: It is aggressively hierarchical; it
makes choices and commits to them in a top-down fashion
in an attempt to limit the length of plans that need to be
constructed, and thereby exponentially decrease the amount of
search required. It operates on detailed, continuous geometric
representations and does not require a-priori discretization of
the state or action spaces.

/I\/Iany different
approaches to
applying hierarchy
or structure to
achieve higher

~

\Ievel autonomy. /

AO:Wash(a)
v
of a complete low-level plan with guaranteed soundness or P

optimality conditions. Our goal is to design a system that can L
work effectively with non-determinism in the environment

or in the low-level controllers. In such cases, plam A®Face@ washed " [ALWash@

detail far into the future will typically be wasted, due to thei ;

inability to predict exactly what will happen. For thisre  pian3 w:sh
In(a, washer)

we plan ‘in the now’: we construct a plan at an abstract 1.1,
commit to it, and then recursively plan and execute actions to
Al:Pick(a, aStart)

N

Al:Place(a, washer)
'
!
)
.

v v

Plan 4 Plan 7
Holding() = a In(a, washer)
AO:ClearX(swept_a, (a)) A2:Pick(a, aStart) A2:Place(a, washer)

Plan 1
In(a, storage)
Clean(a)

PR

AO:Place(a, storage)

T
'

\J
Plan 8
Clean(a)
In(a, storage)

'

Al:Pick(a, axX) Al:Place(a, storage)
i i
\ A
Plan 9 Plan 10
Clean(a) Clean(a)
Holding() = a In(a, storage)

' !

A2:Pick(a, aX) AO:ClearX(swept_aX, (a))
i .
' A
Y Plan 11
) Clean(a)
Pick(a, aX) Holding0 = a

ClearX(swept_aX, (a))

!

AO:Remove(d, swept_aX)

A2:Place(a, storage)
i
'
:
v
Place(storage)

A
v Plan 12
Plan 5 ¥ ¥ Clean(a)
Holding() = None ; Overlaps(c, swept_aX) = False
In(a, aStart) HEE RN i) Overlaps(b, swept_aX) = False
ClearX(swept_a, (a)) Holding() = a
l Overlaps(d, swept_aX) = False \
A0 swept_a) Al swept_a) A2:Place(a, aX) A2:Pick(d, dStart) A2:Place(d, ps51040:) A2:Pick(a, aX)
' ' ' . ‘
v '
' ' ' '
Plan 6 ' ' ' |
Overlaps(d, swept_a) = False Al Y Y v
HoldIng() = None Place(aX) Pick(d, dStart) Place(ps51040:) Pick(a, aX)

In(a, aStart)
Overlaps(b, swept_a) = False

— /N

A2:Pick(c, cStart) A2:Place(c, ps29385:) A2:Pick(b, bStart) A2:Place(b, ps28541:)
' T

T '
'

\J Y \J \J
Pick(c, cStart) Place(ps29385:) Pick(b, bStart) Place(ps28541:)



Higher Level Autonomy
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models that can usually be
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Higher Level Autonomy
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Summary

* Robust, long-term autonomy in unknown,
populated environments

* Models for representing complex worlds that let
us learn and plan efficiently

— Bayesian non-parametrics
— Leveraging domain structure for efficient learning



