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Intelligence and Teaming 

Create plans 
that are robust 
to incomplete or 
imperfect 
information 

Reason 
about how 
the semantics 
of the world 
affect 
performance 

Build common shared 
representation 

Represent high-level properties of the world, 
e.g., the function of egress points, etc. 

Plan complex, temporally 
extended missions 

Learn 
complex 

dynamical 
models 



Representations for Robotics 





Representations for Robotics 





Graphical Models 
p(xt,m | z1:t,u1:t )



Mathematical Basis of Mapping 
and Navigation 

p(xt,m | z1:t,u1:t ) = … p(x1:t,m | z1:t,u1:t ) dx1∫∫∫ dx2...dxt−1
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Filtering is Weighting by the Present 
and Marginalizing out the Past 

p(xt,m | z1:t,u1:t ) = … p(x1:t,m | z1:t,u1:t ) dx1∫∫∫ dx2...dxt−1
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Change in Representation: Marginalize 
out Measurements Instead 

xt-1 xt xt+1 xt-2 
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Change in Representation: 
Marginalize out Measurements 

xt-1 xt xt+1 xt-2 

xt+n+2 xt+n+1 xt+n 

Pose graph 
representation can 
represents statistical 
correlations between 
measurements of the 
world that are widely 
separated in time but 
not distance. 



Motion Planning 
Build a graph or grid 
in configuration 
space that captures 
the collision-free 
space and search for 
the shortest path.  
 
As the dimensionality 
of the c-space grows, 
building and 
maintaining this 
representation 
becomes painful. 

Start 

Goal 



Randomized Motion Planning 

Major change in motion planning: represent the world as a randomly 
generated graph in the free space.  

Videos courtesy of S. Karaman, MIT 

https://youtu.be/9kEh5zm1F_A https://youtu.be/YKiQTJpPFkA 



What about deep learning? 
Hyperparametric Function  

Approximation!* 

* Inspired by Ken Goldberg 





Exact Models vs Approximate 
Models 

Left image, Miller and Allen, IMG 2004 Right image, Lenz et al, IJRR 2014 



The World Model 

? 



•  Given some language z1:T
–  “Go past the elevators, through 

the door, down the hallway, the 
conference room is on your 
left.” 

•  A set of actions r1:M 
•  And a map m, 
•  Find lowest cost path through 

the map 

•  Where πi∈{r1:M} 

Inferring Robot Actions 

Fridge 

Elevators 

argmin
π1:T

c π1:T | z1:T ,m( )

r1 

r2 

r3 

r4 



Not obvious how to turn this 
problem statement:  
 
 
 
 
 
 
 
 
into a more general system for 
understanding natural language. 

The Problem of Generalization 

Fridge 

Elevators 

Given  
•  some language z1:T
•  a set of actions r1:M 
•  and a map m… 



Grounding Graphs 

φ1

Stuff in the 
World 

Language 

p(φ |word, piece of the world)

Learned from data 



Grounding Graphs 
Go past the elevators. 

φ1

γA(π1,m) 

A1 Loc1 

γLOC(π1,m) 

φ2

“Go past the elevators.” 
 
Grounding graph for Go past: 
•  Action: Go past 
•  Object: Landmark 

Go  
past 

eleva
tors 

Elevator 

π1=r1 

Elevator 



Where does the structure come 
from? 



“Put the pallet on the truck.” 
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“Put the pallet on the truck.” 

Candidate for γ4 
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“Put the pallet on the truck.” 

Candidate for γ3 
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Place the lifted tyre pallet, next to another tyre pallet on the trolley. 
Lift the tire pallet in the air, then proceed to deposit it to the right of 
the tire pallet already on the table right in front of you. 
Place the pallet of tires on the left side of the trailer. 
Please lift the set of six tires up and set them on the trailer, to the 
right of the set of tires already on it. 
Place a second pallet of tires on the trailer. 
lift the tire pallet you are carrying and set on the truck in front of you 
Place the pallet of tires that is on the forklift next to the pallet of 
tires that is already loaded on the trailer. 
Lift tire pallet. Move to unoccupied location on truck. Lower tire pallet. 
Reverse to starting location. Lower forks. End. 
lift the tire pallet to the truck 
Arrange tire pallet to the truck. 
Place the pallet of tires on the right side of the truck. 
Lift the tire pallet and proceed forward to set it on the platform directly 
ahead, to the right of the tire pallet already there. 
Put the tire pallet on the trailer. 
Load the skid right next to the other skid of tires on the trailer. 
Put the tire pallet on the trailer to the right of the other tire pallet. 
Lift pallet up and place the pallet beside the other pallet on the truck 
bed. Reverse the forklift slowly from the truck bed. 
Raise tire pallet. Move forward to unoccupied location on truck. Lower tire 
pallet. Reverse to starting position. Lower forks.  
Move the pallet on the ground to the platform; place it to the right of the 
pallet that is already on the platform. 



Generalized Grounding Graphs 
S. Tellex et al, AAAI 2011, ISER 2012 

https://youtu.be/wzRp4BY0U1g 



A problem with generalization: 
speed 

φ1

γ1 
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This 
grounding 
variable is a 
motion plan. 



Put  Pick 

Solve the motion planning problem 
separately 

on 

γ3 

φ3
the 

pallet 

γ2 

φ2
the 

truck 

γ4 

φ4 up 

γ1 

φ3

Motion 
Planner 

Goal state for the 
motion planner 

Motion 
Planner 

Goal state for the 
motion planner 

T. Howard et al, ICRA 2014 
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Adding Hierarchy 
T. Howard et al, ISER 2014 

https://youtu.be/nGIA818ozBY 



Another problem 

•  No notion of 
abstract concepts: 
–  “pick up the first block in 

the row of blocks”  
–  “grasp the nearest block 

in the group” 
–  “place the tool in the 

middle of the circle” 



Abstract concepts require reasoning 
about large sets of objects 

φ1
Pick 
up 

γ1
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row of 

five 

φ2 φ3

γ2 γ3

What exactly gets grounded here? 
What is even the domain of  
these variables? 



Reasoning about large sets of 
objects is painful 
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Abstract concepts require abstraction 
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R. Paul et al, RSS 2016 

Inference Speed 

(Inference speed in seconds) 



https://youtu.be/MPXDWbnCqek 



•  Today – What we have 

•  Unstructured, flat world representations 
•  Hand-coded concepts in the 

representation, hand-coded relations 
between perception and planning 

•  Hand-coded behaviors and motion 
strategies. 
 

•  State is assumed to be fully observable and 
known perfectly  

•  Learning available only on targeted learning 
tasks (no end-to-end learning)  

•  No requirement of real-time response or 
model of computational cost of inference 
and learning  

 

Tomorrow – What we need 
 
•  Representations that are not hand-coded but learned 

from data, and support wide range of tasks.  
•  The representations must be able to use context 

to focus computation on relevant concepts, and 
capture higher-level (abstract) concepts.  

 
 
•  Need strategies that can plan to avoid failures due to 

uncertainty, and plan to gather more information when 
needed 

•  These strategies must be computationally 
efficient. 
  

•  Need the ability to carry out end-to-end learning, and 
adapt to changes in the world and the model over time. 

•  These learning algorithms must be efficient 
enough to run online and provide guarantees that 
performance will not be degraded by learning 

What we have today What we need 



Higher Level Autonomy  
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Task and Motion Planning 

Many different 
approaches to 
applying hierarchy 
or structure to 
achieve higher 
level autonomy.  
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These relations depend on 
models that can usually be  
learned from data. 
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Controller 

Motors Sensor 

Estimator 

Symbolic 
State 

Extraction 

Motion 
Planner 

Symbolic 
Planner 

Fa
st

 d
ut

y 
cy

cl
e 

S
lo

w
 d

ut
y 

cy
cl

e 

These relations usually 
need to be manually  
specified.  



Summary 
•  Robust, long-term autonomy in unknown, 

populated environments 

•  Models for representing complex worlds that let 
us learn and plan efficiently 
–  Bayesian non-parametrics 
–  Leveraging domain structure for efficient learning 


