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Urban Target Tracking
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Ellipse Propagation?
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Flexible Information Fusion:  Estimation 
Framework Requirements

How can we combine disparate 
“looks” at a complex and dynamic 
world into a common operational 
picture?
• Must accept widely varying 

information flow rates that arrive 
asynchronously and out of sequence

• And provides an arbitrarily rich 
expression of uncertainty

• While ingesting very non-traditional 
(negative) perceptions

• And requires a common underlying 
mathematical framework that is 
capable of ingesting human-
generated information flows 
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Beyond the Kalman Filter

Traditional approach to estimating 
battle state (target tracks, blue 
force tracks, etc.) relies on Kalman
Filters
• Cannot express non-Gaussian 

beliefs
• Can only fuse Gaussian 

measurements:
– No logical measurements (e.g.  A target is on 

the house if the lights are on)

– No negative measurements (GMTI sensor 
doesn’t return an hits in a region of interest)

• We proposed sample-based 
Bayesian filters as 
fundamental technology for 
Perception in Complex and 
Contested Battle-spaces…
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Bayesian Inference in Contested 
Environments

Contested Environments might 
create false or delayed 
measurements…
• Fast Out-of-Sequence Particle 

Filtering technology
– At the cost of increased memory 

requirements

• Stored particles allow back-testing
measurements for validity

– Can test whether a particular information source is 
sending “reliable” data

• Or elegantly removing the effect of 
previously fused measurements that 
are now known to be spurious

– Time required is only linear in the number 
of particles.
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Measurement
received

Fast processing
(weight updating only)

Full processing (filter update and 
predictions performed)

Two 
realization

s of the 
same 

random 
process, 
equally 
valid.

Particle set history for a given process

Out-of-Sequence Information
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• Problem with Fast Measurement Processing (FDM) approach: 
resampling.

• If a resampling occurs at any time between 𝑘𝑘𝑚𝑚 and 𝑘𝑘, then FDM  
cannot work.

• Solution: keep track of the latest resampling time, 𝑘𝑘𝑟𝑟. If 𝑘𝑘𝑟𝑟 < 𝑘𝑘𝑚𝑚, 
then it is safe to perform the FDM.  Perform the normal (slow) 
measurement processing otherwise.

• It can be shown that for our UGS model, the estimator obtained by 
using this hybrid FDM approach is consistent with a (much slower) 
brute-force out-of-sequence approach.

8

Out of Sequence Information
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Bayesian Engine:  Particle Filters 
integrated into Belief Network

Our Bayesian engine provides 
flexible modelling of arbitrarily 
complex uncertainties:
• Can be compressed for 

communication by marginalization 
over a set of kernels…

• Allows “negative information” and 
other unusual measurement 
modalities

• Allows for computing “Value of 
Information” via classical decision 
theory

• And provides hooks for human 
decision-aiding and risk-aware 
sensor management.
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Bayesian Engine Example

Enemy Inside 
Perimeter?

Yes NoDetection 
Likelihood Map

Enemy Location

Enemy in 
Vehicle?

Yes No

Region Conflict State

war peacehostile

Network 
Compromised?

Soft Information 
contact reported?

EO/IR track

Comms
Jammed>
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Curious Partner

• Even in all-human teams, “getting on the 
same page” is difficult.

• When Autonomous Systems are 
participating with other autonomous 
systems or humans its even more 
difficult:  how can we bridge gap?

• Need method for autonomous system to 
do two things:

– Understand when its understanding of the 
situation has diverged from its teammates’

– Ask the team a relevant question to bridge the 
divergent world-view.

• Curious Partner consists of 3 pieces:  a 
Bayesian Engine to model the world, a 
Consistency Checker algorithm to 
ascertain whether team members are in 
sync, and a Query Generator algorithm 
to ask a good question.

Bayesian 
Engine

Consistency 
Checker

Query 
Generator
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Future Work

• How can we incorporate knowledge of the evolving 
network topology to provide implicit measurements to 
improve Bayesian Engine Situational Awareness?

• How fragile is “Curious Partner” technology to cyber 
threats or network degradation?  How to robustify?

• Intersection of Perception/Decision 
Making/Cyber/Network Control:  Unexplored 
synergies and potential fragilities!
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Goal: Develop a human sensor model using 
touch interface to represent soft information 
in a mathematical form.

• Natural extension of human perception
• Flexible to encode a large class of 

information
• Information encoded using single, 

multiple, and directional finger strokes

Kernel Density Estimator

Touch Interface for Soft 
Information Modeling 
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• Combination of single, multiple, and overlapping strokes
• Flexible and natural medium – a large class of qualitatively 

distinct information
• Robust wrt human variability and requires no offline training

• Soft information - perceived information
– Observation to perception
– Socio-temporal variability in  

How to obtain a measurement likelihood function from touch data?

Touch Interface for Soft Information 
Modeling
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• Perception to measurement -
– Large uncertainty – longer strokes, High confidence - multiple 

overlapping strokes, State gradient – orientation of strokes, +ve and 
–ve information, prior distribution

• Measurement likelihood function – Kernel density estimator

Point cloud to density functions

Touch Interface for Soft Information 
Modeling
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Soft Information Fusion and Sensor 
Tasking for Urban Target Tracking

AIAA, GNC Conference 2012.  
Journal submission in 

preparation.
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Commander’s 
Interface

Soft Information Fusion and Sensor 
Tasking for Urban Target Tracking
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• Average Reduction of 
Estimate Entropy is 
54%

• Average Reduction of 
Risk Value is 43%

Mutual Information based 
Risk-aware Active Sensing
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IterationIteration

Target State Belief Map Hazard Map Risk Map

Accepted by Systems, 
Man, and Cybernetics, 

2015.
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Humans are Sensors:
• Provide “Soft information” 

– qualitative or categorical
– Voice, text, or user-interface 

derived signals

• Previous work was rigid in 
how human perceptions 
could be incorporated:

– Limited vocabulary/codebook

– Softmax models

• State of the art didn’t 
model human 
physiological issues well

– Training level
– Alertness/fatigue
– Stress …

Soft Information Fusion

“the target is behind the tall 
building on my right”

“the target appears to be 
stationary”

𝑦𝑦𝐻𝐻

Machine

�𝑥𝑥𝑀𝑀�𝑥𝑥𝐻𝐻

�𝑥𝑥
Takes final pdf and 
returns an estimate

𝑦𝑦𝑀𝑀

Machine 
Distribution 
Generator

Confidence Measures

𝑝𝑝𝑋𝑋𝑀𝑀𝑝𝑝𝑋𝑋𝐻𝐻

Bayesian 
Fusion

𝑝𝑝𝑋𝑋

Human
Distribution 
Generator
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Model Human (Sensor) 
Performance with BBN

Total 
Competence

Alertness

Training

Stress

GSR

Heart 
Rate

Bayesian Belief Network for 
Human Performance as a Soft 
Sensor:
• Uses variety of input data:

– Heart Rate
– Galvanic Skin Response
– Training logs or aptitude tests
– Eye Tracker
– EEG

• Total Competence is probability 
distribution over several 
classes:

– Very High, High, Medium, 
Mediocre, Poor

– Used to modify human’s soft 
“reports”

– Individualizable!



22
DISTRIBUTION A.  Approved for public release, distribution unlimited. (96TW-2015-0268)

Human Sensor with Uncertainty

“I don’t see a 
threat”

Human
Distribution 
Generator

Skill level = 1( untrained)

Heart Rate = 70 bpm (bored)

Eye-tracker = 3 sec blink intvl (tired)
�𝑥𝑥𝐻𝐻
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Threat No-Threat

Prior 
Intelligence:  

“Unlikely to See 
Threats Today”

1.0
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Button Press Likelihoods
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Decision Support Interface
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Probability that 
target is at (xi,yj)

Probability that blast 
radius contains (xi,yj) 
given fire at (xF,yF)

Probability of hitting 
target given fire at 

(xF,yF)

𝑃𝑃 ℎ|𝑥𝑥𝐹𝐹 ,𝑦𝑦𝐹𝐹 = �
𝑖𝑖,𝑗𝑗=1

𝑀𝑀,𝑁𝑁

𝑃𝑃 ℎ|𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑗𝑗 𝑃𝑃 𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑗𝑗|𝑥𝑥𝐹𝐹 ,𝑦𝑦𝐹𝐹

Sum over 
entire grid

The center (xL,yL)
of the actual blast radius will 
deviate from the indended

center (xF,yF) according to a 
random normal distribution 

with SD=0.25*r

(xF,yF)

(xL,yL)

Expected Risk Calculation
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Probability of 
damage at (xi,yj) 
given blast radius 

contains it

Probability that blast 
radius contains (xi,yj) 
given fire at (xF,yF)

Probability of damaging 
(xi,yj) given fire at (xF,yF)
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𝑑𝑑𝑖𝑖,𝑗𝑗 ⋅ 𝑃𝑃 𝑑𝑑𝑖𝑖,𝑗𝑗|𝑥𝑥𝐹𝐹 ,𝑦𝑦𝐹𝐹 −𝑟𝑟ℎ⋅ 𝑃𝑃 ℎ|𝑥𝑥𝐹𝐹 ,𝑦𝑦𝐹𝐹

Expected Loss 
given fire at (xF,yF)

Damage at (xi,yj)

Expected total damage 

Reward for hitting 
target

Expected reward

Expected Risk Calculation
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