

Flexible Human-Machine Information Fusion and Perception in Contested Environments

J. Willard Curtis Emily Doucette AFRL/RWWN

Zhen Kan Michael McCourt Siddhartha Mehta *University of Florida* Chau Ton NRC Research Associate

> Pablo Ramirez University of Texas, Austin

Urban Target Tracking

Ellipse Propagation?

Flexible Information Fusion: Estimation Framework Requirements

How can we combine disparate "looks" at a complex and dynamic world into a common operational picture?

- Must accept widely varying information flow rates that arrive asynchronously and out of sequence
- And provides an arbitrarily rich expression of uncertainty
- While ingesting very non-traditional (negative) perceptions
- And requires a common underlying mathematical framework that is capable of ingesting humangenerated information flows

Beyond the Kalman Filter

Traditional approach to estimating battle state (target tracks, blue force tracks, etc.) relies on Kalman Filters

- Cannot express non-Gaussian beliefs
- Can only fuse Gaussian measurements:
 - No logical measurements (e.g. A target is on the house if the lights are on)
 - No negative measurements (GMTI sensor doesn't return an hits in a region of interest)
- We proposed sample-based Bayesian filters as fundamental technology for Perception in Complex and Contested Battle-spaces...

Bayesian Inference in Contested Environments

Contested Environments might create false or delayed measurements...

- Fast Out-of-Sequence Particle Filtering technology
 - At the cost of increased memory requirements
- Stored particles allow back-testing measurements for validity
 - Can test whether a particular information source is sending "reliable" data
- Or elegantly removing the effect of previously fused measurements that are now known to be spurious
 - Time required is only linear in the number of particles.

Out-of-Sequence Information

- Problem with Fast Measurement Processing (FDM) approach: resampling.
- If a resampling occurs at any time between k_m and k, then FDM cannot work.
- Solution: keep track of the latest resampling time, k_r . If $k_r < k_m$, then it is safe to perform the FDM. Perform the normal (slow) measurement processing otherwise.
- It can be shown that for our UGS model, the estimator obtained by using this hybrid FDM approach is consistent with a (much slower) brute-force out-of-sequence approach.

Bayesian Engine: Particle Filters integrated into Belief Network

Our Bayesian engine provides flexible modelling of arbitrarily complex uncertainties:

- Can be compressed for communication by marginalization over a set of kernels...
- Allows "negative information" and other unusual measurement modalities
- Allows for computing "Value of Information" via classical decision theory
- And provides hooks for human decision-aiding and risk-aware sensor management.

Bayesian Engine Example

Curious Partner

- Even in all-human teams, "getting on the same page" is difficult.
- When Autonomous Systems are participating with other autonomous systems or humans its even more difficult: how can we bridge gap?
- Need method for autonomous system to do two things:
 - Understand when its understanding of the situation has diverged from its teammates'
 - Ask the team a relevant question to bridge the divergent world-view.
- Curious Partner consists of 3 pieces: a Bayesian Engine to model the world, a Consistency Checker algorithm to ascertain whether team members are in sync, and a Query Generator algorithm to ask a good question.

- How can we incorporate knowledge of the evolving network topology to provide implicit measurements to improve Bayesian Engine Situational Awareness?
- How fragile is "Curious Partner" technology to cyber threats or network degradation? How to robustify?
- Intersection of Perception/Decision Making/Cyber/Network Control: Unexplored synergies and potential fragilities!

Touch Interface for Soft Information Modeling

Touch Interface for Soft Information Modeling

- Combination of single, multiple, and overlapping strokes
- Flexible and natural medium a large class of qualitatively distinct information
- Robust wrt human variability and requires no offline training

How to obtain a measurement likelihood function from touch data?

- Soft information $\mathbf{s}_{k} = h'(\mathbf{x}_{k})$ perceived information
 - Observation to perception
 - Socio-temporal variability in $h'(\mathbf{x}_k)$

Touch Interface for Soft Information Modeling

- Perception to measurement $\mathbf{z}_{sk} = h''(\mathbf{s}_k) = h''(h'(\mathbf{x}_k))$
 - Large uncertainty longer strokes, High confidence multiple overlapping strokes, State gradient – orientation of strokes, +ve and –ve information, prior distribution
- Measurement likelihood function Kernel density estimator

Touch Interface for Soft Information Modeling

Performance w/ Soft Sensing

Perc. target detection - 72% ↑ Tracking quality - 10% ↑ Position RMS error - 24% ↓ Position std. dev. - 17% ↓

Soft Information Fusion and Sensor Tasking for Urban Target Tracking

AIAA, GNC Conference 2012. Journal submission in preparation.

UTION A. Approved for public release, distribution unlimited. (96TW-2015-0268)

Soft Information Fusion and Sensor Tasking for Urban Target Tracking

Mutual Information based Risk-aware Active Sensing

- Average Reduction of Estimate Entropy is 54%
- Average Reduction of Risk Value is 43%

Accepted by Systems, Man, and Cybernetics, 2015.

Risk Map

Soft Information Fusion

Humans are Sensors:

- Provide "Soft information"
 - qualitative or categorical
 - Voice, text, or user-interface derived signals
- Previous work was rigid in how human perceptions could be incorporated:
 - Limited vocabulary/codebook
 - Softmax models
- State of the art didn't model human physiological issues well
 - Training level
 - Alertness/fatigue
 - Stress ...

Model Human (Sensor) Performance with BBN

Bayesian Belief Network for Human Performance as a Soft Sensor:

- Uses variety of input data:
 - Heart Rate
 - Galvanic Skin Response
 - Training logs or aptitude tests
 - Eye Tracker
 - EEG
- Total Competence is probability distribution over several classes:
 - Very High, High, Medium, Mediocre, Poor
 - Used to modify human's soft "reports"
 - Individualizable!

Human Sensor with Uncertainty

Individualized Likelihoods ...

Decision Support Interface

Expected Risk Calculation

Expected Risk Calculation

Probability of damaging (x_i, y_j) given fire at (x_F, y_F)

Probability of damage at (x_i,y_j) given blast radius contains it

Probability that blast radius contains (x_i,y_j) given fire at (x_F,y_F)

$$P(d_{i,j}|x_F, y_F) = 1 * P(x_i, y_j|x_F, y_F)$$

