# Co-Robotics for Off-road and Construction Equipment

### Girish Chowdhary

Asst. Professor Agricultural and Biological Engineering Aerospace Engineering University of Illinois at Urbana Champaign



#### July 05 2016

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()





- Robots that work with humans,
- Complete automation is futile as safety critical decision requires human presence,
- Co-robots can learn from expert Human operators,
- Train/Guide novice operator allowing experts to remain in field.



http://www.hulcher.com/

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()



## Robot Learning from Demonstration

- Successful examples: Tennis Swings, Walking gaits, pick 'n' place, Complex Helicopter maneuvers
- Generic approaches: RL, IRL, DMP, Options framework
- Recently: BNPs for auto-segmentation of demonstrations



Tennis Swing [6]

Challenges

- Computationally efficient method for high dimensional continuous state-action spaces
- Performing meaningful segmentation of demonstrated tasks, to enable reuse of skills learned
- Intelligent sequencing of motion primitives for novel tasks
- Shared-Control to aid users in executing complex tasks, without hindering takeover



Goal: To develop robust solution framework that enables co-robot to

- Perform segmentation of multi-output, multi-input demonstration data,
- These segmentation should lead to human understandable subgoals,
- Guide a novice operator in efficiently decomposing their task to speed up their learning without hindering take-over

Vector-valued Gaussian Process and Non-Bayesian Clustering (VGP-NBC):

- Define observations & inputs for VGP: Actuator positions were observed, and the end-effector joint position  $(h, r, \theta)$  and the bucket angle were the inputs.
- Motion primitives such as Boom Raise or Bkt Curl, arise from different VGP models.
  - Non-Bayesian Clustering [4]: Hypothesis test used to determine and cluster different VGP models representing motion primitives.

$$\frac{P(y \mid M_i)}{P(y \mid M_j)} \stackrel{\hat{M}_i}{\underset{\hat{M}_j}{\geq}} \eta$$







#### Figure: Overview of LfD and Instruction Framework

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

## Learning from demonstration for off-road equipment





Challenge: Task efficiency and performance depends on operator skill

- Skill at the controls
- Experience in decomposing complex tasks (task understanding)

Hypothesis: Co-robots can learn latent task-decompositions from expert demonstrators and guide novices

D<sub>A</sub>SL<sup>a</sup>b

## Demonstration and Clustering VGP models





Demonstration under motion capture set-up

- Identification of Motion Primitives.
- Human Understandable ?





### D<sub>A</sub>SL<sup>a</sup>b

### Instruction Framework

I

For data with different temporal characteristics, algorithm yields similar end-effector poses.



Instruction Framework: Communicate to Novice

End-Effector Method: Association of End-effector state changes with actuator mechanisms.









Task was performed more efficiently in the Guided (G) mode as compared to the Unguided (UG) mode for two cycles of truck loading operation,

- Better completion time,
- Reduced total number of actions taken (A), and minimal Erroneous actions (Er),







#### (b) Action counts

### Assistive Training





Assistive reinforcement: direction of joystick movement Eventually can be replaced with color only D<sub>A</sub>SL<sup>a</sup>b 

# Collaborative Task Execution: What Happens in Off-Nominal Situations

- Shared-control: Aid the human without boring them, and let them take over as needed
- Challenge Problem: Zermelo's navigation [2]: Autonomous agent and Human operator collaborate to navigate ship to the Origin,
- Off-nominal situation: Obstacle known to Human, and optimal path known to Autonomous agent
- Smaller zone of return ⇒ greater reaction time available to the operator







Intent  $(\dot{\gamma})$  is the rate at which the human operator's input differ from that of the optimal. Mathematically,

$$\dot{\gamma} = rac{d}{dt}(| heta_0 - \tilde{ heta}|), ext{ or } = rac{d}{dt}(|\Delta|)$$
 (1)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

where,  $\theta_0$  is the operator's input, and  $\tilde{\theta}$  is the optimal. Resulting three facets to human intention,

- $\dot{\mathbf{v}} > \mathbf{0} \Rightarrow$  human intends to differ,
- $\dot{\gamma}$  < 0  $\Rightarrow$  human intends to follow,
- $\dot{\gamma} = 0 \Rightarrow$  human is in passive agreement.



▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

**Blended Shared Control** 

# Zermelo's Navigation using Blended Shared Control





▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Intent Aware Shared Control

# Zermelo's Navigation using Intent Aware Shared Control



# Intent Aware Shared Control: Experimental Evaluation



э



Figure: Boxplot comparison of completion times, from three different starting locations, for Manual Control (MC), Blended shared control (BSC), and IASC.

Table: Obstacle Collision: Design of IASC controller is responsive to Off-nominal situations.

| Location | Obstacle | Manual              | BSC | IASC |  |
|----------|----------|---------------------|-----|------|--|
| (x, y)   | (x, y)   | Control             |     |      |  |
| (0, -60) | (-45,8)  | 1                   | 10  | 2    |  |
| (40, 40) | (25, -8) | 0                   | 4   | 3    |  |
| (0, -60) | (-75,3)  | 0                   | 7   | 1    |  |
|          | 16       | ・ ロ ト ・ 理 ト ・ 正 ト ・ |     |      |  |



### Contributions



- A computationally efficient Vector-valued Gaussian Processes Non-Bayesian Clustering (VGP-NBC) algorithm for real time clustering of vector-valued motion primitives.
- A semantically motivated instructional framework to train or assist novice users of construction co-robots that allows the corobot to transfer learned skills from experts to novice human operators.
- Validation of our approach through experimentation on a construction co-robot (a fully-functional 1:14 scale hydraulic excavator).
- Intent aware shared control design responsive to off-nominal situations, at the same time efficient over existing methods.

# **Ongoing Work**



#### **Non-stationary Markov Models**

- Typically the transition model is assumed stationary, i.e.  $p(x_t|x_{t-1})$  being time-invariant.
- Limits capability of Markov models to capture time-varying transitions between states.
- Modeling human dance or playing sports, co-robots performing complex tasks, fluctuations in stock index, require time-varying Markov models.

Key Ingredients to Model Non-stationary Markov Models

- Capability to detect the time-point of change in the transition model.
- Distinguish between two different transition models,
- Modeling the switching dynamics between Transition Probability Matrices(TPMs).

Non-parametric modeling to capture potentially infinite TPMs. 



- Jilkov et. al. (2004) [5]: Online Bayesian estimation of unknown TPM. Responds slowly to model changes.
- Fox et. al. (2007) [3]: Sticky HDP-HMM, a hierarchic Bayesian non-parametric approach. Learns a single averaged out TPM.
- Bertuccelli and How (2012) [1]: Online estimation of unknown, non-stationary Markov chain transition models with perfect state observation. Does not capture previous transition models.

### Deep Markov Model

- A non-parametric prior, that
  - Learns an unknown number of Transition Probability Matrices (TPMs) from the data,
  - Models the switch between TPMs using another hierarchic Markov chain.



Figure: 1-layer deep Hidden Markov Model: Base layer is a HMM with K modes with Gaussian emissions, and a Deep layer that models Markovian dynamics among the set of  $K_{\pi}$  (TPMs).







- Latent mode sequence (black) and true state sequence for a five mode HMM (with 2–d Gaussian emissions)
- Latent mode sequence overlaid with identified TPMs (green). Patterns reflect original TPMs.
- Predictive likelihood over 100 timeseries data generated by randomly switching TPMs,

(III) (III) (III) (III)

Viterbi assignment errors.







◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

#### Pls:

- Girish Chowdhary
- Prabhakar Pagilla
- Christopher Crick

#### Students:

- Harshal Maske
- Denis Osipychev
- Emily Kieson



### References





#### Luca F Bertuccelli and Jonathan P How.

Estimation of non-stationary markov chain transition models. In Decision and Control, 2008. CDC 2008. 47th IEEE Conference on, pages 55–60. IEEE, 2008.



#### Aaron Enes and Wayne Book.

Blended shared control of zermelo's navigation problem. In American Control Conference (ACC), 2010, pages 4307–4312. IEEE, 2010.



#### Emily B Fox, Erik B Sudderth, Michael I Jordan, and Alan S Willsky.

The sticky hdp-hmm: Bayesian nonparametric hidden markov models with persistent states. *Arxiv preprint*, 2007.



Robert Grande, Thomas Walsh, Sarah Fergusson, Girish Chowdhary, and Jonathan How. Online regression for non-stationary data using gaussian processes and reusable models. *Transactions of Neural Networks and Learning Systems*, 2016. accepted.



#### V. Jilkov and X. Li.

Online Bayesian estimation of transition probabilities for Markovian jump systems. *IEEE Trans. on Signal Processing*, 52(6), 2004.



#### Stefan Schaal.

Dynamic movement primitives-a framework for motor control in humans and humanoid robotics. In Adaptive Motion of Animals and Machines, pages 261–280. Springer, 2006.

