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Co-robots

� Robots that work with humans,

� Complete automation is futile as safety critical
decision requires human presence,

� Co-robots can learn from expert Human
operators,

� Train/Guide novice operator allowing experts to
remain in field.

http://www.hulcher.com/
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Robot Learhing from Demonstration

� Successful examples: Tennis Swings, Walking
gaits, pick ’n’ place, Complex Helicopter
maneuvers

� Generic approaches: RL, IRL, DMP, Options
framework

� Recently: BNPs for auto-segmentation of
demonstrations

Tennis Swing [6]

Challenges

� Computationally efficient method for high dimensional
continuous state-action spaces

� Performing meaningful segmentation of demonstrated tasks,
to enable reuse of skills learned

� Intelligent sequencing of motion primitives for novel tasks

� Shared-Control to aid users in executing complex tasks,
without hindering takeover
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Human-robot Collaborative Learning and
Task Execution

Goal: To develop robust solution framework that enables co-robot
to

� Perform segmentation of multi-output, multi-input
demonstration data,

� These segmentation should lead to human understandable
subgoals,

� Guide a novice operator in efficiently decomposing their task
to speed up their learning without hindering take-over
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Methodology

Vector-valued Gaussian Process and Non-Bayesian Clustering
(VGP-NBC):

� Define observations & inputs for VGP: Actuator
positions were observed, and the end-effector
joint position (h, r , θ) and the bucket angle were
the inputs.

� Motion primitives such as Boom Raise or Bkt
Curl, arise from different VGP models.

� Non-Bayesian Clustering [4]: Hypothesis test used to
determine and cluster different VGP models representing
motion primitives.
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Collaborative Learning and Instruction Framework
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Figure: Overview of LfD and Instruction Framework
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Learning from demonstration for off-road equipment

� Challenge: Task efficiency and performance depends on
operator skill
I Skill at the controls
I Experience in decomposing complex tasks (task understanding)

� Hypothesis: Co-robots can learn latent task-decompositions
from expert demonstrators and guide novicesDASLab
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Demonstration and Clustering VGP models

Demonstration under motion capture set-up

� Identification of Motion
Primitives.

� Human Understandable ?
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Figure: Demonstrated data for three cycles of the
truck loading task with cluster segmentation overlaid.
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Instruction Framework

� For data with different temporal characteristics, algorithm
yields similar end-effector poses.
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� Instruction Framework: Communicate to Novice

� End-Effector Method: Association of End-effector state
changes with actuator mechanisms.
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Guided versus Unguided Demos

Task was performed more efficiently in the Guided (G) mode as
compared to the Unguided (UG) mode for two cycles of truck
loading operation,

� Better completion time,

� Reduced total number of actions taken (A), and minimal
Erroneous actions (Er),
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Assistive Training

� Assistive reinforcement: direction of joystick movement

� Eventually can be replaced with color onlyDASLab
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Collaborative Task Execution: What Happens in
Off-Nominal Situations

� Shared-control: Aid the human without boring
them, and let them take over as needed

� Challenge Problem: Zermelo’s navigation [2]:
Autonomous agent and Human operator collaborate
to navigate ship to the Origin,

� Off-nominal situation: Obstacle known to Human,
and optimal path known to Autonomous agent

� Smaller zone of return ⇒ greater reaction time
available to the operator
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Intent Aware Shared Control

Intent (γ̇) is the rate at which the human operator’s input differ
from that of the optimal. Mathematically,

γ̇ =
d

dt
(|θ0 − θ̃|), or

=
d

dt
(|∆|) (1)

where, θ0 is the operator’s input, and θ̃ is the optimal.
Resulting three facets to human intention,

� γ̇ > 0⇒ human intends to differ,

� γ̇ < 0⇒ human intends to follow,

� γ̇ = 0⇒ human is in passive agreement.
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Experiments with Human Operators

Blended Shared Control
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Experiments with Human Operators

Intent Aware Shared Control
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Intent Aware Shared Control: Experimental Evaluation
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Figure: Boxplot comparison of completion times, from three different
starting locations, for Manual Control (MC), Blended shared control
(BSC), and IASC.

Table: Obstacle Collision: Design of IASC controller is responsive to
Off-nominal situations.

Location Obstacle Manual BSC IASC
(x , y) (x , y) Control

(0,−60) (−45, 8) 1 10 2

(40, 40) (25,−8) 0 4 3

(0,−60) (−75, 3) 0 7 1
DASLab
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Contributions

� A computationally efficient Vector-valued Gaussian Processes
Non-Bayesian Clustering (VGP-NBC) algorithm for real time
clustering of vector-valued motion primitives.

� A semantically motivated instructional framework to train or
assist novice users of construction co-robots that allows the
corobot to transfer learned skills from experts to novice
human operators.

� Validation of our approach through experimentation on a
construction co-robot (a fully-functional 1:14 scale hydraulic
excavator).

� Intent aware shared control design responsive to off-nominal
situations, at the same time efficient over existing methods.
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Ongoing Work

Non-stationary Markov Models

� Typically the transition model is assumed stationary, i.e.
p(xt |xt−1) being time-invariant.

� Limits capability of Markov models to capture time-varying
transitions between states.

� Modeling human dance or playing sports, co-robots
performing complex tasks, fluctuations in stock index, require
time-varying Markov models.

Key Ingredients to Model Non-stationary Markov Models

� Capability to detect the time-point of change in the transition
model,

� Distinguish between two different transition models,

� Modeling the switching dynamics between Transition
Probability Matrices(TPMs).

� Non-parametric modeling to capture potentially infinite
TPMs.DASLab
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Previous Work

� Jilkov et. al. (2004) [5]: Online Bayesian estimation of
unknown TPM. Responds slowly to model changes.

� Fox et. al. (2007) [3]: Sticky HDP-HMM, a hierarchic
Bayesian non-parametric approach. Learns a single averaged
out TPM.

� Bertuccelli and How (2012) [1]: Online estimation of
unknown, non-stationary Markov chain transition models with
perfect state observation. Does not capture previous
transition models.
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Deep Markov Model

A non-parametric prior, that

� Learns an unknown number of Transition Probability Matrices
(TPMs) from the data,

� Models the switch between TPMs using another hierarchic
Markov chain.
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Figure: 1-layer deep Hidden Markov Model: Base layer is a HMM with K
modes with Gaussian emissions, and a Deep layer that models Markovian
dynamics among the set of Kπ (TPMs).
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Preliminary Investigation on Synthetic data
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� Latent mode sequence (black) and true state
sequence for a five mode HMM (with 2−d
Gaussian emissions)

� Latent mode sequence overlaid with identified
TPMs (green). Patterns reflect original TPMs.

� Predictive likelihood over 100 timeseries data
generated by randomly switching TPMs,

� Viterbi assignment errors.
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