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Introduction
 Wind power is a significant alternate 

source of energy.
 Wind power prediction is difficult due to its 

stochastic nature and intermittence of 
wind source.

 The state-of-the-art techniques mostly 
focus on predicting short-term farm-wide 
energy  production, not capturing various 
complex spatiotemporal interactions of 
turbine-turbine or turbine-wind pattern.

Background
 Probabilistic finite state automaton (PFSA):

 A 4-tuple 𝐾 = Σ, 𝑄, 𝛿,  Π

where Σ is the symbol alphabet, 𝑄 is the set of 
states, 𝛿: Q × Σ → 𝑄 is the state transition 
map,  Π:𝑄 × Σ → 0,1 is the symbol 
generation function.

 D-Markov machine:

 A PFSA in which each state is represented by 
a finite history of D symbols.

 For a statistically stationary process 𝑆 =
⋯𝑠−1𝑠0𝑠1⋯, 𝑃 𝑠𝑛|𝑠𝑛−1⋯𝑠𝑛−𝐷⋯𝑠0 =
𝑃 𝑠𝑛|𝑠𝑛−1⋯𝑠𝑛−𝐷 .

 xD-Markov machine:

 A xD-Markov machine is defined as a 5-tuple 
that involves two symbol streams 
represented by 𝑠1 and 𝑠2 : ℳ1→2 ≜

𝑄1, Σ1, Σ2, 𝛿1,  Π12 .

where 𝑄1 is the state set of symbol sequence 
𝑠1 ,   Π12 is the symbol generation matrix. 

Spatiotemporal Pattern Network
 Symbolic Dynamic Filtering (SDF):

 Steps of generating a D-Markov machine :
Data partition  Symbolization  PFSA

 Extraction of atomic (D-Markov machine) 
and relational (xD-Markov machine) 
patterns:

 Cross-state transition matrices Π𝐴𝐵 and Π𝐵𝐴

are shown as follows:

𝜋𝑘𝑙
𝐴𝐵 ≜ 𝑃 𝑞𝑛+1

𝐵 = 𝑙|𝑞𝑛
𝐴 = 𝑘 ∀𝑛

𝜋𝑖𝑗
𝐵𝐴 ≜ 𝑃 𝑞𝑛+1

𝐴 = 𝑗|𝑞𝑛
𝐵 = 𝑖 ∀𝑛

 Mutual information to quantify the 
information content in the atomic and 
relational patterns:

𝐼𝐴𝐴 = 𝐼 𝑞𝑛+1
𝐴 ; 𝑞𝑛

𝐴 = 𝐻 𝑞𝑛+1
𝐴 − 𝐻 𝑞𝑛+1

𝐴 |𝑞𝑛
𝐴

𝐼𝐴𝐵 = 𝐼 𝑞𝑛+1
𝐵 ; 𝑞𝑛

𝐴 = 𝐻 𝑞𝑛+1
𝐵 − 𝐻 𝑞𝑛+1

𝐵 |𝑞𝑛
𝐴

 Using learnt Markov model in continuous 
domain to predict wind power:

𝐸 𝑃𝑜𝑤𝑒𝑟𝑘 = 
𝑗=1

𝑚

𝑃𝑟𝑘 𝑗 𝐸 𝑃𝑜𝑤𝑒𝑟|𝑗

Problem Setup
Spatiotemporal interactions of wind turbines:

Results
1) Data partition and symbolization

2) Spatiotemporal effect on mutual information

3) Symbolic and continuous domain results
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Conclusions
 A novel STPN framework is proposed to 

capture the interaction characteristics 
between multiple wind  turbines;

 The proposed scheme shows a good 
predicting ability (validated with real data).
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