NIPS 2015 Workshop

Early Detection of Combustion Instability by Neural-Symbolic Analysis of Hi-speed Video - /’"*‘\ Neural Information ¢ itive Computation:

4} Processing Systems

Soumalya Sarkar®*, Kin Gwn Lore”, Soumik Sarkar” | * United Technology Research Center (UTRC), A lowa State University | Department of Mechanical Engineering S ,»._4(‘4 Foundation Integrating Neural and

Symbolic Approaches

Problem Neural-Symbolic Approach

 Use deep Convolutional Neural Network (CNN) in the lower layer as a feature extractor to learn
meaningful patterns from unstable flame images that can be argued as coherent structures.
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Results and Discussions

3 — X o ¢ | ' - |
—F { B IIY}?{ = — Training deep CNN F; g - i ;g{ %F i‘d
lus -  Trained with only unstable combustion -l ‘ o % .k i

Comparing “CNN+STSA” with “PCA+STSA”

* Transition jump of instability measure from stability to instability
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* Novel neural symbolic approach for complex fluid-mechanical instability problem.

 Semantic dimensionality reduction via CNN, as opposed to the abstract approach using PCA

 Rigorous experimental validation shows wide applicability across various operating conditions.

« Caninvolve domain experts into data analytics seamlessly for expert-guided data exploration
activities.
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