
LLNet: A Deep Autoencoder Approach to

Natural Low-light Image Enhancement

Kin Gwn Lore, Adedotun Akintayo, Soumik Sarkar

Iowa State University, Ames IA-50011, USA

Abstract

In surveillance, monitoring and tactical reconnaissance, gathering visual informa-

tion from a dynamic environment and accurately processing such data are essen-

tial to making informed decisions and ensuring the success of a mission. Cam-

era sensors are often cost-limited to capture clear images or videos taken in a

poorly-lit environment. Many applications aim to enhance brightness, contrast

and reduce noise content from the images in an on-board real-time manner. We

propose a deep autoencoder-based approach to identify signal features from low-

light images and adaptively brighten images without over-amplifying/saturating

the lighter parts in images with a high dynamic range. We show that a variant

of the stacked-sparse denoising autoencoder can learn from synthetically dark-

ened and noise-added training examples to adaptively enhance images taken from

natural low-light environment and/or are hardware-degraded. Results show sig-

nificant credibility of the approach both visually and by quantitative comparison

with various techniques.
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1. Introduction and motivation

Good quality images and videos are key to critical automated and human-

level decision-making for tasks ranging from security applications, military mis-

sions, path planning to medical diagnostics and commercial recommender sys-

tems. Clean, high-definition pictures captured by sophisticated camera systems
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provide better evidence for a well-informed course of action. However, cost con-

straints often limit large scale applications of such systems. Thus, relatively in-

expensive sensors are used in many cases. Furthermore, adverse conditions such

as insufficient lighting (e.g. low-light environments, night time) worsen the situ-

ation. As a result, many areas of application, such as Intelligence, Surveillance

and Reconnaissance (ISR) missions (e.g. recognizing and distinguishing enemy

warships), unmanned vehicles (e.g. automated landing zones for UAVs), and com-

mercial industries (e.g. property security, personal mobile devices) stand to benefit

from improvements in image enhancement algorithms.

Recently, deep learning (DL)-based approaches gained immense traction as

they are shown to outperform other state-of-the-art machine learning tools in many

computer vision applications, including object recognition [1], scene understand-

ing [2], occlusion detection [3], prognostics [4], and policy reward learning [5].

While neural networks have been widely studied for image denoising tasks, we

are not aware of any existing works using deep networks to both enhance and

denoise images taken in poorly-lit environments. In the present work, we ap-

proach the problem of contrast enhancement from a representation learning per-

spective using deep autoencoders (what we refer to as Low-light Net, or LLNet)

that are trained to learn underlying signal features in low-light images and adap-

tively brighten and denoise. The method takes advantage of the local patch-wise

contrast improvement similar to the works in [6] to enhance contrast such that the

improvements are done relative to local neighbors to prevent over-amplifying the

intensities of already brightened pixels. Furthermore, the same neural network

is trained to learn the structures of objects that persist through noise in order to

produce a brighter, denoised image.

Contributions: The present paper presents a novel application of using a class

of deep neural networks–stacked sparse denoising autoencoder (SSDA)–to en-

hance natural low-light images. To the best of the author’s knowledge, this is the

first application of using a deep architecture for (natural) low-light image enhance-

ment. We propose a training data generation method by synthetically modifying

images available on Internet databases to simulate low-light environments. Two

types of deep architecture are explored - (i) for simultaneous learning of con-

trast enhancement and denoising (LLNet) and (ii) sequential learning of contrast-

enhancement and denoising using two modules (staged LLNet or S-LLNet). The

performances of the trained networks are evaluated and compared against other

methods on test data with synthetic noise and artificial darkening. Performance

evaluation is repeated on natural low-light images to demonstrate the enhancement

capability of the synthetically trained model applied on a realistic set of images
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obtained with regular cell-phone camera in low-light environments. Hidden layer

weights of the deep network are visualized to offer insights to the features learned

by the model. Another contribution is that the framework performs blind contrast

enhancement without requiring a reference image frame (e.g. using information

from a previous frame in video enhancement [7], and the use of daytime coun-

terparts [8]), which is absolutely vital in scenarios where new environments are

frequently encountered (e.g. in tactical reconnaissance).

2. Related work

There are well-known contrast enhancement methods such as improving im-

age contrast by histogram equalization (HE) and its variants such as contrast-

limiting adaptive HE (CLAHE) brightness preserving bi-HE (BBHE) and quan-

tized bi-HE (QBHE) [9, 10, 11, 12]. Subsequently, an optimization technique,

OCTM [13] was introduced for mapping the contrast-tone of an image with the

use of mathematical transfer function. However, this requires weighting of some

domain knowledge as well as an associated complexity increase. Available schemes

also explored using non-linear functions like the gamma function [14] to enhance

image contrast.

Image denoising tasks have been explored using BM3D [15], K-SVD [16],

and non-linear filters [17]. Using deep learning, authors in [18] presented the con-

cept of denoising autoencoders for learning features from noisy images while [19]

applied convolutional neural networks to denoise natural images. In addition, au-

thors in [20] implemented an adaptive multi-column architecture to robustly de-

noise images by training the model with various types of noise and testing on

images with arbitrary noise levels and types. Stacked denoising autoencoders

were used in [21] to reconstruct clean images from noisy images by exploiting the

encoding layer of the multilayer perceptron (MLP).

Fotiadou et al. [22] enhanced natural low-illumination images using sparse

representations of low-light image patches in an appropriate dictionary to approx-

imate the corresponding daytime images. Dong et al. [7] proposed an algorithm

that inverts the dark input frames and performs de-hazing to improve the qual-

ity of the low light images. A related method is presented in [23] involving de-

hazing algorithms. Another technique, proposed in [8], separates the image into

two components–reflectance and illuminance–and enhance the images using the

reflectance component. The separation of the components, however, is difficult;

therefore it may introduce unwanted artifacts in the reconstructed images.
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Perhaps one of the most challenging tasks is to gather sufficiently large dataset

of low-light images to train the deep learning model. The NORB object recog-

nition dataset [24] contains natural images taken at 6 different illumination lev-

els, but the limited size of the training set is insufficient for training. With this

motivation, we also propose a method of simulating low-light environments by

modifying images obtained from existing databases.

3. The Low-light Net (LLNet)

The proposed framework is introduced in this section along with training

methodology and network parameters.

3.1. Learning features from low-light images with LLNet

SSDAs are sparsity-inducing variant of deep autoencoders that ensures learn-

ing the invariant features embedded in the proper dimensional space of the dataset

in an unsupervised manner. Early proponents [18] have shown that by stack-

ing several denoising autoencoders (DA) in a greedy layer-wise manner for pre-

training, the network is able to find a better parameter space during error back-

propagation.

Let y ∈ RN be the clean, uncorrupted data and x ∈ RN be the corrupted, noisy

version of y such that x = My, where M ∈ RN×N is the high-dimensional, non-

analytic matrix assumed to have corrupted the clean data. With DA, feed-forward

learning functions are defined to characterize each element of M as follows:

h(x) = σ(Wx + b)

ŷ(x) = σ′(W′h + b′)

where σ and σ′ denote the encoding and decoding functions (either of which is

usually the sigmoid function σ(s) or σ′(s) = (1 + exp(−s))−1 of a single DA

layer with K units, respectively. W ∈ RK×N and b ∈ RK are the weights and

biases of each layers of encoder whereas W′ ∈ RN×K and b ∈ RK are the

weights and biases for each layer of the decoder. h(x) ∈ RK is the activation of

the hidden layer and ŷ(x) ∈ RN is the reconstruction of the input (i.e. the output

of the DA).

LLNet framework takes its inspiration from SSDA whose sparsity-inducing

characteristic aids learning features to denoise signals. In the present work, we

take the advantage of SSDA’s denoising capability and the deep network’s com-

plex modeling capacity to learn features underlying in low-light images and pro-

duce enhanced images with minimal noise and improved contrast. A key aspect to
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Figure 1: Architecture of the proposed framework: (a) An autoencoder module is comprised of

multiple layers of hidden units, where the encoder is trained by unsupervised learning, the decoder

weights are transposed from the encoder and subsequently fine-tuned by error back-propagation;

(b) LLNet with a simultaneous contrast-enhancement and denoising module; (c) S-LLNet with

sequential contrast-enhancement and denoising modules. The purpose of denoising is to remove

noise artifacts often accompanying contrast enhancement.

be highlighted is that the network is trained using images obtained from internet

databases that are subsequently synthetically processed (i.e. darkening nonlin-

early and adding Gaussian noise) to simulate low-light conditions, since collec-

tion of a large number of natural low-light images (sufficient for deep network

training) and their well-lit counterparts can be unrealistic for practical use. De-

spite the fact that LLNet is trained on synthetic images, both synthetic and natural

images are used to evaluate the network’s performance in denoising and contrast-

enhancement.

Aside from the regular LLNet where the network is trained with both darkened

and noisy images, we also propose the staged LLNet (S-LLNet) which consists

of separate modules arranged in series for contrast enhancement (stage 1) and

denoising (stage 2). The key distinction over the regular LLNet is that the modules
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are trained separately with darkened-only training sets and noisy-only training

sets. Both structures are presented in Fig. 1. Note, while the S-LLNet architecture

provides a greater flexibility of training, it increases the inference time slightly

which may be a concern for certain real-time applications. However, customized

hardware-acceleration can resolve such issues significantly.

3.2. Network parameters

LLNet is comprised of 3 DA layers, with the first DA layer taking the input

image of dimensions 17 × 17 pixels (i.e. 289 input units). The first DA layer

has 2,000 hidden units, the second has 1,600 hidden units, and the third has 1,200

hidden units which becomes the bottleneck layer. Beyond the third DA layer

forms the decoding counterparts of the first three layers, thus having 1,600 and

2,000 hidden units for the fourth and fifth layers respectively. Output units have

the same dimension as the input, i.e. 289. The network is pre-trained for 30 epochs

with pre-training learning rates of 0.1 for the first two DA layers and 0.01 for the

last DA layer, whereas finetuning was performed with a learning rate of 0.1 for the

first 200 finetuning epochs, 0.01 afterwards, and stops only if the improvement in

validation error is less than 0.5%. For the case of S-LLNet, the parameters of each

module are identical.

3.3. Training data generation

Training was performed using 422,500 patches, extracted from 169 standard

test images1. Consistent with current practices, the only pre-processing done was

to normalize the image pixels to between zero and one. During the generation of

the patches, we produced 2,500 patches from random locations (and with random

darkening and noise parameters) from the same image. Note that the images used

for generating patches for the training set and the validation set are disjoint in or-

der to reduce the correlation between the training and validation set. By doing so,

we avoid correlation between the two sets which has the potential to overestimate

the model performance. The 17× 17 pixel patches are then darkened nonlinearly

using the MATLAB command imadjust to randomly apply a gamma adjust-

ment. Gamma correction is a simple but general case with application of a power

law formula to images for pixel-wise enhancement with the following expression:

Iout = A× Iγin (1)

1Dataset URL: http://decsai.ugr.es/cvg/dbimagenes/
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where A is a constant determined by the maximum pixel intensity in the image.

Intuitively, image is brightened when γ < 1 while γ = 1 leaves it unaffected.

Therefore, when γ > 1, the mapping is weighted toward lower (darker) grayscale

pixel intensity values.

3.4. Simulating darkness:

A uniform distribution of γ ∼ Uniform (2, 5) with random variable γ is se-

lected to result in training patches that are darkened to a varying degree. To sim-

ulate low quality cameras used to capture images, these original training patches

are corrupted by Gaussian noise via the MATLAB function imnoise with stan-

dard deviation of σ =
√

B(25/255)2, where B ∼ Uniform (0, 1). Hence, the

final corrupted image and the original image exhibit the following relationship:

Itrain = n (g(Ioriginal)) (2)

where function g(·) represents the gamma adjustment function and n(·) represents

the noise function.

Random gamma darkening with random noise levels result in a variety of

training images that can increase the robustness of the model. In reality, natural

low-light images may also include quantization and Poisson noise (e.g. images

captured with imaging sensors such as CCD and CMOS) in addition to Gaussian

noise. We chose to focus on the Gaussian-only model for the ease of analysis and

as a preliminary feasibility study of the framework trained on synthetic images

and applied to natural images. Furthermore, since Gaussian noise is a very fa-

miliar yet popular noise model for many image denoising tasks, we can acquire

a sense of how well LLNet performs with respect to other image enhancement

algorithms. The training set is divided into 211,250 training examples, 211,250

validation samples, and the samples are subsequently randomly shuffled. The

training step involves learning the invariant representation of low light and noise

with the autoencoder described in section 3.2. While training the model, the net-

work attempts to remove the noise and simultaneously enhance the contrast of

these darkened patches. The reconstructed image is compared against the clean

version (i.e. bright, noiseless image) by computing the mean-squared error.

When training both LLNet and S-LLNet, each DA is trained by error back-

propagation to minimize the sparsity regularized reconstruction loss as described
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in Xie et al. [25]:

LDA(D; θ) =
1

N

N
∑

i=1

1

2
||yi − ŷ(xi)||

2
2

+ β

K
∑

j=1

KL(ρ̂j ||ρ) +
λ

2
(||W ||2F + ||W ′||2F ) (3)

where N is the number of patches, θ = {W, b,W ′, b′} are the parameters of the

model, KL(ρ̂j ||ρ) is the Kullback-Leibler divergence between ρ (target activation)

and ρ̂j (empirical average activation of the j-th hidden unit) which induces spar-

sity in the hidden layers:

KL(ρ̂j ||ρ) = ρ log
ρ

ρ̂j
+ (1− ρ) log

1− ρ

1− ρ̂j
(4)

where

ρ̂j =
1

N

N
∑

i=1

hj(xi) (5)

and λ, β and ρ are scalar hyper-parameters determined by cross-validation.

After the weights of the decoder have been initialized, the entire pre-trained

network is finetuned using an error back-propagation algorithm to minimize the

loss function given by:

LSSDA(D; θ) =
1

N

N
∑

i=1

||yi − ŷ(xi)||
2
2 +

λ

L

2L
∑

l=1

||W (l)||2F

where L is the number of stacked DAs and W (l) denotes weights for the l-th layer

in the stacked deep network. The sparsity inducing term is not needed for this step

because the sparsity was already incorporated in the pre-trained DAs.

3.5. Image reconstruction

During inference, the test image is first broken up into overlapping 17 × 17
patches with stride size of 3× 3. The collection of patches is then passed through

LLNet to obtain corresponding denoised, contrast-enhanced patches. The patches

are averaged and re-arranged back into its original dimensions. From our experi-

ments, we find that using a patching stride of 2×2 or even 1×1 (fully overlapped
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patches) do not produce significantly superior results. Additionally, increasing

the number of DA layers improves the nonlinear modeling capacity of the net-

work. However, a larger model is more computationally expensive to train and we

determined that the current network structure is adequate for the present study.

4. Evaluation metrics and compared methods

In this section we present brief descriptions of other contrast-enhancement

methods along with the performance metric used to evaluate the proposed frame-

work’s performance.

Original 

Images

Dark and Noisy 

Images

Untrained 

LLNet

Enhanced 

Images

Error

Error Backpropagation

Trained 

LLNet
Test Images

Enhanced 

Test Images

Figure 2: Training the LLNet: Training images are synthetically darkened and added with noise.

These images are fed through LLNet where the reconstructed images are compared with the un-

corrupted images to compute the error, which is then back-propagated to finetune and optimize the

model weights and biases.

4.1. Performance metric

Two metrics are used, namely the peak signal-to-noise ratio (PSNR) and the

structural similarity index (SSIM).
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4.1.1. Peak signal-to-noise ratio (PSNR)

PSNR quantifies the extent of corruption of original image with noise as well

as approximating human perception of the image. It has also been established to

demonstrate direct relationship with compression-introduced noise [26]. Roughly,

the higher the PSNR, the better the denoised image especially with the same

compression code. Basically, it is a modification of the mean squared error be-

tween the original image and the reconstructed image. Given a noise-free m× n
monochrome image I and its reconstructed version K, MSE is expressed as:

MSE =
1

mn

m−1
∑

i=0

n−1
∑

j=0

[I(i, j)−K(i, j)]2 (6)

The PSNR, in decibels (dB) is defined as:

PSNR = 10 · log10

(

max(I)2

MSE

)

(7)

Here, max(I) is the maximum possible pixel value of the image I .

4.1.2. Structural similarity index (SSIM)

SSIM is a metric for capturing the perceived quality of digital images and

videos [6, 27]. It is used to measure the similarity between two images. SSIM

quantifies the measurement or prediction of image quality with respect to ini-

tial uncompressed or distortion-free image as reference. As PSNR and MSE are

known to quantify the absolute error between the result and the reference im-

age, such metrics may not really quantify complete similarity. On the other hand,

SSIM explores the change in image structure and being a perception-type model,

it incorporates pixel inter-dependencies as well as masking of contrast and pixel

intensities. SSIM is expressed as:

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
(8)

where µx is the average of window x, µy is the average of window y, σ2
x is the

variance of x, σ2
y is the variance of y, σ2

xy is the covariance of x and y, c1 = (k1L)
2

and c2 = (k2L)
2 are two variables to stabilize the division with weak denominator

with k1 = 0.01 and k2 = 0.03 by default, and L is the dynamic range of pixel

values.
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4.2. Compared methods

This subsection describes several low-light image enhancement methods used

for comparison. While we acknowledge other recent non-DL methods [22, 7,

23, 8], the lack of publicly available source codes prevented us from performing

detailed comparison.

4.2.1. Histogram equalization (HE)

The histogram of an image is a graphical representation of the intensity dis-

tribution of the image which quantifies the number of pixels for each of the in-

tensity values ranging from 0 to 255 when represented with an 8-bit integer. It

is a method that improves the contrast of an image by stretching out the intensity

range [28, 29, 9]. It maps the original histogram to another distribution with a

wider and more uniform distribution (i.e. flatter) so that the intensity values are

spread over the entire range. This method is useful in images with backgrounds

and foregrounds that are either both bright or both dark, but may not be suitable

for images with high dynamic range. In particular, the method can lead to better

views of bone structure in x-ray images, and to better detail in photographs that

are over or under-exposed.

4.2.2. Contrast-limiting adaptive histogram equalization (CLAHE)

Contrast-limiting adaptive histogram equalization differs from ordinary adap-

tive histogram equalization in its contrast limiting. In the case of CLAHE, the

contrast limiting procedure has to be applied for each neighborhood from which a

transformation function is derived [10], as opposed to regular histogram equaliza-

tion which is carried out in a global manner. CLAHE was developed to prevent

the over-amplification of noise that arise in adaptive histogram equalization.

4.2.3. Gamma adjustment (GA)

The simple form of gamma correction is outlined in Eqn. (2). Gamma curves

illustrated with γ > 1 have exactly the opposite effect as those generated with

γ < 1. It is important to note that gamma correction reduces toward the identity

curve when γ = 1. In other words, any image corrected with γ = 1 results in

the exact same image. As discussed earlier in section 3.3, the image is generally

brightened when γ < 1 and darkened when γ > 1.

4.2.4. Histogram equalization with 3D block matching (HE+BM3D)

BM3D is the current state-of-the-art algorithm for image noise removal pre-

sented by [15]. It uses a collaborative form of Wiener filter for high dimensional
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block of patches by grouping similar 2D blocks into a 3D data array, and then

denoising the grouped patches jointly. The denoised patches from the stack are

applied back on the original images by a voting mechanism which removes noise

from the considered region.

In this work, we decided to first equalize the contrast of the test image, then

use BM3D as a denoiser to remove the noise resulting from histogram equal-

ization. Previously, we also attempted to reverse the order, i.e. use BM3D to

remove noise from the low-light images first and followed by contrast enhance-

ment. Since BM3D removes noise by applying denoised patches, the blob-shaped

patch boundaries are significantly amplified and become extremely pronounced

when histogram equalization is applied. This produces non-competitive results

which make comparison unfair. Hence, we ensure that BM3D is performed after

histogram equalization when reporting the results.

5. Results and discussion

In this section, we evaluate the performance of our framework against the

methods outlined above on standard images shown in Fig. 3. Test images are

darkened with γ = 3, where noisy versions contain Gaussian noise of σ = 18
and σ = 25, which are typical values for image noise under poor illumination

and/or high temperature; these parameters correspond to scaled variances of σ2
s =

0.005 and σ2
s = 0.010 respectively if the pixel intensities are in 8-bit integers

(σs = σ/255 where σs ∈ [0, 1] and σ ∈ [0, 255]). These parameters are first

fixed in order to study the effectiveness of each method in contrast enhancement

and denoising. For a more generalized set of synthetic test images, darkening

and noise addition are performed using randomized values of γ ∈ [1, 4] and σ ∈
[0, 25].

Histogram equalization is performed by using the MATLAB function histeq,

whereas CLAHE is performed with the function adapthisteq with default pa-

rameters (8× 8 image tiles, contrast enhancement limit of 0.01, full range output,

256 bins for building contrast enhancing transformation, uniform histogram dis-

tribution, and distribution parameter of 0.4). Gamma adjustment is performed on

dark images with γ = 1/3 unless otherwise stated. For the hybrid ‘HE+BM3D’

method, we first applied histogram equalization to enhance image contrast before

using the BM3D code developed by Dabov et al. [15] as a denoiser, where the

noise standard deviation input parameter for BM3D is set to σ = 25 (the highest

noise level of the test image). Both LLNet and S-LLNet outputs are reconstructed

with overlapping 17× 17 patches of stride size 3× 3. Training was performed on
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Figure 3: Original standard test images used to compute PSNR.

NVIDIA’s TITAN X GPU using Theano’s deep learning framework [30, 31] and

took approximately 30 hours. Enhancing an image with dimension of 512 × 512
pixels took 0.42 s on GPU.

5.1. Algorithm adaptivity

Ideally, an already-bright image should no longer be brightened any further.

To test this, different enhancement algorithms are performed on a normal, non-

dark and noiseless image. Fig. 4A shows the result when running the ‘Town’

image through various algorithms. LLNet outputs a slightly brighter image, but

not to the degree that everything appears over-brightened and washed-out like the

output of GA if GA is blindly applied with γ = 1/3. This shows that in the process

of learning low-light features, LLNet successfully learns the necessary degree of

required brightening that should be applied to the image. However, when evalu-

ating contrast enhancement via visual inspection, histogram equalization methods

(i.e. HE, CLAHE, HE+BM3D) provide superior enhancement given the original

image. When tested with other images (namely, ‘Bird’, ‘Girl’, ‘House’, ‘Pepper’,

etc.) as shown in Table 1, HE-based methods generally fared slightly better with

higher PSNR and SSIM.

5.2. Enhancing artificially darkened images

Fig. 4B shows output of various methods when enhancement is applied to

a ‘Town’ image darkened with γ = 3. Here, LLNet achieves the highest PSNR

followed by GA, but the the other way round when evaluated with SSIM. The high

similarity between the GA-enhanced image with the original is expected because
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Table 1: PSNR and SSIM of outputs using different enhancement methods. ‘Bird’ means the non-

dark and noiseless (i.e. original) image of Bird. ‘Bird-D’ indicates a darkened version of the same

image. ‘Bird-D+GN18’ denotes a darkened Bird image with added Gaussian noise of σ = 18,

whereas ‘Bird-D+GN25’ denotes darkened Bird image with added Gaussian noise of σ = 25.

Bolded numbers corresponds to the method with the highest PSNR or SSIM. Asterisk (*) denotes

our framework.

PSNR(dB)/SSIM Dark HE CLAHE GA HE+BM3D LLNet* S-LLNet*

Bird N/A 11.22 / 0.63 21.55 / 0.90 8.93 / 0.66 11.27 / 0.69 17.61 / 0.84 18.35 / 0.85

Bird-D 12.27 / 0.18 11.28 / 0.62 15.15 / 0.52 29.53 / 0.86 11.35 / 0.71 20.09 / 0.69 15.87 / 0.52

Bird-D+GN18 12.56 / 0.14 9.25 / 0.09 14.63 / 0.11 14.10 / 0.11 9.98 / 0.13 20.17 / 0.66 18.59 / 0.54

Bird-D+GN25 12.70 / 0.12 9.04 / 0.08 13.60 / 0.09 13.07 / 0.08 9.72 / 0.11 21.87 / 0.64 22.53 / 0.63

Girl N/A 18.24 / 0.80 17.02 / 0.70 11.08 / 0.81 18.23 / 0.69 18.17 / 0.77 14.31 / 0.72

Girl-D 9.50 / 0.50 18.27 / 0.80 14.36 / 0.66 47.32 / 1.00 18.26 / 0.69 23.61 / 0.76 21.21 / 0.72

Girl-D+GN18 9.43 / 0.21 16.07 / 0.26 12.95 / 0.17 17.21 / 0.29 19.28 / 0.53 19.93 / 0.66 21.97 / 0.64

Girl-D+GN25 9.39 / 0.15 15.33 / 0.19 12.09 / 0.12 15.37 / 0.20 18.50 / 0.39 20.08 / 0.60 22.60 / 0.59

House N/A 13.36 / 0.70 18.89 / 0.81 10.21 / 0.59 13.24 / 0.61 11.35 / 0.55 10.52 / 0.46

House-D 12.12 / 0.33 12.03 / 0.65 16.81 / 0.60 28.79 / 0.83 11.92 / 0.54 21.80 / 0.64 18.31 / 0.46

House-D+GN18 12.19 / 0.29 10.55 / 0.33 15.48 / 0.35 14.44 / 0.34 11.39 / 0.42 21.01 / 0.57 19.31 / 0.47

House-D+GN25 12.16 / 0.26 10.09 / 0.29 14.08 / 0.29 13.26 / 0.29 10.94 / 0.37 20.68 / 0.54 19.84 / 0.47

Pepper N/A 18.61 / 0.90 18.27 / 0.76 10.29 / 0.72 18.61 / 0.84 10.53 / 0.66 10.01 / 0.64

Pepper-D 10.45 / 0.37 18.45 / 0.85 15.46 / 0.61 32.97 / 0.90 18.45 / 0.80 21.52 / 0.79 19.27 / 0.70

Pepper-D+GN18 10.45 / 0.19 14.69 / 0.21 14.49 / 0.17 15.74 / 0.22 16.97 / 0.57 22.76 / 0.68 22.07 / 0.64

Pepper-D+GN25 10.41 / 0.15 13.67 / 0.15 13.31 / 0.13 14.33 / 0.16 15.96 / 0.36 22.94 / 0.61 23.17 / 0.61

Town N/A 17.55 / 0.79 16.35 / 0.69 10.02 / 0.76 17.70 / 0.76 16.28 / 0.80 16.03 / 0.78

Town-D 10.17 / 0.36 17.55 / 0.79 15.00 / 0.65 36.80 / 0.97 17.72 / 0.76 21.42 / 0.75 19.90 / 0.68

Town-D+GN18 10.19 / 0.18 14.85 / 0.25 13.34 / 0.17 15.53 / 0.24 17.51 / 0.41 19.85 / 0.64 20.52 / 0.59

Town-D+GN25 10.21 / 0.14 14.22 / 0.20 12.40 / 0.13 14.08 / 0.17 16.62 / 0.32 21.63 / 0.60 22.89 / 0.58

Average 10.95 / 0.24 14.22 / 0.48 15.26 / 0.43 18.65 / 0.51 15.18 / 0.54 19.66 / 0.67 18.86 / 0.61

Table 2: Average PSNR and SSIM over 90 synthetic and 6 natural test images. Synthetic test

images are randomly darkened with γ ∈ [1, 4] and Gaussian noise levels of σ ∈ [0, 25]. Natural

test images are taken under natural low-light conditions. Because gamma darkening is performed

randomly for this set of images, we search for the optimal γ parameter that results in the highest

SSIM (γ = 0.05 : 0.05 : 1) when applying gamma adjustment. Note that searching for the optimal

parameter is infeasible in reality because no reference image is available. The number reported

within the parentheses is the number of winning instances among 90 synthetic test images and 6

natural test images. Asterisk (*) denotes our framework.

Test Items Dark HE CLAHE GA HE+BM3D LLNet* S-LLNet*

Average PSNR (dB), synthetic 15.7902 13.7765 (0) 14.3198 (5) 15.2692 (6) 15.1653 (20) 19.8109 (52) 18.2248 (7)

Average SSIM, synthetic 0.4111 0.3524 (3) 0.3255 (1) 0.4345 (2) 0.5127 (17) 0.6912 (65) 0.6066 (2)

Average PSNR (dB), natural 8.2117 11.7194 (0) 9.9473 (0) 14.6664 (2) 11.9596 (1) 15.1154 (2) 14.4851 (1)

Average SSIM, natural 0.1616 0.2947 (0) 0.3611 (0) 0.5338 (0) 0.5437 (2) 0.6152 (3) 0.5467 (1)
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Figure 4: Comparison of methods of enhancing ‘Town’ when applied to (A) original already-

bright, (B) darkened, (C) darkened and noisy (σ = 18), and (D) darkened and noisy (σ = 25)
images. Darkening is done with γ = 3. The numbers with units dB are PSNR, the numbers

without are SSIM. Best viewed on screen.

the optimal gamma readjustment parameter essentially reverses the process close

to the original intensity levels. In fact, when tested with other images, the highest

scores for darkened-only images are achieved by only one of LLNet, S-LLNet

or GA where HE, CLAHE, and HE+BM3D fail. Results tabulated in Table 1

highlight the advantages and broad applicability of the deep autoencoder approach

with LLNet and S-LLNet.

5.3. Enhancing darkened images in the presence of synthetic noise

To simulate dark images taken with regular or subpar camera sensors, Gaus-

sian noise is added to the synthetic dark images. Fig. 4C and 4D presents a

gamma-darkened ‘Town’ image corrupted with Gaussian noise of σ = 18 and

σ = 25, respectively. For these test images, both LLNet and S-LLNet attained

superior PSNR and SSIM over other methods, as shown in Table 1. Histogram
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(i) Original

Bird
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Figure 5: Comparison of methods on randomly darkened/noise-added synthetic test images of

(A) Bird, (B) Girl, (C) Pepper, and (D) House. Darkening and noise addition are done using

randomized values of γ ∈ [1, 4] and σ ∈ [0, 25]. The numbers with units dB are PSNR, the

numbers without are SSIM. Best viewed on screen.

equalization methods fail due to the intensity of noisy pixels being equalized and

produced detrimental effects to the output images. Additionally, BM3D is not

able to effectively denoise the equalized images with parameter σ = 25 since the

structure of the noise changes during the equalization process.

Instead of using fixed values of γ and σ for darkening and noise addition, we

generated 90 images using randomized values of γ ∈ [1, 4] and σ ∈ [0, 25]. Next,

the performance of each algorithm is evaluated on these 90 images and the aver-

age PSNR and SSIM are computed and tabulated in Table 2. Four out of the 90

results are shown in Fig. 5. In the table, both the average SSIM and PSNR of the

standalone LLNet achieved the best performance compared to other methods, and

generally fares better than S-LLNet. It appears that S-LLNet only produces the

best enhancement at very dark and high noise levels. However, when the γ and σ
parameters vary at slightly lower levels, then LLNet outperforms S-LLNet. This
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Figure 6: Comparison of methods of enhancing naturally dark images of (A) chalkboard, (B)

computer, (C) objects, (D) chart, (E) cabinet, and (F) writings. Selected regions are enlarged to

demonstrate the denoising and local contrast enhancement capabilities of LLNet. HE (including

HE+BM3D) results in overamplification of the light from the computer display whereas LLNet

was able to avoid this issue.

is because LLNet performs both contrast enhancement and denoising simultane-

ously, rather than doing the tasks in a stage-wise manner which implicitly assumes

independence between the two tasks.
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5.4. Application on natural low-light images

When working with downloaded images, a clean reference image is available

for computing PSNR and SSIM. However, reference images may not be available

in real life when working with naturally dark images. Since this is a controlled ex-

periment, we circumvented the issue by mounting an ordinary cell-phone (Nexus

4) camera on a tripod to capture pictures in an indoor environment with both lights

on and lights off. The picture with lights on are used as the reference images

for PSNR and SSIM computations, whereas the picture with lights off becomes

the natural low-light test image. Although the bright pictures cannot be consid-

ered as the ground truth, it provides a reference point to evaluate the performance

of various algorithms. Performance of each enhancement method is shown in

Fig. 6. While histogram equalization greatly improves the contrast of the image,

it corrupts the output with a large noise content. In addition, the method suffers

from over-amplification in regions where there is a very high intensity brightness

in dark regions, as shown by blooming effect on the computer display in panel

6B(vi) and 6B(vii). CLAHE is able to improve the contrast without significant

blooming of the display, but like HE it tends to amplify noise within the images.

LLNet performs significantly well with its capability to suppress noise in most of

the images while improving local contrast, as shown in the magnified patches at

the bottom of Fig. 6.

5.5. Training with Gaussian vs. Poisson noise

In certain natural low-light scenarios, the underlying noise profile can be prop-

erly modeled by photon shot noise or Poisson noise which is a type of electronic

noise. The dominant noise in darker regions of an image from an image sensor is

usually caused by statistical quantum fluctuations, that is, the variation in the num-

ber of photons sensed at a given exposure level. From a mathematical perspective,

while Gaussian noise is typically generated separately and added independently

to each individual pixels from the original image, Poisson noise takes the original

pixel intensities into account and generates new intensities from a Poisson pro-

cess. In other words, Gaussian noise is independent of the original intensities in

the image but Poisson noise is correlated with the intensity of each pixel. A visual

example is provided in Fig. 7 to show the differences between Gaussian noise and

Poisson noise at different light intensities (i.e. photon count). Since most imag-

ing sensors such as CCD and CMOS suffers from Poisson noise when capturing

low-light images, training the model with synthetic images with Poisson noise

has potential advantages in enhancing natural low-light images. An experimen-
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tal comparison between two training schemes–with Poisson vs. with Gaussian

noise–is presented in Fig. 8.

Gaussian

Noise

Poisson 

Noise

Increasing photon count

Figure 7: The result of adding Gaussian noise and applying Poisson noise with increasing photon

count (normalized from 0 to 1 with a step size of 0.1). Although the noise levels between the two

noise types look similar at higher photon count, the first three columns look very different. Best

viewed on screen.

(i)

Natural Bright

(ii)

Natural Dark

(iii)

Noise Structure

from HE

(iv)

LLNet - Gaussian

(v)

LLNet - Poisson

A

B
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0.3869

12.0801 dB

0.4572
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0.7502

12.8200 dB

0.4939

Shadow 

retention and 

detail loss
Gsn: A(iv) Psn: A(v)

Denoising

Capability

Gsn: B(iv) Psn: B(v)

Figure 8: Natural low-light image enhancement results of LLNet trained with Gaussian noise

(LLNet-G) and Poisson noise (LLNet-P). ‘Gsn’ and ’Psn’ are abbreviations for Gaussian and

Poisson respectively. Best viewed on screen.

In Fig. 8, the outputs of LLNet trained with Gaussian noise (LLNet-G) gener-

ally appear smoother but suffers some loss in detail due to the retention of shad-
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ows. On the other hand, the model trained with Poisson noise (LLNet-P) produces

comparatively noisier images but with sharper details. The reason contributing to

this disparity lies in the nature of the training set.

To explain why LLNet-G tends to retain the shadows but denoises better than

LLNet-P, recall that from Fig. 7, darker training patches are less affected by Pois-

son noise compared to Gaussian noise. Therefore, LLNet-G is able to see more

noisy training examples (specifically noisy dark patches) and learn how to denoise

them. Furthermore, when a very dark patch is corrupted with Gaussian noise,

pixel intensities that become negative are clipped to 0. Hence, this raises the aver-

age pixel intensity of a single dark training patch and causes this particular patch

appear more gray than black. During patch-wise enhancement, LLNet-G may en-

counter a gray patch and mistake it for a noisy dark patch. Ultimately, the gray

patches are darkened and consequently contribute to dark shadows being retained

in the enhanced image. On the contrary, dark patches used to train LLNet-P are

least affected by Poisson noise, which in turn reduces the number of noisy exam-

ples where LLNet-P learns the denoising function from. The resultant effect is a

lower denoising capability of LLNet-P compared to LLNet-G, but with the gained

advantage where shadows are also enhanced to bring out relevant details.

Note, with sufficient training data and optimized hyperparameters, a deep au-

toencoder can learn to approximate almost any nonlinear denoising function. On

that account, a union of the two training sets (i.e. with Gaussian and Poisson

noise) can be used to train a new LLNet where both noise types are taken into

consideration. While there are certainly many other ways to further improve

the performance of LLNet (e.g. hyperparameter optimization, ensemble meth-

ods, and more rigorous process modeling), we show that the notion of transfer

learning can be realized with appropriate training data generation schemes that

adequately model a real world process. Thus a model trained with synthetic im-

ages can indeed be applied to enhance natural low-light images with competitive

performance.

5.6. Denoising capability, image sharpness, and patch size

There is a trade-off between denoising capability and the perceived sharpness

of the enhanced image. While higher PSNR indicates a higher denoising capabil-

ity, this metric favors smoother edges. Therefore, images that are less sharp often

achieve a higher PSNR. Hence, SSIM is used as a complementary metric to eval-

uate the gain or loss in perceived structural information. From the experiments,

a relationship between denoising capability (PSNR), similarity levels (SSIM) and

image sharpness is found to be dependent on the dimensions of the denoised patch
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relative to the test image. A smaller patch size implies finer-grain enhancement

over the test image, whereas a larger patch size implies coarser enhancement. Be-

cause natural images may also come in varying heights and widths, the relative

patch size–a dimensionless quantity that relates the patch size to the dimensions

of the test image, r–is defined as:

r =
dp
di

=

√

w2
p + h2

p
√

w2
i + h2

i

where quantities d, w, and h denote the diagonal length, width, and height in

pixels, with subscripts p and i referring to the patch and test image respectively.

Relative patch size may also be thought as the size of the receptive field on a test

image. From the results, it is observed that when the relative patch size decreases,

object edges appear sharper at the cost of having more noise. However, there exists

an optimal patch size resulting in an enhanced image with the highest PSNR or

SSIM (as shown in Fig. 9 and Fig. 10.). If the optimal patch size is selected based

on PSNR, the resulting image will have the lowest noise levels but is less sharp.

If the smallest patch size is selected, then the resulting image has the highest

sharpness where more details can be observed but with the expense of having

more noise. Choosing the optimal patch size based on SSIM produces a more

well-balanced result in terms of denoising capability and image sharpness.

We included a natural test image where the US Air Force (USAF) resolution

test chart is shown. The test chart consists of groups of three bars varying in

sizes labeled with numbers which conforms to the MIL-STD-150A standard set

by the US Air Force in 1951. Originally, this test chart is used to determine

the resolving power of optical imaging systems such as microscopes, cameras,

and image scanners. For the present study, we used this test chart to visually

compare the trade-off denoising capability and image sharpness using different

relative patch sizes. The results are shown in Fig. 10.

5.7. Prior knowledge on input

HE can be easily performed on images without any input parameters. Like

HE, CLAHE can also be used without any input parameters where the perfor-

mance can be further finetuned with various other parameters such as tile sizes,

contrast output ranges, etc. Gamma adjustment and BM3D both require prior

knowledge of the input parameter (values of γ and σ, respectively), thus it is often

necessary to finetune the parameters by trial-and-error to achieve the best results.

The advantage of using deep learning-based approach, specifically using LLNet
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Figure 9: Relative patch size vs PSNR and SSIM. The picture with highest PSNR has the highest

denoising capability but least sharp. Picture with lowest r has the least denoising capability but

has the highest image sharpness. Picture with the highest SSIM balances between image sharpness

and denoising capability.

and S-LLNet, is that after training the model with a large variety of darkened

and noisy images with proper choice of hyper-parameters, there is no need for

meticulous hand-tuning during testing/practical use. This effectively reduces the

burden on the end-user. The model automatically extracts and learns the under-

lying features from low-light images. Essentially, this study shows that a deep

model that has been trained with varying degrees of darkening and noise levels

can be used for many real-world problems without detail knowledge of camera

and environment.

5.8. Features of low-light images

To gain an understanding on what features are learned by the model, weights

linking the input to the first layer of the trained model can be visualized by plotting

the values of the weight matrix as pixel intensity values (Fig. 11). In a regular LL-

Net where both contrast enhancement and denoising are learned simultaneously,

the weights contain blob-like structures with prominent coarse-looking textures.

Decoupling the learning process (in the case of S-LLNet) allows us to acquire a

better insight. We observe that blob-like structures are learned when the model

is trained for the task of contrast enhancement. The shape of the features suggest

that contrast enhancement considered localized features into account; if a region

is dark, then the model brightens it based on the context in the patch (i.e. whether

the edge of an object is present or not). On the other hand, feature detectors for

the denoising task appears noise-like, albeit in a finer-looking texture compared

to the on coarser ones from the integrated LLNet. These features shows that the

denoising task is mostly performed in an overall manner. Note that while the
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Figure 10: Evaluation on US Air Force (USAF) resolution test chart. There exist optimal relative

patch sizes that result in the highest PSNR or SSIM after image enhancement (using LLNet). Note

that the result enhanced with histogram equalization is shown to highlight the loss in detail of the

natural dark image (where the main light is turned off) compared to the natural bright image.

visualizations presented in [21] show prominent Gabor-like features at different

orientations for the denoising task, the Gabor-like features are not apparent in

the present study because the training data consists of multiple noise levels rather

than a fixed one. The distinction between feature detectors and feature genera-

tors is highlighted in Fig. 12 and a comparison of superior and inferior weights is

shown in Fig. 13.

5.9. Hyper-parameters, network architecture, and performance

Table 3 shows the average PSNR and SSIM values evaluated on the set of

90 synthetic dark images enhanced with the trained model of different hyper-

parameters and network architecture. As we are interested in the overall image

enhancement performance, we used the implementation with the highest SSIM,

as opposed to PSNR, for the reported results. From the results, smaller batch sizes
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Figure 11: Feature detectors can be visualized by plotting the weights connecting the input to the

hidden units in the first layer. These weights are selected randomly.
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Figure 12: Random selection of weights from the first layer (feature detectors) and weights from

the output layer (feature generators) for the integrated LLNet model trained with a patch size of

21 × 21. Patterns in the output weights are similar to patterns in the first hidden layer weights

since tied weights are used.

Worse 
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Figure 13: Random selection of first layer weights from an integrated LLNet model trained in

batches of 1000 and 50, respectively. The superior model (i.e. batch size 50) learns features that

appear more distinctive.
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Table 3: Average PSNR evaluated on the set of 90 test images enhanced with trained model of

different hyper-parameters and network architecture. The implemented model is marked by an

asterisk (*), whereas the PSNR and SSIM for the best model are presented in bolded typeface.

Model Description Network Architecture (# Hidden Units) PSNR (dB) SSIM

*Batch Size 50 2000-1600-1200-1600-2000 19.8109 0.6912

Batch Size 500 2000-1600-1200-1600-2000 20.0979 0.6710

Batch Size 1000 2000-1600-1200-1600-2000 20.0550 0.6600

Patch Size 13×13 2000-1600-1200-1600-2000 19.8281 0.6271

*Patch Size 17×17 2000-1600-1200-1600-2000 19.8109 0.6912

Patch Size 21×21 2000-1600-1200-1600-2000 19.5877 0.6375

Patch Size 25×25 2000-1600-1200-1600-2000 19.4637 0.6355

3-layer SDA 1600-1200-1600 20.2458 0.6845

*5-layer-SDA 2000-1600-1200-1600-2000 19.8109 0.6912

7-layer SDA 2400-2000-1600-1200-1600-2000-2400 19.1717 0.6480

Narrowest 500-400-300-400-500 19.3688 0.6774

Narrow 1000-800-600-800-1000 19.8056 0.6879

*Regular 2000-1600-1200-1600-2000 19.8109 0.6912

Wide 4000-3200-2400-3200-4000 19.7214 0.6730

result in noisier gradients during the update and may help in escaping local min-

ima during optimization. Hence, we see that the SSIM increases with a sufficiently

small batch size. No clear trend is observed in terms of PSNR with varying batch

sizes. A patch size of 13×13 resulted in the highest average PSNR whereas a

patch size of 17x17 resulted in the highest SSIM. This result has been discussed

in earlier sections and is consistent with the findings on the relationship between

the relative patch size and PSNR and SSIM, where the selection of the optimal

patch size requires considering the trade-off between image sharpness with de-

noising power. On the other hand, the number of hidden layers must be chosen

such that it adequately captures the nonlinearity in the data (i.e. architecture is not

too shallow) while avoiding the vanishing gradient problem which inhibits learn-

ing (i.e. architecture is not too deep). The same effect is observed for the width of

the architecture.

Note that we explored how varying the hyperparameters one at a time affects

the model performance. However, if we use all the optimal hyperparameters dis-

covered independently, such model will not necessarily result in a globally opti-

mal performance. Hence, it may be desirable to explore the hyperparameter space

randomly [32] as opposed to doing the search in a sequential manner.
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6. Conclusions and future works

A variant of the stacked sparse denoising autoencoder was trained to learn

the brightening and denoising functions from various synthetic examples as fil-

ters which are then applied to enhance naturally low-light and degraded images.

Results show that deep learning based approaches are suitable for such tasks for

natural low-light images of varying degree of degradation. The proposed LLNet

framework compete favorably with currently used image enhancement methods

such as histogram equalization, CLAHE, gamma adjustment, and hybrid meth-

ods such as applying HE first and subsequently using a state-of-the-art denoiser

such as BM3D. While the performance of some of these methods remain compet-

itive in some scenarios, our framework was able to adapt and perform consistently

well across a variety of (lighting and noise) situations. This implies that deep au-

toencoders are effective tools to learn underlying signal characteristics and noise

structures from low-light images without hand-crafting. Some envisaged improve-

ments and future research directions are: (i) Training with quantization artifacts

to simulate a more realistic situation; (ii) explore other deep architectures for the

purpose of natural low-light image enhancement; (iii) include de-blurring capa-

bility explicitly to increase sharpness of image details; (iv) train models that are

robust and adaptive to a combination of noise types with extension beyond low-

light scenarios such as foggy and dusty scenes; (v) perform subjective evaluation

by a group of human users.
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