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Abstract—This paper proposes a framework for reactive and unstructured environments often have limited or un-
goal-directed navigation without global positioning facilities  reliable long-range communication and GPS capabilities.
in unknown dynamic environments. A mobile sensor network Examples include a team of mobile autonomous robots for

is used for localizing regions of interest for path planning long ‘endurarice military applications (e mine-hunting)
of an autonomous mobile robot. The underlying theory is 9 y app g g9

an extension of a generalized gossip algorithm that has_been and non-military applications (e.g., weather monitoring).
recently developed in a language-measure-theoretic Setting. These 'missions are often limited due to unavailability
The algorithm has been used to propagate local decisions of global information and imposition of communication

of target detection over a mobile sensor network and thus, constraints resulting from energy requirements and envi-

it generates abelief map for the detected target over the tal tainti H ith th t ad
network. In this setting, an autonomous mobile‘robot . may ronmental uncertainties. However, wi e recent advances

communicate only with a few mobile sensing nodes in its own In low-complexity signal processing algorithms, sensing
neighborhood and localize itself relative to the’communicating systems can locally detect regions of interest with high
nodes with bounded uncertainties. The robot‘makes use of gccuracy, which allow information extraction at the sensor
the knowledge based on thebelief of ‘the mobile sensors gjia for significant reduction of the communication over-
o generate a sequence of way-points, jeading to a pOSS"blehead Even though reduction of communication overhead
goal. The estimated way-points are used by -a sampling-based. ’ . ! )
motion planning algorithm to generate feasible trajectories IMproves the life of such autonomous sensing networks, it
for the robot. The proposed.concept has been validated by limits the network performance and capacity. For example,
numerical simulation on a mobile sensor network test-bed g search and rescue operation in an urban scenario in an
and a Dubin's car-like robat, apartment complex may require sequential collaboration
between thesearch agentsand the rescue agentswhere

I. MOTIVATION-AND INTRODUCTION the rescue operation is usually triggered based on the real-
. - time information collected in a network environment by the
Autofiomourobggs are becoming ubiquitous and als?dependentsiearch agentsThe efficacy of such missions

e.n\./ll.saged éo p!?ty an |nc|r§ a?mgly Impk(]) rtant .r?le_'n bot epends on how quickly the network can react to the sensed
civiiian “and- military -appfications such as ‘inte 'g.enqetargets and guide aeéscue agentto the target of interest
surveillance & reconnaissance (ISR), weather monitorin

o - A Hnder the constraints of limited communication and global
fighting wildfire, health care, and logistics, to name a fe

A h. the ability of robots t K lex decisi ositioning. [Note: The termagent has been used for a
S such, the apility of robots 1o make complex deCISIONg e sensor in this paper and it should not be confused

is becoming an increasingly commonplace requirement f\%th an autonomous robot that is navigated to the target

such missions. Autonomous robots operating in unknonScation]

*This work has been supported in part by the U.S. Office of Naval Recemly_mUCh work has been repor_ted _On §0urc§a segkmg
Research under Grant No. N00014-14-1-0545, and by the U.S. Arrity sensor fields [1]-[9], where the objective is to identify

Research Laboratory under Cooperative Agreement No. W91INF-lte nossible location of the source as the minimal point
2-0068. Any opinions, findings and conclusions or recommendatio

n . . . . .
expressed in this publication are those of the authors and do not necess&fflyan unknowr_' Slgnal field bY using a stochastic gradlent
reflect the views of the sponsoring agencies. descent algorithm. Authors in  [7] [4] [3] [9] present
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a multi-agent coordination framework where the mobileo their physical proximity to the target) and collaborative
agents together estimate the peaks of sensor field danfbrmation exchange, low-level sensors can create a belief
all the agents collectively move to the peak of the fieldbout a point of interest (or target). The belief map could
following the estimated gradient of the field. However, ththen be used for navigation by autonomous robots. The
agents have to communicate their sensor measurements p@dinent problem here is navigation of an autonomous
an artificial potential function is required to estimate theobot, assisted by a mobile sensor network, in an unknown
gradient of the sensor field. Also, in [3], the agents neethd dynamic environment without a global positioning
to maintain a particular formation for accurate estimation afystem (GPS); the sensor network serves the two-fold
the gradient which constrains the motion of the individugdurpose of target localization and way-point generation. In
agents who might have complicated dynamics. Authors this setting, a low-level motion planning algorithm makes
[1] [2] [5] [6] present algorithms for estimating the sourcaise of the information provided by the sensor network to
location by using a stochastic gradient descent algorithpenerate feasible paths for the robot motion [18], which
that takes into account the robot dynamics. In contrast, the conceptually similar to emergent sensing. of complex
focus of the present work is to use a mobile sensor netwogkvironments by animal groups [20].
for guiding an autonomous robot to a source of interest in The work, reported in the current paper, is built upon
environments, where the knowledge of global positioninidpe concept of distributed decision®propagation in mobile
is not always feasible. ad-hoc sensor networks [21], where a proximity network
Several attempts have been made in literature to matesensing agents is modeled-as a probabilistic finite state
use of static sensor networks to guide a robot. Li et al. [L@utomaton (PFSA) [22]; a major abjective here is to assist
present the use of sensor networks as adaptive repositodesearch-and-rescue-type mission. Ageént measure func-
of information for guiding an autonomous robot by creatingjon’ is defined, based on‘the recently reported language
a map to dangerous areas (e.g., obstacles, or populateghsure theory [22] [23], for all agents in the network,
areas). Deshpande et al. [11] use a pseudo-gradient, calwbich signify their fevel of awarenessegarding a locally
lated based on sensor readings, for localization and directahsedtarget.in the operational area.
navigation of an autonomous robot in unknown environ- While the bulk of the related work considers structured
ments. However, a sensor network with stagarch agents data that are generated from a well-defined sensing model,
has been used and the underlying algorithm cannot be ea#lig underlying algorithm reported in the current paper relies
extended for navigation with a mobile sensor network th@h. unstructured data and makes use of the concept of
may have a potential advantage over static counterpartstodel-free source-seeking. Specifically, tagént measure
terms of spatial coverage and time-criticality [12]. It.idunctioni is generated by a mobile sensor network, which
noted that gradient-based algorithms may not be operabln be used to guide an autonomous robot through an
in unstructured environments if the sensing“model is nonknown and unstructured environment [24]. The proposed
sufficiently accurate. Furthermore, global sensing of targftamework of sensor-network-assisted robot navigation has
is not usually applicable for surveillance in large: (e.gthe following potential advantages over those reported in
littoral underwater) sensor networks, because excharifpe current literature:
of global information could be severely restricted due to « There is no need to communicate the actual signals
communication constraints for limited energy availability.  sensed by the sensing agents. The algorithm only
Another set of relevant literature-is from.motion planning requires exchange of local beliefs about the sensed
in the presence of various uncertainties. Motion planning targets. This method has the potential of significantly
has a very rich literature and the current state-of-the-art reducing the communication overhead and makes the
algorithms are sampling-based. and can guarantee optimal- network more robust to communication flips.
ity [13]. Some work.in sampling-based motion planning « As opposed to typical source seeking scenarios, the
literature for planning with uncertainties could be found current setup does not require the sensing agents
in [14]-[17]. However, the main idea in these papers is to move towards the source. Apart from computa-
to compensate for state estimation error, when the goal tional advantages, this is potentially more suited in
position.is known along the trajectories that are generated an adverse environment. In such a case, the network
by using sampling-based algorithms. may need to handle multiple non-collocated sources
The current paper proposes a framework, where a mobile including possibly dummy sources. Another advantage
sensor network is used to generate way-points for an is that the network does not need to be strongly
autonomous robot based on the sensed regions of interest, connected; this is particularly important in large sensor
which are exploited by sampling-based motion planning networks used for distributed surveillance.
(e.g., rapidly-exploring random tree (RRT) [18]) to generate « No artificial potential function is required to guide
feasible trajectories for the robot; a preliminary version an agent to the locally detected goal; a gradient is
of this work has been presented earlier as a conference automatically generated by tlagent measure function
paper [19]. A different perspective is presented for solving  which is maximized at the location of sensed target.
source seeking problems in sensor fields where, based om The proposed approach is closely related to the general
their limited detection capabilities (i.e., only a small frac-  class of model-free source seeking [25] i.e., where
tion of the sensor population actually detects a target due no sensing model is used. Under this umbrella, the
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proposed approach doesn’t require any formation &fture is given byA,;I1"x. It follows from Eq. (1) that the
the sensing agents to estimate a gradient to the locatheasure of the statg represents the weighted expected
detected target. This has the potential benefit of decotalue of x over all time steps in future for a Markov chain
pling the dynamics of sensing agents as they can motret begins in state,. The weight at the:!" time-step is
independently without any constraint on synchronizing(1—6)* (see Eq. (1)); and these weights form a decreasing
their movement with others. geometric series whose sum equald t&Consequently, the
measure/;(#) is a convex combination of all the elements

Il. DECISION PROPAGATION IN SENSORNETWORKS of x.

This section introduces the mathematical preliminaries 8 Generalized Gossip Policy
needed for analysis of distributed decision propagation m_~ . : _ _
sensor networks. It briefly describes the salient conceptsThis subsection briefly describes the formulation of the
of the real measure [22] [23] of probabilistic regula@eneralized gossip policy in the context of proximity net-

languages generated by a PFSA [22], followed by tho¥orks as proposed in [21]. The proximity network [26] is a
of a generalized gossip algorithm [21]. particular formulation of time-dependent mobile-agent net-

works, inspired from social networks, where only proximal
agents communicate at any given-time epoch [27].
A. Language-Measure Theory gIn the present context, p):o%(imal agentsp excf[1an]ge infor-
This subsection succinctly presents the theory of lamation related to their beliefs regarding the environment.
guage measure, restricted to irreducible stationary Markgyter the expiry of a message lifetimg,,, agents possibly
chains (i.e., where each state can be reached from anotligtlate their beliefs based on.their own observation and
state in finitely many transitions). Further details are rgnessages from other agents. There are two time-scales
ported in [22] [23]. involved in this problem.setup. In contrast to the faster
Definition 2.1: (Real Measure of a Markov Chain) Antime-scale {) of ‘agent motion, the algorithm for updating
irreducible stationary Markov chain is denoted by the threghe agents’ beliefs runs on a (possibly) slower time-scale
tuple (Q, IT, x), where (denoted byr). The time-scale for updating the belief is
« Q@ is the set of states with cardinality)|, chosen-to be slower as it allows for sufficient interactions
« |Q| x |Q] is a stochastic matrifT (i.e, each entry is_among the agents, especially if the density of agents is
non-negative and each row sum is equal to 1) repr@w. If the message lifetime.,,, is very small, then the
sents the state transition functien: Q x @ — [0,1] network may not be able to build up over time and possibly
for the Markov chain, remains sparse. On the other hand, the network would
« x : Q — Ris the vector-valued characteristic functioreventually become fully connected &s, — co. Thus, to
that assigns a signed real weight to each sjate (). capture temporal effects in a realistic settiig, should be
Then, a real measune for the statey; is definedias  @ppropriately chosen based on other network parameters. In
- this setting, a time-dependent (in the slow-sca)egraph
vi(6) 2 29(1 LYY 1 14 .. is denoted as7 and a few related terms are defined as
K3 K2 X? 1 ) ) 2 |Q, (1)
follows.
) . Definition 2.2: (Adjacency Matrix [28]) The adjacency
whered < (0,1) is a user-specified sealar parameter anglayix 4 of a graph is defined such that its element in
A is the (1 x |Q]) vector [;1,ds2 - - - ;] for which the q ;5th nosition is unity if the agent communicates with
elements);; are defined as the agentj within the time period of the message life time
1 if G = L.,; otherwise the matrix element; is zero. To eliminate
0sj = { 0 otherwise self-loops, each diagonal element of the adjacency matrix
) _is constrained to be zero.
The real measure in Eq. (1) for the Markov chain is pefinition 2.3: (Laplacian Matrix [28]) The Laplacian
vectorially represented as matrix (£) of a graphG is defined as:

(@)= 01— (1 - 0)I)~'x @) L=D-A

where the‘inverse is guaranteed to existfag (0, 1). where the degree matriR is a diagonal matrix whosg”
Remark 2.1:(Significance of States of a Markov Chain)diagonal element id;. [Note: d; is called the degree of the
The set of stateg) is an abstract representation of the sefodei that may be considered as the stgtén the Markov
of mobile sensors (or agents) in the context of languagsetting (see Definition 2.1).]
measure-theoretic information management in the network.Definition 2.4: (Interaction Matrix [28]) The agent in-
In other words, a mobile sensor, designated as the agenteraction matrix (which is a restricted version of the state
is represented as the statec () in the setting of a Markov transition matrix in Definition 2.1) is defined as:
chain.
Remark 2.2:(Significance of Real Measure) If the cur- I=1-p5L
rent state of the Markov chain ig € @, then the expected where the scalar parametgris chosen such thdil be-
value of the characteristic function aftertime steps in the comes a stochastic matrix and its second largest eigenvalue

k=0
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satisfies the conditioh\s(IT)| < 1. In other wordsIT is a is called ageneralized gossip algorithmwith 6 as the
primitive (i.e., acyclic and irreducible) stochastic matrix. generalizing parameter.

In the context of proximity networks, the requirement Remark 2.3:The agent measure functioif;) of the
of keeping I as a stochastic matrix in Definition 2.4agent: (state ¢;) serves as the degree of awareness or
is achieved by setting3 = 1/(d+1), where d is a belief of an agent regarding a locally sensed target. In
(positive integer) parameter that is pre-determined off-linthe following sections, the agent measure function is also
The physical significance of the parameters explained referred to as belief.
below.

In order to maintain the stochastic matrix properties of I1l. PROBLEM FORMULATION

H. Lor (Ln-lme operaﬁon, an ;\gentdlgur%ores commun!cr?nons This section formulates the problem of path planning for
with other agents that are beyond tildime steps Within o, o ;tonomous robot in the absence of global positioning

the message lifetimd..,,. However, the.expecte(-j degreq,cilities to find routes to a locally detected target by a
distribution of the network can be obtained off-line at thﬁistributed sensor network

design stage (see [21] for details); therefatés chosen to Assumptionsfor simplicity of exposition, certain sim-

be large enough such that the probability that the degrﬁfﬁ‘ying assumptions are made to unambiguously present

d; > d for any node; (i.e., stateg; in the Markov setting the efficacy of the proposed framework for reactive navi-

n De|f|n|t|on 2'1). IS very Iowa '.'e'ﬁ_r(di > d) Sbe v (f?(r gation in the absence of global positioning systems. Major
simulation exercises rep.orte_ in this papeas een ta en,assumptions in the problem/formulation are outlined below
to be 0.001). Note that, in this case, the stochastic matrix ) )

1) An autonomous robot can locally estimate relative

IT is further restricted to be symmetric (i.e., also doubly i ¢ bil : tate-of-art )
stochastic) due to the above construction procedure. POSItions Ot MoIié_sensors using state-of-art posi-
tioning techniques'in sensor networks [29].

The generalized gossip strategy involves two system .
variables associated with each agent (i.e., each state in thg) Mobile segors \powe agtpnomogs robot are locally
able to coordinate for collision avoidance.

Markov setting), namely th haracteristic vect D, . .
ana:j t?1edetntg%e;su?eyvtecetg}evSth:Cezcit(;Ie(:rfecr)\i( of 3) Communication of the robot with other mobile sen-
the these two vectors is restricted as:€ [0,1] and x; € sor§ Qgonswlered in the time scale>> 7. .
{0,1}. The restrictiony; € [0,1] signifies the level of Assumption 1 enables the autonomous robot to locate itself
awareness or belief of the agentegarding the presence(With"bounded uncertainty) with respect to its proximal
of a target in the surveillance region. The restrictionS€NSOrs (which is a small fraction of the population) that
v; € {0,1} signifies whether the agetithas detecteda 2'® communicating their beliefs. Assumption 2 is used so
target or not (i.e.,1 for detection,0 for no detection). that the idea of the paper could be unambiguously presented
Based on current values af andv of the agent popula- without focusing on the actual collision avoidance strategies

tion, the measures are updated for all agents synchronoulymoving sensors. Assumption 3 is used to ensure that
after the expiry of one message lifetinig,. It is noted that, thé robot always communicates with its local network at

based on the discussion up to this poifi, X andw are instants when every sensor in its local network has a
functions of the slow time-scale. In the abové setting, a Steady belief about the target or has steady agent measure.
decentralized strategy of updating the measyré)|, in Also, the robot doesn’t need to communicate while moving

the mobile-agent population at-a-(slow.time scale) epo@§tWeen way-points. _
7 is introduced below in terms of a user-defined control Mobile Sensor NetworkUnder these assumptions, let

paramete® € (0,1). a set' of mqbile sgnsoré) = {ql,QQ,.:.,qn} perform
surveillance in a regioiX, where the task is to detect targets
vi(0)]r41 = (1-0) Z I1;;]- vj(0)|-+0xi|- (3) inthe given region. For sim_plicity, the target (i.e., the_goal
je{i}Unbhd(i) for the autonomous robot) is modeled as a local region of
_ ) ] interest in the surveillance area such that only a few sensors
whereNbhd (i) denotes:the set of agents in the neighbofnat come within that region of interest have a non-zero
hood of agent (or stateg;). that is, the agents (states) thabopability of detecting it. For clarity, a simplistic model
communicate with“the agent (state¢;) during the time o target detection is followed which is described next.
span betweem and + 1. It is noted that while computing p region of interest, say{¢ c X, is modeled as a map
the future (awareness or belief) measure of an agent, ¥a¢ probability of detection of a target. Let the probability
parameterd controls _the trade-off between the effects of¢ getection of a target be denoted &, which attains
current self-observ_atlon and curre_nt measures of all agenfss maximum at the center of the target's physical location
In the vector notation, the dynamics can be expressed agg decays to zero linearly with distance from the center in
a radially symmetric manner. A region of interest is then,
O)|ry1 = (1 — I v(0)|- + Ox|- 4 . )
v(O)lr41 = JLv(6)]- + 0x] @) characterized by the following parameters:

Thus, this policy is simply a gossip algorithm with « The maximum probability of detection of the target,
varying inputxy and varying network topology represented  Pp,naq
by II|.. The memory of a past input fades as a function « The effective radiusr,) of the circular region within
of the parametef). Due to this notion, the above policy which Pp > 0.5, i.e., agents further than a distance

4
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of r;s from the center of the hot-spot have less thathe target. Thus, target detection is a local event in contrast
0.5 probability of detecting the threat. to other reported work where target detection is a global

In general, sensor networks are designed for a const&¥gnt (i.e., all sensors can sense the targets and a path is
false alarm rate (CFAR), where each sensor is capablef@fnd based on the gradient of the sensed signal). This local
detecting a target within its own radiug, with probability target detection problem requires creation of an artificial
Pp. (Details are available in [30].) For CFAR detectiorfradient towards the sensed target which can then be used
models, ak—detection strategy [31] is followed to achievel© calculate the sequence of waypoints to reach the region
the desired level of search performance in the surveillangbthe detected target. This is more suitable and appropriate
region [30]. In this paper, the sensor network is assumed® networks used in unstructured environments, where the
be capable of handling false alarms so that a desired sea@égumption of a reliable sensing model is generally not
performance is maintained in the surveillance region. ~ applicable.

Autonomous RobotConsider a single robot in an arbi-
trary surveillance environment where the dynamics of the IV. PROPOSEDAPPROACH

robot is governed by the following equations. _ _ _ .
In the current settings as explained<n Section Ill, not all

x = f(x,ut)+nx,u,t) (5a) the sensors detect the target. Hence, an artifesigreness
y = h(x) (5b) about the presence of a target.is created by using gossip
among the sensors. To ensure:goal-directed behavior of the
where x is the state of the robota is the local control artificial awarenesstowards [the sensed target, the gossip
input, y is the output. The functiong and h describe the algorithm presented in_this section ensures a gradient in
known mathematical abstraction of the system dynamiabe belief function of sensors towards the sensed target. The
The functiony indicates the physical uncertainties in theroblem of target detection is GPS-denied in the sense that
dynamics, including modeling errors, noises and potentidle sensing system is unaware of the global positions or the
physical failures. LeX and U denote the constraint setssensor(s) and the target. The idea is to use the sensors as dy-
for the state and the input, respectively, ix(t) € X and namic landmarksand identify a sequence of such landmarks
u(t) € U must hold, whereX is the surveillance region, so that a path is found to the sensor that detects the target.
which means the robot is always constrained to stay in ti@is is an event-triggered phenomenon and depends on the
surveillance region. Further details of the input constrai@ability of the network to detect a target. Subsequent sections
setU are provided in Section V. As described earlier, thehow. that the proposed framework allows such intelligent
distributed decision propagation algorithm proposed in:[2bebhavior under appropriate assumptions.
is adopted here for dissemination of the knowledge of This section first presents an algorithm for decentral-
sensed target throughout the mobile sensor network. ized belief map generation in a mobile sensor network to
The primary contribution of the current work is de{propagate amwarenessabout the locally sensed target in
velopment of a distributed navigation algorithm that usebe distributed sensor network. The algorithm is presented
the disseminated information to help guide:an autonomourder the generalized gossip framework (briefly described
robot to the detected region of interest (i.e.; goal for tha Section II-B) which guarantees a unique maxima and
autonomous robot). Hence, the autonomous robot ordygradient towards the same in the network. The key idea
relies on the collective intelligence of.the mobile sensdrere is that if the autonomous robot moves in a way so that
network and does not use any global positioning systeiits belief (based on the belief of its nearby mobile sensors
Note that none of the sensing agents is actually aware Jofmonotonically improves (or increases) with movement,
any sensed location of the target and hence cannot diregtign under the condition that the belief of the network
provide such information‘to the robot. Furthermore, thie maximized at the physical location of the goal, the
robot has only a finite sensing and communication radiusbot will eventually reach the goal. Under the constraints
Under this constraint, the robot can only be aware of thef limited communication and sensing horizon, the robot
beliefs of its neighboring mobile sensors. The problem dfas access to beliefs of only its proximal mobile sensors.
reactive.navigation to the global target is then reduced to thiowever, due to the presence of a gradient towards the
recursive estimation of a sequence of way-points which tigeal, the robot is able to estimate a way-point where
robot can<follow to finally reach the goal. More formallythe belief is greater than its current belief. To this end,
reachability task is considered, where the robot has to reable robot can learn an implicit correspondence between a
a goal setX® C X by estimating the location ok ¢ using geographical location and the belief in the network by using
the belief of a mobile sensor network deployedXin an interpolation scheme (e.g., neural nets etc.). Note that
The work, reported in this paper assumes no knowledgge network at any time instant is sparse when compared
of global positioning coordinates of the sensors and the the actual physical space. The interpolation algorithm is
targets; in other words, the sensors (that detect the targetajned based on the set of beliefs corresponding to local
have no knowledge of their own global positions as wethobile sensors (i.e., within the communication radius) of
as those of the targets. Furthermore, not all the senstiie robot. The maximum of the implicit surface is the way-
receive signals from the targets; only a few sensors in tpeint the robot moves to, over a certain time horizon till the
local neighborhood of the target can sense and hence detestt communication with the network is established. This
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is achieved by following a feasible trajectory obtained bggain. Figure 2 shows a frozen sensor network, where all
sampling from the local configuration space using rapidiyhe sensors have a steady belief about the presence of the
exploring random trees (RRTS). These steps are recursividyget after it has been detected. It shows a voronoi partition
followed till the robot reaches the sensed region of interest the surveillance regioX based on the sensor locations.
i.e., the goal. The idea is similar to the commonly studield shows a gradient towards the locally detected target as
receding horizon motion planning framework, where abtained over the network by the biased gossip. This shows
reactive plan is followed by the robot over a finite timahe correctness of the gossip in the network to create a goal
horizon as a reaction to real-time information. The goairectedness. Detailed proofs of optimality and convergence
is to design a hierarchical distributed data-driven motioof distributed algorithm for language measure computation
planing framework for navigation to unknown areas ofould be found in [32] (see Proposition 2 through 5).
interest, in a receding horizon fashion and the challengehi®wever, for the completeness of the paper and clarity of
to relax the computational and communication requiremerggesentation, The details are as follows.
by intelligently aggregating information of a mobile sensor Let Q = {q1,¢o,...,¢,} be the set of mobile sensors.
network while ensuring correct behavior. Figure 1 showSonsider a frozen network of sensors at‘any instaritet
the flowchart of the framework. It is noted that the sensots consider the sensor which has detected the target to be
use the generalized gossip framework earlier proposddnoted agqg. It is assumed that, at any.instant there
in [21] for information propagation which is explained inis only one sensor which has detected the target.
the next section. Proposition 4.1: There existssa sequence of hops from
any sensogy; € @ to grg if v, > 0:
Proof: Consider the fact thati™ =1 andx% =0, V
g; € Q\gre. Then, it is obvious that there exists a directed
Based on the generalized gossip framework, this supath from sensor; to the sensor which has detected the
section presents an algorithm which creates a belief m&gpget i.e.,qrc (constituted by intermediate sensors) else
in the mobile sensor network with a bias towards the,, would be identically equal t6. Existence of paths from
sensed region of interest, i.e., the goal for the autonomoesery sensor of the network to the one that detects the target
robot. The idea is based on optimal control control theoiynplies.a connected network. That is,uf > 0V ¢; € Q,
of a Probabilistic Finite State Automata [23] [32]. Undethen the network is implied to beonnected. ]
this umbrella, the belief of every sensor is maximized by Proposition 4.2: There exists a sequence of haps—
averaging only over the set of its neighbors that have beligf — --~"— ¢rg, where every sensor in the sequence is
greater than the sensor. In the original gossip strategy.(seeeighbor of the preceding member in the sequence such
equation 3), a sensing agent is influenced by all ‘othétaty,, < v, <--- < g, iff v, > 0.
agents in its neighborhood (or adjacency) set. However, Proof: Algorithm 1 implies that ifv,, > 0, there exists
to maximize its measure, an agent can follow a strategyleast ong; < Nbhd(q;) such thafll;; # 0 andv,;, > v,,.
where it is only influenced by agents that have a high&his follows from the fact thafl;; > 0 iff v, > v,
belief than its own belief (i.e, a higher-measure than iGee Algorithm 1). The same argument is valid §or And
own measure). Therefore, every agentiignores the influerreence, ifv,, > 0 3 a sequence of hopg — ¢; — -+ —
of the neighboring agents that have a lower belief abotc such thaty,, < v,, < --- < v,. The converse is
the target, thereby maximizing.its own_.belief about thstraightforward as existence of a directed path frgrg
target by averaging over the better informed neighborsuggests/,, > 0. [ ]
This strategy is succinctly_presented in Algorithm 1. The The above two propositions show that, for a connected
key point is that the elements of the interaction matrigensor network where only one of the sensors has detected
corresponding to agents with. a lower measure are matthe region of interest or the target, there exists a sequence
zero (i.e., they do not have any influence on an agent witli sensors from every sensor to the one that has detected
a higher belief)..However, to keep the interaction matrithe target. The sequence could be found by finding the
stochastic, those elements are adjusted as a self-loop torf@notonic sequence of measure function for the sensors
agent(see steps 5 through 11 in Algorithm 1). Based on tiddich is maximized at the sensor which detects the target.
results'in [23]:[32], this strategy ensures a maximum in thEhus, Algorithm 1 ensures a direction towards the region
belief network at the goal region for the autonomous ageof the interest through a decentralized gossip. Hence, as
and at the same time, it creates a gradient towards the satorg as there is a sensor in the network detecting the
This biased approach ensures that a mobile sensor whiatget of interest, algorithm 1 will ensure a gradient in
is closer to the sensed region of interest will have a highttre measure function of the sensors towards the detected
belief as compared to those further away from it. target (or the sensor detecting the target). In the case of
To analyze the belief map generation with movement ofiore than one sensor detecting a target, there would not
the sensors, a frozen network is assumed at every instartie a unique maxima in the belief map for the network;
of the slow time scale; then, the measure for every sendwmwever, Propositions 4.1 and 4.2 still ensure paths to one
via Algorithm 1 is updated. All the sensors in the networkf the sensors detecting the target from every sensor in the
move till the next time instant (measured in the slow timeetwork. Figure 2 shows a frozen network where the target
scale), and the process of measure update is repeaisdocated af400,200] (shown as a red circle) along with

A. Decentralized Belief Map Generation
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the voronoi partition of the surveillance region based on the Given the approximate locations of the neighbors of the
sensor locations. Also shown are a few sequences of cetibot, {Z; € R?, i = 1,---, M} and their corresponding
that could be followed based on a simple rule of moving toeliefs {v; € R}, a functiong : R? — R is estimated, such
the best neighboring cell to reach the target-detecting senfiwat it satisfies the boundary constraitsz;) = v;. Then,
from different corners of the region. The best neighbor §(z) has the following form

the one with the maximum value af. The asymptotic o

runtime complexity of Algorithm 1 is bounded ky(Nk?) N YTy

whereN is the total number of sensors ahds the number 8(@) = ;wlqﬁ(nx %l ©

of nearest neighbors for a sensor (see Propositior32]). ) ) ) )
where ¢(e) is a radial basis function (RBF) and;’s

are the weights assigned to the individual RBF’s that are
B. Implicit Surface based Interpolation for Navigation —centered at the respectivig’s. By making use of Stone-

The robot uses the directed belief generated by tdeierstrass theorem that states “any continuous function
mobile sensor network to recursively estimate way-point§th @ compact support can be approximated with, arbitrary

the way-points finally converge to the goal region (i.e., thaccuracy by a polynomial,” Eq. (6) becomes valid if a

region of interest sensed by the mobile sensor networ?};fficiently large number of RBFs (i.e., sufficiently large

Under the assumption that the robot can localize mobiR®Sitive integer)/) is selected [33]. The functiod repre-
sensors in its neighborhood [29], beliefs of the mobilg€nts an implicit correspondence between the local physical

sensors in the robot's neighborhood are used to ledpgations and be_lief about the _region ofinterest: An analogy
an implicit correspondence between a physical locatiGi be drawn with value functions from the optimal control
relative to the robot and belief. There could be severijerature which is often used for state-based feedback in
ways to do so. The most simplest way was shown fpotion planning. Based on this analogy, the interpolated
the last subsection IV-A where the voronoi cells werf#nctional values can be treated as value functions which

assigned a constant belief equal to the belief of the sendf robot can use for an'intelligent navigation to reach the

in that cell (at any timeT). However, a smoother implicit 90@- In this setting,
surfacg can e_llso be f:reated by first summing a coIIectioan =arg max (7)) and vy = max (@) (7)
of Radial Basis Functions (RBFs) [33]. The weights for the FENbhd(R) FENbhd(R)
RBFs are then learned by solving a set of linear equatioa?ﬁen 4

. . . y TW.
using the set of observations as the boundary constrai
The functional value at any physical location can then

(T;) is the estimated way-point to which the
rﬁ?oot needs to move, over the next time horiz@h, T;1].
St {Fw (T1), Fw(T2),. .., 3w (T,)} be the sequence of

. R ) i ew?ray-points estimated by the robot in the slow time scale
The local estimates are made at time instants € Nin a

h sl . | A ion 3 in-Section Ill t instantsT, T>, ..., T,,. Then, if the robot moves in a
Quch' slower time sca elésle'lf ssunI]pt.lon h ¢ hectlor; vay such thaf{vy (T;), i =1,...,n} is a monotonically
t this point, we would like to clarify that the ro Otincreasing set i.eyw (T1) < v (Ts) < ..o (Th),

esti_mates the position of the I_ocal_sensors relative to its_qvman the following result will holds:
position, as opposed to estimating the absolute position.
The set of way-points, estimated by using the proposed lim ||Zw (Tp) — X2 < € (8)
regression, considers the relative. coordinate system, and e
the same coordinate system is used by the motion plannigere| e ||» is the standard Euclidean norm. Equation (8)
module to find feasible trajectories for motion of the robofollows from the fact that the measure function of agents is
bounded above and thus the monotonicity of the estimated
Let X% e X be the location of the robot at some timevalues ensure convergence. If the robot can communicate
instantT;,i € N and X% € X be the location of the with sensors having a strictly positive measure function,
target detected by the mobile sensor network. Nigtd(R) then Proposition 4.2 suggests that there exists a sequence
be the local neighborhood of the robot in which it ca®f sensors that finally leads to the region of interest.
locally-estimate. the relative positions of mobile sensors There are several popular choices for RBFs such as
within its communication range. Denotingas the relative Gaussian, inverse multi-quadric and thin spline. In general,
coordinate of a physical location measured with respect tioe degree of smoothness of the estimated implicit surface
the robot in the regiobhd(R), let 7,, i = 1,2,...,M can be controlled by changing the shape of RBFs. In this
be the relative positions of the mobile sensors with respetork, three different RBFs are explored for implicit surface
to the robot. Figure 3 shows the example of a scenamstimation. The functional form of the RBFs are listed in
for a local neighborhood of the robot with relative sensdfable | (wherer = ||Z — Z;]2) .
locations at a time instant along with the corresponding In order to determing{w;,i = 1 to M}, a multiple
estimated way-points. regression algorithm is used. Details of the regression
It is assumed that the robot can estimatgs with algorithm are being skipped for brevity. Interested read-
bounded uncertainties in sensor network by using localizers are referred to [34]. Different steps for the implicit
tion techniques. Then, the interpolation problem is formallyurface interpolation-based way-point generation are suc-
stated as follows: cinctly presented in Algorithm 2.
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Remark 4.1:The kernel-based regression algorithna feasible solution to the kinodynamic motion planning;
takes as input the position and belief of the individudinding optimality with RRT* [13] requires a solution to
mobile sensors and finds a statistical function using thiee steering function that has not been considered in the
kernel-function, where an objective function (e.g., an exurrent work.
pected error minimization) could be used to solve the Remark 4.2:Correctness The plan will always give the
system of equations. This function creates a mapping frambot a path to the sensed goal. This is argued by making
the configuration space of the robot to the belief spacepme observations. Due to the biased gossip algorithm
the functional value yields an estimate of the belief aased on the optimal control of a weighted PFSA, it is
any particular position in the configuration space of thensured that there is a gradient towards the goal region i.e.,
robot, based on the observations of the neighboring sensahgere always exists a sequence of hops from any sensor
In the presence of obstacles, the domain of the functievith a positive measure function to the sensor detecting
becomes limited to the free configuration space of the robte target. If the robot can communicate with sensors with
Xuee = X\ Xobs, Where X, s denotes the part of the positive measure function, then under the assumption of
configuration space of the robot occupied by obstacldspunded uncertainties, in the relative localization estimates
and the properties of RBF-based regression functions stfl the mobile sensors made by the robot within its com-
hold. The computational complexity of the algorithm fomunication radius, the robot can always locate a way-point
belief map construction is similar to that for solving lineawhich has a highebelief (as found by the interpolation
regression problems that involve matrix inversion. It is wefunction) than its current belief(corresponding to its current
known that the worst-case computational complexity fgshysical location). This follows from the fact that a non-
matrix inversion isO(n®) wheren is the order of the data zero measure function for-a sensor implies that there exists
matrix [35]. at least one neighbor that has a higher measure than the

sensor itself. The agent measure functiois maximized
. . for the sensor which detects the target. Therefore, if the
C. Rapidly Exploring R.andom tree (RRT)-based Opepébot moves-in. such a way such thatgritteasure function
Loop Controller Synthesis (i.e., belief’about the presence of a goal) monotonically

In the last step, the robot gets an estimate of the waipicreases, it will end up at the goal. Thus, the algorithms
point it should move to. This is used as an input to a logresented in Sections IV-A through IV-C can always search
level continuous-time controller to find a feasible trajectorg path for the robot, if there exists a sensor in the network
for the robot. A sampling-based algorithm is used to tacki@at could detect the target of interest at any time under
the dynamics of the robot. In particular, based on the curratdnsideration and the network is connected (i.e., the agent
location and the way-point found in the last step, a rapidiyieasure functiow is strictly positive for all sensors).
exploring random tree (RRT) is built in an anytime fashion. Remark 4.3:While the individual sensors participate in
to find a feasible trajectory for the robot. Specifically, théhe generalized gossip for information propagation, the
new estimate of the way-point is assigned as the new gesbot performs the kernel-based regression and motion
for tree expansion; the initial point is the currentJocatioplanning; the motion planning algorithm is dependent on
of the robot. RRT is used to synthesize coallision-free (witthe regression algorithm. These two algorithms are per-
static obstacles) trajectories and the corresponding contf@imed at two different time-scales; the robot estimates
inputs for moving the robot from. the initial point to thethe new way-point after it reaches the last way-point
target set. Since the estimate of the new way-point jgedicted by the estimator. The two-different algorithms
provided relative to the robot, .the RRT algorithm alspave different time-complexity for which the respective
operates in a relative coordinate. system in a recedipgoblem size is different. The estimation-complexity grows
horizon fashion. When the robot receives a new estimagfith the number of near sensors robot can communicate
for the way-point, a'new tree is grown for reaching the goakith, while estimating the local belief map; the complexity
This process terminates when the robot reaches the targethe motion planning algorithm grows with the number
set. The robot can, however, avoid other mobile sensors #fypoints-sampled during trajectory planning.
locally:eommunicating with them, and hence, they aren’t
considered while finding feasible trajectories to avoid extra
computation and complexity. For completeness of the paper,
RRT has been succinctly explained in Algorithm 3; it This section presents results of numerical experiments
is well known that the computation complexity of thefor an example problem of surveillance and reconnais-
RRT algorithm isO(mlog(m)), wherem is the number sance which involves a mobile sensor network and an
of sampled points. Thus, the overall complexity of thautonomous robot which needs to navigate to a target
proposed algorithm is of the polynomial order. For mordetected by the sensor network. A surveillance region of
detailed information, interested readers are referred to [18fea A is monitored by N mobile sensors, where each

This module considers the dynamics of the robot andobile sensor has a communication radiis The robot
based on the way-point estimated, it provides the sequet@s a communication radiug, and a sensing radiug, .
of control inputs that can navigate the robot to the wayrhe individual mission of each sensing agent is to detect
point. It is noted that the RRT in Algorithm 3 finds onlyany target and communicate its belief to its neighbors. The

V. RESULTS ANDINTERPRETATION
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global mission objective of the sensor network is to direshows the inherent goal-directedness in the robot’s motion
a robot with greater capabilities to the target region faynce itsniffs (i.e., belief> 0) the presence of a target in
the purpose of threat neutralization of or service deliverthe surveillance region.

For the simulation study, the parameters are chosen asFigure 6 shows the actual trajectory found by the robot
A = 5002, N = 150,R, = 50, andR, = 150. For using RRT and the surface interpolatioriat(see Figure 5)
modeling of target (see Section IIl), the value Bf, was using the Gaussian RBF. The contour plot in Figure 6 shows
chosen to be 0.9 and,; was chosen to be 20. The robothe level surfaces for the interpolation using the Gaussian
motion kinematics for the robot is given by the followingRBF. For brevity the graphic details of the remaining two

equations. RBFs are skipped in this paper. Figure 7 shows planning
in the presence of obstacles, where the domain of kernel-
& = wcos(e) (98) based regression (see Section IV-B) has been restricted to
y = wvsin(@) (9b) the free configuration spack.., of the robot, because the
b = w (9c) robot's state at any instant is constrained to li&ip... The

obstacles are again considered while building the motion

where,v € [Umin, yma andw € [—1,7]. The velocity of tree and a sampled point is added to the tree only if the
the mobile sensors in the network was chosen t6.5Ehe corresponding edge is collision free (see Algorithm 3).
mobile sensors are moving in the region with a 2-D random Figure 8 shows a scenario«of roboet navigation with
walk fashion with the constant velocity. A slower velocitythree different generalized goessip parameter§he idea
for the mobile sensors might result in a slower informatiois to show the effect of the gossip paramefeon the
propagation but, it results in a more stable local dynamigsbot navigation. It was-shown in [21] thétcontrols the
for the robot. Target is located pt00, 200] while the robot localization of information-in‘a mobile sensor network. The
is at [1,1] to begin with.e (see equation 8) for missionnetwork reaches consensus wittvery close to0, i.e., all
termination is chosen to be equal tg,. The value of¢ sensors have the sanagent measure function. On the
chosen for results shown in Figures 4 through 6.2. other hand, a-value df closer tol results in localization of

The robot starts moving towards the goal as soon as it§ormation’ around the target of interest. Under the biased
local neighborhood becomes aware of the target detectignssip setting presented here, the gradient in the network is
through gossip. Once the robot becomes aware of the d¢ill controlled byé. Foré close to0 (seef=0.02), there will
tection, it makes use of the disseminated distributed belieé a uniform gradient across the network. For higher values
about the target to find a path to the target. Figure 4 showkd (0.2 'and0.8), the information is more localized in the
the implicit surfaces learned by the robot by communicatirgense shown in Figure 8. Asis increased, there are more
with the mobile sensors in its communication range, &ariations in the belief of the sensors. As a result, the robot
different time instants in the slow time scdleusing the “will experience a steep gradient in the belief directed to the
inverse multiquadric RBF. It gives the estimated correegion of interest in the local neighborhood as compared to
spondence between a physical location and the belief @eas further away from it (see the plots:gf vs T for
awareness) about the target based on the:measure functiifierentd in Figure 8). It is seen that the steepest gradient
of the mobile sensors in the robot’s neighborhood. The ndxt found for § = 0.8 followed by # = 0.2. But, at the
way-point is then estimated by finding the. maxima for theame time, information is more localized with increasthg
implicit surface. The robot then-moves_.to the estimate@otice the slow increase iny for = 0.8 and0.2 before
way-point by following a trajectory found by sampling fromthe sharp increase). The existence of a gradient is, however,
the environment in an anytime fashion. Communication iadependent of the values ¢f it only controls nature of
re-established with neighboring mobile sensors after tiige gradient. The robot should be able to navigate to the
robot reaches the estimated way-point. These plots togetgeal V6 € (0,1). It is noted that the results in Figure 8
show the goal-directed navigation of the robot using theorrespond to the Inverse Multiquadric RBF.
distributed information in 'the slow time scéle Figure 9 shows the effect of bounded uncertainty in the

Figure 5(a)/shows the monotonic increment in the belisknsor location estimates on the robot navigation. In this ex-
of the<estimated way-points during the navigation to themple, the x- and y-coordinate of the sensor locations w.r.t.
unknown goal..It can be seen in Figure 5(a) that as sotre robot are modeled as independent Gaussian random
as the robot becomes aware of a sensed target (heliefvariables with the mean as the actual location and standard
0), it is able to move in such a fashion that its awarenedsviation d. Hence, in other words, the robot is able to
about the presence of the target monotonically increadesalize the sensors within a regial (d = 10 for the ex-
and finally converges to its maximum value as it reach@snple shown), with high confidence. With this uncertainty
the goal. The belief of the way-points could also be used sensor location estimates, the Maximum Likely (ML)
as a measure for degree of completion of the missiopaths are obtained for the robot to study its convergence
convergence of the belief to its maximum value suggedtehavior. To obtain the ML path estimate, a Monte-Carlo
mission completion. Figure 5(b) shows the relative changémulation is done where while estimating a way-point
in robot’s position w.r.t. the goal in the slow time scdle for the robot, the neighboring sensor locatiofis,where
It shows a monotonic convergence of the robot’'s position= 1,2, ..., M are sampled from the assumed distribution.
to the goal under the proposed framework. Figure 5(b) aldoway-point is then estimated using the sampled locations.
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This process is repeatéd times to obtain an approximate 3) Identification of explicit relationships between net-

distribution for the way-points and a ML estimate of the
way-point is obtained from the distribution. Results for an

work topology parameters and errors in robot motion
control.

example § = 0.8, N = 1000) are shown in Figure 9, 4) Use of closed-loop control for motion planning of the

which show convergence of the ML paths, with steady-state
deviation from the paths obtained with perfect information
about the sensor location estimates.

robot as open-loop planning and then online tracking
of trajectories might be expensive and inefficient
especially in GPS denied environments.

5) Experimental validation of the algorithm in labora-

tory settings.

VI. SUMMARY, CONCLUSIONS AND FUTURE WORK 6) While the motion planning module considers pres-

A framework for hierarchical planning for reactive nav-
igation of autonomous robots is presented in this paper,
where a mobile sensor network serves the dual-purpose of:
() information exchange among the mobile sensors, and
(i) feedback control of robot motion to find feasible paths
to follow. Specifically, a robot makes use of the collective
intelligence of the distributed mobile sensor network to
localize the goal by sequentially estimating the way-points
converging to the goal point. Making use of a controlled
gossip algorithm and sequential estimation of the way-
points locally, it is shown that the robot is capable of finding(1]
a path to the goal point. However, efficacy of the proposed
path planning algorithm is contingent upon the accuracy
of localization techniques that are executed over the senspi
network.

The work reported in this paper is different from those[g]
presented in current literature [25] in the sense that notall
sensors in the network are required to detect the target. Sutt
requirements of long-range sensing may become unrealistic
in real-life scenarios such as those in the undersea envi-
ronment. In the present formulation, an awareness abol#
the presence of a local target is developed via the gossip
algorithm and this information is fed back/to the robot[s
controller to find a path. The collective intelligence of the
sensor network is used to generate a sequence of way-
points, which finally converges to the sensed location o
the region of interest. A sampling-based algorithm is used
to tackle the dynamics of the robot at the control level &
Under the prevalent conditions of limited sensing range and
communication capabilities, the robot recursively estimates
the way-points, based on the belief of its neighbors; and thi
process is repeated until the-robot reaches a close vicini@
of the sensed region of interest.

This paper presentstinitial results on use of unstructur %]
data for source-seeking in large sensor networks, where
the network..is not strongly connected. While there are
numerous.research directions for path planning with dis-
tributed information, the following topics are recommende@
for future research.

1) Extension of the path planning algorithm in the;y
presence of multiple targets and for multiple regions
of interest as well as for large-scale high-dimensional
environments. [13]

2) Quantization of error bounds on navigation of the
robot due to imperfections of target localization b
the sensor network and relative localization of mobil
Sensors.

14]

10

ence of obstacles during synthesis of trajectories,
modeling the effects of obstacles in.communication
and sensing would require more detailed analysis
with more accurate sensing and communication mod-
els. Analysis of the algorithm under such environ-
ments with more detailed models is a. topic of future
research.
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Algorithm 1: Belief updating strategy for mobile sen

Sars

1. while true do

2:
3:
4:

© ® NG

10:
11:
12:
13:
14:

15:

for all sensors ‘i’ in the networlkdo
if Nbhd(i) # 0 then
d; = CARD(Nbhd(1))
{Begin Infinite Asynchronous logp
{Query(9),}
if v;(0)]- <v;(0)|, then
Wii|r = Wil + I

ILj|- =0
end if
if Vj((9>|-,— > 1/1(9)|7— & Hij|-,— =0 then
|- = 1/d;
| = | — 1/d;
end if
end if
vi(0)r = (1—0) Zje{i}Uthd(i) ILij 1705 (0)]
+0x']7
end for

16: end while

12



Downloaded by [Soumik Sarkar] at 08:58 28 November 2015

Algorithm 2: Navigation of the Robot

1: while || X — X%||; >e¢ do
2 Solve§(i) = L, wig(||7 — i)
using boundary constraintsz;, v; }, ; € Nbhd(

3:  Useg(Z) to estimatery = arg maxgzenpna(r) S (4

andvy = MaXzcNbhd(R) %(i’)
4  RRT(XE K, At 7w)

{For the function RRT, see Algorithm}3
5: end while

= X
~—
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rithm 3: Rapidly Exploring Random Tree (RRT)

Algo
1
2:

o gk w

10:
11:
12:
13:
14:
15:
16:
17:

Input :(z;, K, At, )
Output: TreeG = (V, E) with a path P frome;;

Tfinal

V(O) = Tinit

E0)=0
: for k=1to Kdo

Zrana < RandConf ()
{Pick a point randomly in the configuration s
of the robot
Znear < NearestVertex(Xrang, G)
{Calculate the nearest vertex of the tree
to xrand}
uy : SelectInput (Xrand, Xnear)
{select the input that takes the robot closest
'rrand}
Tney < NewState (Xpear, Uk, At)
if CollisionFree(Xpear, Xnew) then
V—VU2Zgew
E—~FEU (xneara xnew)
end if
end for
Tfinal near < NearestVertex(Xeina,G)
Retrace a path P fromsina1 near t0 Zinix OVer G.
return P

pace

to
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Environment

Receding Horizon Control

Fig. 1. Receding-horizon path planning on a distribute

Ox
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Fig. 2. Voronoi Partitioning of the network: A Frozen network in the
slow time scaler showing the Voronoi partitioning according to the
mobile sensor location. In this particular setting, the individual cells of
the partition are assigned the belief of the corresponding sensor and in
a sense, is the simplest interpolation of the belief map. The figure also
shows the sequence of cells that could be traversed, based on the gradient
of the spatial belief, to reach the sensed target cell (shown as a red circle).
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Fig. 3. Typical scenario for sensor localization: Relative locations of
sensors are used by the robot to estimate a local implicit correspondence
between a physical location in its neighborhood and the measure function
v.
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300

| D
Slow Ti.

e ScaleT
Fig. 4. Sequential estimation of way-points: Four plates show the sequential way-points estimated based on the communication of the robot with the

neighboring sensors using the Inverse Multiquadric'RBF. The robot moves to the way-point following the path found by RRT and then estimates the
next way-point until it reaches theneighborhood/of the target.
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Fig. 5. Performance of way-point estimation on the slow time scale: Plate (a) shows the monotonic improvement in belief of the estimated way-points
vy in the slow time scale). It is also considered as the degree of completion of the mission. Plate (b) shows the monotonic decrease in the
Euclidean norm between the robot’s location and the goal, measured in the slow tim&'scale
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Fig. 6. Path found between two consecutive way-points: Rapidly-
exploring random tree (RRT) (shown in black) and the dynamic model
in Eq. (9) have been used. The contour shows the surface interpolated
by using the Gaussian RBF. This is the actual trajectory followed by the
robot between the time instariis= 5 and T = 6 in Figure 5.
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Fig. 7. Path found between two consecutive way-points in the presence
of obstacles: Rapidly-exploring random tree (RRT) (shown in black) and
the dynamic model in Eq. (9) have been used. The contour shows the
surface interpolated by using the Gaussian RBF. The big circles denote
the obstacles. The trajectory is shown in black.
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Fig. 8. Effect of parametdt on performance of the distributed algorithm:
Increasing the value of localizes the information of target detection in

a small neighborhood around the target location resulting in high beliefs
around the region of interest and comparatively smaller values away from
the region.
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TABLE |
THE RADIAL BASIS FUNCTIONS USED FORINTERPOLATION

Function Name Functionaldfm
Inverse Multiquadric 1
q v r2+a§
Gaussian exp (—%;)
Thin Plate Spline r2 . logr
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