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Abstract—This paper proposes a framework for reactive
goal-directed navigation without global positioning facilities
in unknown dynamic environments. A mobile sensor network
is used for localizing regions of interest for path planning
of an autonomous mobile robot. The underlying theory is
an extension of a generalized gossip algorithm that has been
recently developed in a language-measure-theoretic setting.
The algorithm has been used to propagate local decisions
of target detection over a mobile sensor network and thus,
it generates a belief map for the detected target over the
network. In this setting, an autonomous mobile robot may
communicate only with a few mobile sensing nodes in its own
neighborhood and localize itself relative to the communicating
nodes with bounded uncertainties. The robot makes use of
the knowledge based on thebelief of the mobile sensors
to generate a sequence of way-points, leading to a possible
goal. The estimated way-points are used by a sampling-based
motion planning algorithm to generate feasible trajectories
for the robot. The proposed concept has been validated by
numerical simulation on a mobile sensor network test-bed
and a Dubin’s car-like robot.

I. M OTIVATION AND INTRODUCTION

Autonomous robots are becoming ubiquitous and are
envisaged to play an increasingly important role in both
civilian and military applications such as intelligence,
surveillance & reconnaissance (ISR), weather monitoring,
fighting wildfire, health care, and logistics, to name a few.
As such, the ability of robots to make complex decisions
is becoming an increasingly commonplace requirement for
such missions. Autonomous robots operating in unknown

FThis work has been supported in part by the U.S. Office of Naval
Research under Grant No. N00014-14-1-0545, and by the U.S. Army
Research Laboratory under Cooperative Agreement No. W911NF-14-
2-0068. Any opinions, findings and conclusions or recommendations
expressed in this publication are those of the authors and do not necessarily
reflect the views of the sponsoring agencies.

and unstructured environments often have limited or un-
reliable long-range communication and GPS capabilities.
Examples include a team of mobile autonomous robots for
long endurance military applications (e.g., mine-hunting)
and non-military applications (e.g., weather monitoring).
These missions are often limited due to unavailability
of global information and imposition of communication
constraints resulting from energy requirements and envi-
ronmental uncertainties. However, with the recent advances
in low-complexity signal processing algorithms, sensing
systems can locally detect regions of interest with high
accuracy, which allow information extraction at the sensor
site for significant reduction of the communication over-
head. Even though reduction of communication overhead
improves the life of such autonomous sensing networks, it
limits the network performance and capacity. For example,
a search and rescue operation in an urban scenario in an
apartment complex may require sequential collaboration
between the ‘search agents’ and the ‘rescue agents’, where
the rescue operation is usually triggered based on the real-
time information collected in a network environment by the
independent ‘search agents’. The efficacy of such missions
depends on how quickly the network can react to the sensed
targets and guide a ‘rescue agent’ to the target of interest
under the constraints of limited communication and global
positioning. [Note: The termagent has been used for a
mobile sensor in this paper and it should not be confused
with an autonomous robot that is navigated to the target
location.]

Recently much work has been reported on source seeking
in sensor fields [1]–[9], where the objective is to identify
the possible location of the source as the minimal point
of an unknown signal field by using a stochastic gradient
descent algorithm. Authors in [7] [4] [3] [9] present
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a multi-agent coordination framework where the mobile
agents together estimate the peaks of sensor field and
all the agents collectively move to the peak of the field
following the estimated gradient of the field. However, the
agents have to communicate their sensor measurements and
an artificial potential function is required to estimate the
gradient of the sensor field. Also, in [3], the agents need
to maintain a particular formation for accurate estimation of
the gradient which constrains the motion of the individual
agents who might have complicated dynamics. Authors in
[1] [2] [5] [6] present algorithms for estimating the source
location by using a stochastic gradient descent algorithm
that takes into account the robot dynamics. In contrast, the
focus of the present work is to use a mobile sensor network
for guiding an autonomous robot to a source of interest in
environments, where the knowledge of global positioning
is not always feasible.

Several attempts have been made in literature to make
use of static sensor networks to guide a robot. Li et al. [10]
present the use of sensor networks as adaptive repositories
of information for guiding an autonomous robot by creating
a map to dangerous areas (e.g., obstacles, or populated
areas). Deshpande et al. [11] use a pseudo-gradient, calcu-
lated based on sensor readings, for localization and directed
navigation of an autonomous robot in unknown environ-
ments. However, a sensor network with staticsearch agents
has been used and the underlying algorithm cannot be easily
extended for navigation with a mobile sensor network that
may have a potential advantage over static counterparts in
terms of spatial coverage and time-criticality [12]. It is
noted that gradient-based algorithms may not be operable
in unstructured environments if the sensing model is not
sufficiently accurate. Furthermore, global sensing of targets
is not usually applicable for surveillance in large (e.g.,
littoral underwater) sensor networks, because exchange
of global information could be severely restricted due to
communication constraints for limited energy availability.
Another set of relevant literature is from motion planning
in the presence of various uncertainties. Motion planning
has a very rich literature and the current state-of-the-art
algorithms are sampling-based and can guarantee optimal-
ity [13]. Some work in sampling-based motion planning
literature for planning with uncertainties could be found
in [14]–[17]. However, the main idea in these papers is
to compensate for state estimation error, when the goal
position is known along the trajectories that are generated
by using sampling-based algorithms.

The current paper proposes a framework, where a mobile
sensor network is used to generate way-points for an
autonomous robot based on the sensed regions of interest,
which are exploited by sampling-based motion planning
(e.g., rapidly-exploring random tree (RRT) [18]) to generate
feasible trajectories for the robot; a preliminary version
of this work has been presented earlier as a conference
paper [19]. A different perspective is presented for solving
source seeking problems in sensor fields where, based on
their limited detection capabilities (i.e., only a small frac-
tion of the sensor population actually detects a target due

to their physical proximity to the target) and collaborative
information exchange, low-level sensors can create a belief
about a point of interest (or target). The belief map could
then be used for navigation by autonomous robots. The
pertinent problem here is navigation of an autonomous
robot, assisted by a mobile sensor network, in an unknown
and dynamic environment without a global positioning
system (GPS); the sensor network serves the two-fold
purpose of target localization and way-point generation. In
this setting, a low-level motion planning algorithm makes
use of the information provided by the sensor network to
generate feasible paths for the robot motion [18], which
is conceptually similar to emergent sensing of complex
environments by animal groups [20].

The work, reported in the current paper, is built upon
the concept of distributed decision propagation in mobile
ad-hoc sensor networks [21], where a proximity network
of sensing agents is modeled as a probabilistic finite state
automaton (PFSA) [22]; a major objective here is to assist
a search-and-rescue-type mission. An ‘agent measure func-
tion’ is defined, based on the recently reported language
measure theory [22] [23], for all agents in the network,
which signify their ‘level of awareness’ regarding a locally
sensed ‘target’ in the operational area.

While the bulk of the related work considers structured
data that are generated from a well-defined sensing model,
the underlying algorithm reported in the current paper relies
on unstructured data and makes use of the concept of
model-free source-seeking. Specifically, the ‘agent measure
function’ is generated by a mobile sensor network, which
can be used to guide an autonomous robot through an
unknown and unstructured environment [24]. The proposed
framework of sensor-network-assisted robot navigation has
the following potential advantages over those reported in
the current literature:

• There is no need to communicate the actual signals
sensed by the sensing agents. The algorithm only
requires exchange of local beliefs about the sensed
targets. This method has the potential of significantly
reducing the communication overhead and makes the
network more robust to communication flips.

• As opposed to typical source seeking scenarios, the
current setup does not require the sensing agents
to move towards the source. Apart from computa-
tional advantages, this is potentially more suited in
an adverse environment. In such a case, the network
may need to handle multiple non-collocated sources
including possibly dummy sources. Another advantage
is that the network does not need to be strongly
connected; this is particularly important in large sensor
networks used for distributed surveillance.

• No artificial potential function is required to guide
an agent to the locally detected goal; a gradient is
automatically generated by theagent measure function
which is maximized at the location of sensed target.

• The proposed approach is closely related to the general
class of model-free source seeking [25] i.e., where
no sensing model is used. Under this umbrella, the
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proposed approach doesn’t require any formation of
the sensing agents to estimate a gradient to the locally
detected target. This has the potential benefit of decou-
pling the dynamics of sensing agents as they can move
independently without any constraint on synchronizing
their movement with others.

II. D ECISION PROPAGATION IN SENSORNETWORKS

This section introduces the mathematical preliminaries as
needed for analysis of distributed decision propagation in
sensor networks. It briefly describes the salient concepts
of the real measure [22] [23] of probabilistic regular
languages generated by a PFSA [22], followed by those
of a generalized gossip algorithm [21].

A. Language-Measure Theory

This subsection succinctly presents the theory of lan-
guage measure, restricted to irreducible stationary Markov
chains (i.e., where each state can be reached from another
state in finitely many transitions). Further details are re-
ported in [22] [23].

Definition 2.1: (Real Measure of a Markov Chain) An
irreducible stationary Markov chain is denoted by the three-
tuple (Q,Π, χ), where

• Q is the set of states with cardinality|Q|,
• |Q| × |Q| is a stochastic matrixΠ (i.e, each entry is

non-negative and each row sum is equal to 1) repre-
sents the state transition functionπ : Q×Q → [0, 1]
for the Markov chain,

• χ : Q→ R is the vector-valued characteristic function
that assigns a signed real weight to each stateqi ∈ Q.

Then, a real measureνi for the stateqi is defined as

νi(θ) ,
∞∑

k=0

θ(1− θ)kΔiΠ
kχ, i = 1, 2, ∙ ∙ ∙ , |Q| (1)

whereθ ∈ (0, 1) is a user-specified scalar parameter and
Δi is the (1 × |Q|) vector [δi1, δi2 . . . δi|Q|] for which the
elementsδij are defined as

δij =

{
1 if i = j
0 otherwise

The real measure in Eq. (1) for the Markov chain is
vectorially represented as

ν(θ) = θ(I− (1− θ)Π)−1χ (2)

where the inverse is guaranteed to exist forθ ∈ (0, 1).
Remark 2.1:(Significance of States of a Markov Chain)

The set of statesQ is an abstract representation of the set
of mobile sensors (or agents) in the context of language-
measure-theoretic information management in the network.
In other words, a mobile sensor, designated as the agenti,
is represented as the stateqi ∈ Q in the setting of a Markov
chain.

Remark 2.2:(Significance of Real Measure) If the cur-
rent state of the Markov chain isqi ∈ Q, then the expected
value of the characteristic function aftern time steps in the

future is given byΔiΠ
nχ. It follows from Eq. (1) that the

measure of the stateqi represents the weighted expected
value ofχ over all time steps in future for a Markov chain
that begins in stateqi. The weight at thekth time-step is
θ(1−θ)k (see Eq. (1)); and these weights form a decreasing
geometric series whose sum equals to1. Consequently, the
measureνi(θ) is a convex combination of all the elements
of χ.

B. Generalized Gossip Policy

This subsection briefly describes the formulation of the
generalized gossip policy in the context of proximity net-
works as proposed in [21]. The proximity network [26] is a
particular formulation of time-dependent mobile-agent net-
works, inspired from social networks, where only proximal
agents communicate at any given time epoch [27].

In the present context, proximal agents exchange infor-
mation related to their beliefs regarding the environment.
After the expiry of a message lifetimeLm, agents possibly
update their beliefs based on their own observation and
messages from other agents. There are two time-scales
involved in this problem setup. In contrast to the faster
time-scale (t) of agent motion, the algorithm for updating
the agents’ beliefs runs on a (possibly) slower time-scale
(denoted byτ ). The time-scale for updating the belief is
chosen to be slower as it allows for sufficient interactions
among the agents, especially if the density of agents is
low. If the message lifetimeLm is very small, then the
network may not be able to build up over time and possibly
remains sparse. On the other hand, the network would
eventually become fully connected asLm → ∞. Thus, to
capture temporal effects in a realistic setting,Lm should be
appropriately chosen based on other network parameters. In
this setting, a time-dependent (in the slow-scaleτ ) graph
is denoted asG and a few related terms are defined as
follows.

Definition 2.2: (Adjacency Matrix [28]) The adjacency
matrixA of a graphG is defined such that its elementaij in
the ijth position is unity if the agenti communicates with
the agentj within the time period of the message life time
Lm; otherwise the matrix elementaij is zero. To eliminate
self-loops, each diagonal element of the adjacency matrix
is constrained to be zero.

Definition 2.3: (Laplacian Matrix [28]) The Laplacian
matrix (L) of a graphG is defined as:

L = D −A

where the degree matrixD is a diagonal matrix whoseith

diagonal element isdi. [Note: di is called the degree of the
nodei that may be considered as the stateqi in the Markov
setting (see Definition 2.1).]

Definition 2.4: (Interaction Matrix [28]) The agent in-
teraction matrix (which is a restricted version of the state
transition matrix in Definition 2.1) is defined as:

Π = I − βL

where the scalar parameterβ is chosen such thatΠ be-
comes a stochastic matrix and its second largest eigenvalue
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satisfies the condition|λ2(Π)| < 1. In other words,Π is a
primitive (i.e., acyclic and irreducible) stochastic matrix.

In the context of proximity networks, the requirement
of keeping Π as a stochastic matrix in Definition 2.4
is achieved by settingβ = 1/(d̄ + 1), where d̄ is a
(positive integer) parameter that is pre-determined off-line.
The physical significance of the parameterd̄ is explained
below.

In order to maintain the stochastic matrix properties of
Π for on-line operation, an agent ignores communications
with other agents that are beyond thed̄ time steps within
the message lifetimeLm. However, the expected degree
distribution of the network can be obtained off-line at the
design stage (see [21] for details); therefore,d̄ is chosen to
be large enough such that the probability that the degree
di > d̄ for any nodei (i.e., stateqi in the Markov setting
in Definition 2.1) is very low, i.e.,Pr(di > d̄) ≤ ε ∀i (for
simulation exercises reported in this paper,ε has been taken
to be 0.001). Note that, in this case, the stochastic matrix
Π is further restricted to be symmetric (i.e., also doubly
stochastic) due to the above construction procedure.

The generalized gossip strategy involves two system
variables associated with each agent (i.e., each state in the
Markov setting), namely thestate characteristic vectorχ
and theagent measure vectorν, where each element of
the these two vectors is restricted as:νi ∈ [0, 1] andχi ∈
{0, 1}. The restrictionνi ∈ [0, 1] signifies the level of
awareness or belief of the agenti regarding the presence
of a target in the surveillance region. The restriction
χi ∈ {0, 1} signifies whether the agenti has detected a
target or not (i.e.,1 for detection,0 for no detection).

Based on current values ofχ andν of the agent popula-
tion, the measures are updated for all agents synchronously
after the expiry of one message lifetimeLm. It is noted that,
based on the discussion up to this point,Π, χ and ν are
functions of the slow time-scaleτ . In the above setting, a
decentralized strategy of updating the measureνi(θ)|τ in
the mobile-agent population at a (slow time scale) epoch
τ is introduced below in terms of a user-defined control
parameterθ ∈ (0, 1).

νi(θ)|τ+1 = (1−θ)
∑

j∈{i}∪Nbhd(i)

Πij |τ νj(θ)|τ +θχi|τ (3)

whereNbhd(i) denotes the set of agents in the neighbor-
hood of agenti (or stateqi). that is, the agents (states) that
communicate with the agenti (stateqi) during the time
span betweenτ andτ +1. It is noted that while computing
the future (awareness or belief) measure of an agent, the
parameterθ controls the trade-off between the effects of
current self-observation and current measures of all agents.
In the vector notation, the dynamics can be expressed as:

ν(θ)|τ+1 = (1− θ)Π|τν(θ)|τ + θχ|τ (4)

Thus, this policy is simply a gossip algorithm with
varying inputχ and varying network topology represented
by Π|τ . The memory of a past input fades as a function
of the parameterθ. Due to this notion, the above policy

is called a generalized gossip algorithmwith θ as the
generalizing parameter.

Remark 2.3:The agent measure function(νi) of the
agent i (state qi) serves as the degree of awareness or
belief of an agent regarding a locally sensed target. In
the following sections, the agent measure function is also
referred to as belief.

III. PROBLEM FORMULATION

This section formulates the problem of path planning for
an autonomous robot in the absence of global positioning
facilities to find routes to a locally detected target by a
distributed sensor network.

Assumptions:For simplicity of exposition, certain sim-
plifying assumptions are made to unambiguously present
the efficacy of the proposed framework for reactive navi-
gation in the absence of global positioning systems. Major
assumptions in the problem formulation are outlined below

1) An autonomous robot can locally estimate relative
positions of mobile sensors using state-of-art posi-
tioning techniques in sensor networks [29].

2) Mobile sensors and the autonomous robot are locally
able to coordinate for collision avoidance.

3) Communication of the robot with other mobile sen-
sors is considered in the time scaleT >> τ .

Assumption 1 enables the autonomous robot to locate itself
(with bounded uncertainty) with respect to its proximal
sensors (which is a small fraction of the population) that
are communicating their beliefs. Assumption 2 is used so
that the idea of the paper could be unambiguously presented
without focusing on the actual collision avoidance strategies
of moving sensors. Assumption 3 is used to ensure that
the robot always communicates with its local network at
instants when every sensor in its local network has a
steady belief about the target or has steady agent measure.
Also, the robot doesn’t need to communicate while moving
between way-points.

Mobile Sensor Network:Under these assumptions, let
a set of mobile sensorsQ = {q1, q2, . . . , qn} perform
surveillance in a regionX, where the task is to detect targets
in the given region. For simplicity, the target (i.e., the goal
for the autonomous robot) is modeled as a local region of
interest in the surveillance area such that only a few sensors
that come within that region of interest have a non-zero
probability of detecting it. For clarity, a simplistic model
for target detection is followed which is described next.
A region of interest, sayXG ⊂ X, is modeled as a map
for probability of detection of a target. Let the probability
of detection of a target be denoted byPD, which attains
the maximum at the center of the target’s physical location
and decays to zero linearly with distance from the center in
a radially symmetric manner. A region of interest is then,
characterized by the following parameters:

• The maximum probability of detection of the target,
PDmax

• The effective radius (rhs) of the circular region within
which PD > 0.5, i.e., agents further than a distance
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of rhs from the center of the hot-spot have less than
0.5 probability of detecting the threat.

In general, sensor networks are designed for a constant
false alarm rate (CFAR), where each sensor is capable of
detecting a target within its own radiusrhs with probability
PD. (Details are available in [30].) For CFAR detection
models, ak−detection strategy [31] is followed to achieve
the desired level of search performance in the surveillance
region [30]. In this paper, the sensor network is assumed to
be capable of handling false alarms so that a desired search
performance is maintained in the surveillance region.

Autonomous Robot:Consider a single robot in an arbi-
trary surveillance environment where the dynamics of the
robot is governed by the following equations.

ẋ = f(x,u, t) + η(x,u, t) (5a)

y = h(x) (5b)

where x is the state of the robot,u is the local control
input, y is the output. The functionsf andh describe the
known mathematical abstraction of the system dynamics.
The functionη indicates the physical uncertainties in the
dynamics, including modeling errors, noises and potential
physical failures. LetX andU denote the constraint sets
for the state and the input, respectively, i.e.,x(t) ∈ X and
u(t) ∈ U must hold, whereX is the surveillance region,
which means the robot is always constrained to stay in the
surveillance region. Further details of the input constraint
setU are provided in Section V. As described earlier, the
distributed decision propagation algorithm proposed in [21]
is adopted here for dissemination of the knowledge of
sensed target throughout the mobile sensor network.

The primary contribution of the current work is de-
velopment of a distributed navigation algorithm that uses
the disseminated information to help guide an autonomous
robot to the detected region of interest (i.e., goal for the
autonomous robot). Hence, the autonomous robot only
relies on the collective intelligence of the mobile sensor
network and does not use any global positioning system.
Note that none of the sensing agents is actually aware of
any sensed location of the target and hence cannot directly
provide such information to the robot. Furthermore, the
robot has only a finite sensing and communication radius.
Under this constraint, the robot can only be aware of the
beliefs of its neighboring mobile sensors. The problem of
reactive navigation to the global target is then reduced to the
recursive estimation of a sequence of way-points which the
robot can follow to finally reach the goal. More formally,
reachability task is considered, where the robot has to reach
a goal setXG ⊂ X by estimating the location ofXG using
the belief of a mobile sensor network deployed inX.

The work, reported in this paper assumes no knowledge
of global positioning coordinates of the sensors and the
targets; in other words, the sensors (that detect the targets)
have no knowledge of their own global positions as well
as those of the targets. Furthermore, not all the sensors
receive signals from the targets; only a few sensors in the
local neighborhood of the target can sense and hence detect

the target. Thus, target detection is a local event in contrast
to other reported work where target detection is a global
event (i.e., all sensors can sense the targets and a path is
found based on the gradient of the sensed signal). This local
target detection problem requires creation of an artificial
gradient towards the sensed target which can then be used
to calculate the sequence of waypoints to reach the region
of the detected target. This is more suitable and appropriate
for networks used in unstructured environments, where the
assumption of a reliable sensing model is generally not
applicable.

IV. PROPOSEDAPPROACH

In the current settings as explained in Section III, not all
the sensors detect the target. Hence, an artificialawareness
about the presence of a target is created by using gossip
among the sensors. To ensure goal-directed behavior of the
artificial awarenesstowards the sensed target, the gossip
algorithm presented in this section ensures a gradient in
the belief function of sensors towards the sensed target. The
problem of target detection is GPS-denied in the sense that
the sensing system is unaware of the global positions or the
sensor(s) and the target. The idea is to use the sensors as dy-
namic landmarks and identify a sequence of such landmarks
so that a path is found to the sensor that detects the target.
This is an event-triggered phenomenon and depends on the
ability of the network to detect a target. Subsequent sections
show that the proposed framework allows such intelligent
behavior under appropriate assumptions.

This section first presents an algorithm for decentral-
ized belief map generation in a mobile sensor network to
propagate anawarenessabout the locally sensed target in
the distributed sensor network. The algorithm is presented
under the generalized gossip framework (briefly described
in Section II-B) which guarantees a unique maxima and
a gradient towards the same in the network. The key idea
here is that if the autonomous robot moves in a way so that
its belief (based on the belief of its nearby mobile sensors
) monotonically improves (or increases) with movement,
then under the condition that the belief of the network
is maximized at the physical location of the goal, the
robot will eventually reach the goal. Under the constraints
of limited communication and sensing horizon, the robot
has access to beliefs of only its proximal mobile sensors.
However, due to the presence of a gradient towards the
goal, the robot is able to estimate a way-point where
the belief is greater than its current belief. To this end,
the robot can learn an implicit correspondence between a
geographical location and the belief in the network by using
an interpolation scheme (e.g., neural nets etc.). Note that
the network at any time instant is sparse when compared
to the actual physical space. The interpolation algorithm is
trained based on the set of beliefs corresponding to local
mobile sensors (i.e., within the communication radius) of
the robot. The maximum of the implicit surface is the way-
point the robot moves to, over a certain time horizon till the
next communication with the network is established. This
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is achieved by following a feasible trajectory obtained by
sampling from the local configuration space using rapidly
exploring random trees (RRTs). These steps are recursively
followed till the robot reaches the sensed region of interest
i.e., the goal. The idea is similar to the commonly studied
receding horizon motion planning framework, where a
reactive plan is followed by the robot over a finite time
horizon as a reaction to real-time information. The goal
is to design a hierarchical distributed data-driven motion
planing framework for navigation to unknown areas of
interest, in a receding horizon fashion and the challenge is
to relax the computational and communication requirements
by intelligently aggregating information of a mobile sensor
network while ensuring correct behavior. Figure 1 shows
the flowchart of the framework. It is noted that the sensors
use the generalized gossip framework earlier proposed
in [21] for information propagation which is explained in
the next section.

A. Decentralized Belief Map Generation

Based on the generalized gossip framework, this sub-
section presents an algorithm which creates a belief map
in the mobile sensor network with a bias towards the
sensed region of interest, i.e., the goal for the autonomous
robot. The idea is based on optimal control control theory
of a Probabilistic Finite State Automata [23] [32]. Under
this umbrella, the belief of every sensor is maximized by
averaging only over the set of its neighbors that have belief
greater than the sensor. In the original gossip strategy (see
equation 3), a sensing agent is influenced by all other
agents in its neighborhood (or adjacency) set. However,
to maximize its measure, an agent can follow a strategy
where it is only influenced by agents that have a higher
belief than its own belief (i.e, a higher measure than its
own measure). Therefore, every agent ignores the influence
of the neighboring agents that have a lower belief about
the target, thereby maximizing its own belief about the
target by averaging over the better informed neighbors.
This strategy is succinctly presented in Algorithm 1. The
key point is that the elements of the interaction matrix
corresponding to agents with a lower measure are made
zero (i.e., they do not have any influence on an agent with
a higher belief). However, to keep the interaction matrix
stochastic, those elements are adjusted as a self-loop to the
agent (see steps 5 through 11 in Algorithm 1). Based on the
results in [23] [32], this strategy ensures a maximum in the
belief network at the goal region for the autonomous agent
and at the same time, it creates a gradient towards the same.
This biased approach ensures that a mobile sensor which
is closer to the sensed region of interest will have a higher
belief as compared to those further away from it.

To analyze the belief map generation with movement of
the sensors, a frozen network is assumed at every instantτ
of the slow time scale; then, the measure for every sensor
via Algorithm 1 is updated. All the sensors in the network
move till the next time instant (measured in the slow time
scale τ ), and the process of measure update is repeated

again. Figure 2 shows a frozen sensor network, where all
the sensors have a steady belief about the presence of the
target after it has been detected. It shows a voronoi partition
of the surveillance regionX based on the sensor locations.
It shows a gradient towards the locally detected target as
obtained over the network by the biased gossip. This shows
the correctness of the gossip in the network to create a goal
directedness. Detailed proofs of optimality and convergence
of distributed algorithm for language measure computation
could be found in [32] (see Proposition 2 through 5).
However, for the completeness of the paper and clarity of
presentation, The details are as follows.

Let Q = {q1, q2, . . . , qn} be the set of mobile sensors.
Consider a frozen network of sensors at any instantτ . Let
us consider the sensor which has detected the target to be
denoted asqTG. It is assumed that, at any instantτ , there
is only one sensor which has detected the target.

Proposition 4.1:There exists a sequence of hops from
any sensorqi ∈ Q to qTG if νqi

> 0.
Proof: Consider the fact thatχqTG = 1 andχqj = 0, ∀

qj ∈ Q\qTG. Then, it is obvious that there exists a directed
path from sensorqi to the sensor which has detected the
target i.e.,qTG (constituted by intermediate sensors) else
νqi

would be identically equal to0. Existence of paths from
every sensor of the network to the one that detects the target
implies a connected network. That is, ifνi > 0 ∀ qi ∈ Q,
then the network is implied to beconnected.

Proposition 4.2:There exists a sequence of hopsqi →
qj → ∙ ∙ ∙ → qTG, where every sensor in the sequence is
a neighbor of the preceding member in the sequence such
that νqi ≤ νqj ≤ ∙ ∙ ∙ ≤ νqTG iff νqi > 0.

Proof: Algorithm 1 implies that ifνqi > 0, there exists
at least oneqj ∈ Nbhd(qi) such thatΠij 6= 0 andνqj ≥ νqi .
This follows from the fact thatΠij > 0 iff νqj ≥ νqi

(see Algorithm 1). The same argument is valid forqj . And
hence, ifνqi > 0 ∃ a sequence of hopsqi → qj → ∙ ∙ ∙ →
qTG such thatνqi ≤ νqj ≤ ∙ ∙ ∙ ≤ νqTG. The converse is
straightforward as existence of a directed path fromqTG

suggestsνqi > 0.
The above two propositions show that, for a connected

sensor network where only one of the sensors has detected
the region of interest or the target, there exists a sequence
of sensors from every sensor to the one that has detected
the target. The sequence could be found by finding the
monotonic sequence of measure function for the sensors
which is maximized at the sensor which detects the target.
Thus, Algorithm 1 ensures a direction towards the region
of the interest through a decentralized gossip. Hence, as
long as there is a sensor in the network detecting the
target of interest, algorithm 1 will ensure a gradient in
the measure function of the sensors towards the detected
target (or the sensor detecting the target). In the case of
more than one sensor detecting a target, there would not
be a unique maxima in the belief map for the network;
however, Propositions 4.1 and 4.2 still ensure paths to one
of the sensors detecting the target from every sensor in the
network. Figure 2 shows a frozen network where the target
is located at[400, 200] (shown as a red circle) along with
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the voronoi partition of the surveillance region based on the
sensor locations. Also shown are a few sequences of cells
that could be followed based on a simple rule of moving to
the best neighboring cell to reach the target-detecting sensor
from different corners of the region. The best neighbor is
the one with the maximum value ofν. The asymptotic
runtime complexity of Algorithm 1 is bounded byO(Nk2)
whereN is the total number of sensors andk is the number
of nearest neighbors for a sensor (see Proposition6 in [32]).

B. Implicit Surface based Interpolation for Navigation

The robot uses the directed belief generated by the
mobile sensor network to recursively estimate way-points;
the way-points finally converge to the goal region (i.e., the
region of interest sensed by the mobile sensor network).
Under the assumption that the robot can localize mobile
sensors in its neighborhood [29], beliefs of the mobile
sensors in the robot’s neighborhood are used to learn
an implicit correspondence between a physical location
relative to the robot and belief. There could be several
ways to do so. The most simplest way was shown in
the last subsection IV-A where the voronoi cells were
assigned a constant belief equal to the belief of the sensor
in that cell (at any timeT). However, a smoother implicit
surface can also be created by first summing a collection
of Radial Basis Functions (RBFs) [33]. The weights for the
RBFs are then learned by solving a set of linear equations
using the set of observations as the boundary constraints.
The functional value at any physical location can then be
obtained using the functional form learned in the last step.
The local estimates are made at time instantsTi, i ∈ N in a
much slower time scale (see Assumption 3 in Section III).
At this point, we would like to clarify that the robot
estimates the position of the local sensors relative to its own
position, as opposed to estimating the absolute position.
The set of way-points, estimated by using the proposed
regression, considers the relative coordinate system, and
the same coordinate system is used by the motion planning
module to find feasible trajectories for motion of the robot.

Let XR ∈ X be the location of the robot at some time
instant Ti, i ∈ N and XG ∈ X be the location of the
target detected by the mobile sensor network. LetNbhd(R)
be the local neighborhood of the robot in which it can
locally estimate the relative positions of mobile sensors
within its communication range. Denoting̃x as the relative
coordinate of a physical location measured with respect to
the robot in the regionNbhd(R), let x̃i, i = 1, 2, . . . ,M
be the relative positions of the mobile sensors with respect
to the robot. Figure 3 shows the example of a scenario
for a local neighborhood of the robot with relative sensor
locations at a time instant along with the corresponding
estimated way-points.

It is assumed that the robot can estimatex̃i’s with
bounded uncertainties in sensor network by using localiza-
tion techniques. Then, the interpolation problem is formally
stated as follows:

Given the approximate locations of the neighbors of the
robot, {x̃i ∈ R2, i = 1, ∙ ∙ ∙ ,M} and their corresponding
beliefs{νi ∈ R}, a functionF : R2 → R is estimated, such
that it satisfies the boundary constraintsF(x̃i) = νi. Then,
F(x̃) has the following form

F(x̃) =
M∑

i=1

wiφ(||x̃− x̃i||) (6)

where φ(•) is a radial basis function (RBF) andwi’s
are the weights assigned to the individual RBF’s that are
centered at the respectivẽxi’s. By making use of Stone-
Weierstrass theorem that states “any continuous function
with a compact support can be approximated with arbitrary
accuracy by a polynomial,” Eq. (6) becomes valid if a
sufficiently large number of RBFs (i.e., sufficiently large
positive integerM ) is selected [33]. The functionF repre-
sents an implicit correspondence between the local physical
locations and belief about the region of interest. An analogy
can be drawn with value functions from the optimal control
literature which is often used for state-based feedback in
motion planning. Based on this analogy, the interpolated
functional values can be treated as value functions which
the robot can use for an intelligent navigation to reach the
goal. In this setting,

x̃W = arg max
x̃∈Nbhd(R)

F(x̃) and νW = max
x̃∈Nbhd(R)

F(x̃) (7)

Then, x̃W (Ti) is the estimated way-point to which the
robot needs to move, over the next time horizon(Ti, Ti+1].
Let {x̃W (T1), x̃W (T2), . . . , x̃W (Tn)} be the sequence of
way-points estimated by the robot in the slow time scale
at instantsT1, T2, . . . , Tn. Then, if the robot moves in a
way such that{νW (Ti), i = 1, . . . , n} is a monotonically
increasing set i.e.,νW (T1) ≤ νW (T2) ≤ . . . , νW (Tn),
then the following result will holds:

lim
n→∞

||x̃W (Tn)−XG||2 < ε (8)

where‖ • ‖2 is the standard Euclidean norm. Equation (8)
follows from the fact that the measure function of agents is
bounded above and thus the monotonicity of the estimated
values ensure convergence. If the robot can communicate
with sensors having a strictly positive measure function,
then Proposition 4.2 suggests that there exists a sequence
of sensors that finally leads to the region of interest.

There are several popular choices for RBFs such as
Gaussian, inverse multi-quadric and thin spline. In general,
the degree of smoothness of the estimated implicit surface
can be controlled by changing the shape of RBFs. In this
work, three different RBFs are explored for implicit surface
estimation. The functional form of the RBFs are listed in
Table I (wherer = ||x̃− x̃i||2) .

In order to determine{wi, i = 1 to M}, a multiple
regression algorithm is used. Details of the regression
algorithm are being skipped for brevity. Interested read-
ers are referred to [34]. Different steps for the implicit
surface interpolation-based way-point generation are suc-
cinctly presented in Algorithm 2.
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Remark 4.1:The kernel-based regression algorithm
takes as input the position and belief of the individual
mobile sensors and finds a statistical function using the
kernel-function, where an objective function (e.g., an ex-
pected error minimization) could be used to solve the
system of equations. This function creates a mapping from
the configuration space of the robot to the belief space;
the functional value yields an estimate of the belief at
any particular position in the configuration space of the
robot, based on the observations of the neighboring sensors.
In the presence of obstacles, the domain of the function
becomes limited to the free configuration space of the robot,
Xfree = X \ Xobs, whereXobs denotes the part of the
configuration space of the robot occupied by obstacles,
and the properties of RBF-based regression functions still
hold. The computational complexity of the algorithm for
belief map construction is similar to that for solving linear
regression problems that involve matrix inversion. It is well
known that the worst-case computational complexity for
matrix inversion isO(n3) wheren is the order of the data
matrix [35].

C. Rapidly Exploring Random tree (RRT)-based Open-
Loop Controller Synthesis

In the last step, the robot gets an estimate of the way-
point it should move to. This is used as an input to a low
level continuous-time controller to find a feasible trajectory
for the robot. A sampling-based algorithm is used to tackle
the dynamics of the robot. In particular, based on the current
location and the way-point found in the last step, a rapidly
exploring random tree (RRT) is built in an anytime fashion
to find a feasible trajectory for the robot. Specifically, the
new estimate of the way-point is assigned as the new goal
for tree expansion; the initial point is the current location
of the robot. RRT is used to synthesize collision-free (with
static obstacles) trajectories and the corresponding control
inputs for moving the robot from the initial point to the
target set. Since the estimate of the new way-point is
provided relative to the robot, the RRT algorithm also
operates in a relative coordinate system in a receding
horizon fashion. When the robot receives a new estimate
for the way-point, a new tree is grown for reaching the goal.
This process terminates when the robot reaches the target
set. The robot can, however, avoid other mobile sensors by
locally communicating with them, and hence, they aren’t
considered while finding feasible trajectories to avoid extra
computation and complexity. For completeness of the paper,
RRT has been succinctly explained in Algorithm 3; it
is well known that the computation complexity of the
RRT algorithm isO(m log(m)), wherem is the number
of sampled points. Thus, the overall complexity of the
proposed algorithm is of the polynomial order. For more
detailed information, interested readers are referred to [18].

This module considers the dynamics of the robot and
based on the way-point estimated, it provides the sequence
of control inputs that can navigate the robot to the way-
point. It is noted that the RRT in Algorithm 3 finds only

a feasible solution to the kinodynamic motion planning;
finding optimality with RRT* [13] requires a solution to
the steering function that has not been considered in the
current work.

Remark 4.2:Correctness: The plan will always give the
robot a path to the sensed goal. This is argued by making
some observations. Due to the biased gossip algorithm
based on the optimal control of a weighted PFSA, it is
ensured that there is a gradient towards the goal region i.e.,
there always exists a sequence of hops from any sensor
with a positive measure function to the sensor detecting
the target. If the robot can communicate with sensors with
positive measure function, then under the assumption of
bounded uncertainties, in the relative localization estimates
of the mobile sensors made by the robot within its com-
munication radius, the robot can always locate a way-point
which has a higherbelief (as found by the interpolation
function) than its current belief (corresponding to its current
physical location). This follows from the fact that a non-
zero measure function for a sensor implies that there exists
at least one neighbor that has a higher measure than the
sensor itself. The agent measure functionis maximized
for the sensor which detects the target. Therefore, if the
robot moves in such a way such that itsmeasure function
(i.e., belief about the presence of a goal) monotonically
increases, it will end up at the goal. Thus, the algorithms
presented in Sections IV-A through IV-C can always search
a path for the robot, if there exists a sensor in the network
that could detect the target of interest at any time under
consideration and the network is connected (i.e., the agent
measure functionν is strictly positive for all sensors).

Remark 4.3:While the individual sensors participate in
the generalized gossip for information propagation, the
robot performs the kernel-based regression and motion
planning; the motion planning algorithm is dependent on
the regression algorithm. These two algorithms are per-
formed at two different time-scales; the robot estimates
the new way-point after it reaches the last way-point
predicted by the estimator. The two-different algorithms
have different time-complexity for which the respective
problem size is different. The estimation-complexity grows
with the number of near sensors robot can communicate
with, while estimating the local belief map; the complexity
of the motion planning algorithm grows with the number
of points-sampled during trajectory planning.

V. RESULTS AND INTERPRETATION

This section presents results of numerical experiments
for an example problem of surveillance and reconnais-
sance which involves a mobile sensor network and an
autonomous robot which needs to navigate to a target
detected by the sensor network. A surveillance region of
area A is monitored byN mobile sensors, where each
mobile sensor has a communication radiusRs. The robot
has a communication radiusRr and a sensing radiusrhs.
The individual mission of each sensing agent is to detect
any target and communicate its belief to its neighbors. The
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global mission objective of the sensor network is to direct
a robot with greater capabilities to the target region for
the purpose of threat neutralization of or service delivery.
For the simulation study, the parameters are chosen as:
A = 5002, N = 150, Rs = 50, andRr = 150. For
modeling of target (see Section III), the value ofPD was
chosen to be 0.9 andrhs was chosen to be 20. The robot
motion kinematics for the robot is given by the following
equations.

ẋ = v cos(φ) (9a)

ẏ = v sin(φ) (9b)

φ̇ = ω (9c)

where,v ∈ [vmin, vmax] and ω ∈ [−ψ,ψ]. The velocity of
the mobile sensors in the network was chosen to be5. The
mobile sensors are moving in the region with a 2-D random
walk fashion with the constant velocity. A slower velocity
for the mobile sensors might result in a slower information
propagation but, it results in a more stable local dynamics
for the robot. Target is located at[400, 200] while the robot
is at [1, 1] to begin with. ε (see equation 8) for mission
termination is chosen to be equal torhs. The value ofθ
chosen for results shown in Figures 4 through 6 is0.02.

The robot starts moving towards the goal as soon as its
local neighborhood becomes aware of the target detection
through gossip. Once the robot becomes aware of the de-
tection, it makes use of the disseminated distributed belief
about the target to find a path to the target. Figure 4 shows
the implicit surfaces learned by the robot by communicating
with the mobile sensors in its communication range, at
different time instants in the slow time scaleT using the
inverse multiquadric RBF. It gives the estimated corre-
spondence between a physical location and the belief (or
awareness) about the target based on the measure function
of the mobile sensors in the robot’s neighborhood. The next
way-point is then estimated by finding the maxima for the
implicit surface. The robot then moves to the estimated
way-point by following a trajectory found by sampling from
the environment in an anytime fashion. Communication is
re-established with neighboring mobile sensors after the
robot reaches the estimated way-point. These plots together
show the goal-directed navigation of the robot using the
distributed information in the slow time scaleT.

Figure 5(a) shows the monotonic increment in the belief
of the estimated way-points during the navigation to the
unknown goal. It can be seen in Figure 5(a) that as soon
as the robot becomes aware of a sensed target (belief>
0), it is able to move in such a fashion that its awareness
about the presence of the target monotonically increases
and finally converges to its maximum value as it reaches
the goal. The belief of the way-points could also be used
as a measure for degree of completion of the mission;
convergence of the belief to its maximum value suggests
mission completion. Figure 5(b) shows the relative change
in robot’s position w.r.t. the goal in the slow time scaleT.
It shows a monotonic convergence of the robot’s position
to the goal under the proposed framework. Figure 5(b) also

shows the inherent goal-directedness in the robot’s motion
once it sniffs (i.e., belief> 0) the presence of a target in
the surveillance region.

Figure 6 shows the actual trajectory found by the robot
using RRT and the surface interpolation atT5 (see Figure 5)
using the Gaussian RBF. The contour plot in Figure 6 shows
the level surfaces for the interpolation using the Gaussian
RBF. For brevity the graphic details of the remaining two
RBFs are skipped in this paper. Figure 7 shows planning
in the presence of obstacles, where the domain of kernel-
based regression (see Section IV-B) has been restricted to
the free configuration space,Xfree, of the robot, because the
robot’s state at any instant is constrained to lie inXfree. The
obstacles are again considered while building the motion
tree and a sampled point is added to the tree only if the
corresponding edge is collision free (see Algorithm 3).

Figure 8 shows a scenario of robot navigation with
three different generalized gossip parametersθ. The idea
is to show the effect of the gossip parameterθ on the
robot navigation. It was shown in [21] thatθ controls the
localization of information in a mobile sensor network. The
network reaches consensus withθ very close to0, i.e., all
sensors have the sameagent measure functionν. On the
other hand, a value ofθ closer to1 results in localization of
information around the target of interest. Under the biased
gossip setting presented here, the gradient in the network is
still controlled byθ. Forθ close to0 (seeθ=0.02), there will
be a uniform gradient across the network. For higher values
of θ (0.2 and0.8), the information is more localized in the
sense shown in Figure 8. Asθ is increased, there are more
variations in the belief of the sensors. As a result, the robot
will experience a steep gradient in the belief directed to the
region of interest in the local neighborhood as compared to
areas further away from it (see the plots ofνW vs T for
differentθ in Figure 8). It is seen that the steepest gradient
is found for θ = 0.8 followed by θ = 0.2. But, at the
same time, information is more localized with increasingθ
(notice the slow increase inνW for θ = 0.8 and0.2 before
the sharp increase). The existence of a gradient is, however,
independent of the values ofθ; it only controls nature of
the gradient. The robot should be able to navigate to the
goal ∀θ ∈ (0, 1). It is noted that the results in Figure 8
correspond to the Inverse Multiquadric RBF.

Figure 9 shows the effect of bounded uncertainty in the
sensor location estimates on the robot navigation. In this ex-
ample, the x- and y-coordinate of the sensor locations w.r.t.
the robot are modeled as independent Gaussian random
variables with the mean as the actual location and standard
deviation d. Hence, in other words, the robot is able to
localize the sensors within a regiond2 (d = 10 for the ex-
ample shown), with high confidence. With this uncertainty
in sensor location estimates, the Maximum Likely (ML)
paths are obtained for the robot to study its convergence
behavior. To obtain the ML path estimate, a Monte-Carlo
simulation is done where while estimating a way-point
for the robot, the neighboring sensor locations,x̃i where
i = 1, 2, . . . , M are sampled from the assumed distribution.
A way-point is then estimated using the sampled locations.
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This process is repeatedN times to obtain an approximate
distribution for the way-points and a ML estimate of the
way-point is obtained from the distribution. Results for an
example (θ = 0.8, N = 1000) are shown in Figure 9,
which show convergence of the ML paths, with steady-state
deviation from the paths obtained with perfect information
about the sensor location estimates.

VI. SUMMARY, CONCLUSIONS, AND FUTURE WORK

A framework for hierarchical planning for reactive nav-
igation of autonomous robots is presented in this paper,
where a mobile sensor network serves the dual-purpose of:
(i) information exchange among the mobile sensors, and
(ii) feedback control of robot motion to find feasible paths
to follow. Specifically, a robot makes use of the collective
intelligence of the distributed mobile sensor network to
localize the goal by sequentially estimating the way-points
converging to the goal point. Making use of a controlled
gossip algorithm and sequential estimation of the way-
points locally, it is shown that the robot is capable of finding
a path to the goal point. However, efficacy of the proposed
path planning algorithm is contingent upon the accuracy
of localization techniques that are executed over the sensor
network.

The work reported in this paper is different from those
presented in current literature [25] in the sense that not all
sensors in the network are required to detect the target. Such
requirements of long-range sensing may become unrealistic
in real-life scenarios such as those in the undersea envi-
ronment. In the present formulation, an awareness about
the presence of a local target is developed via the gossip
algorithm and this information is fed back to the robot
controller to find a path. The collective intelligence of the
sensor network is used to generate a sequence of way-
points, which finally converges to the sensed location of
the region of interest. A sampling-based algorithm is used
to tackle the dynamics of the robot at the control level.
Under the prevalent conditions of limited sensing range and
communication capabilities, the robot recursively estimates
the way-points, based on the belief of its neighbors; and this
process is repeated until the robot reaches a close vicinity
of the sensed region of interest.

This paper presents initial results on use of unstructured
data for source-seeking in large sensor networks, where
the network is not strongly connected. While there are
numerous research directions for path planning with dis-
tributed information, the following topics are recommended
for future research.

1) Extension of the path planning algorithm in the
presence of multiple targets and for multiple regions
of interest as well as for large-scale high-dimensional
environments.

2) Quantization of error bounds on navigation of the
robot due to imperfections of target localization by
the sensor network and relative localization of mobile
sensors.

3) Identification of explicit relationships between net-
work topology parameters and errors in robot motion
control.

4) Use of closed-loop control for motion planning of the
robot as open-loop planning and then online tracking
of trajectories might be expensive and inefficient
especially in GPS denied environments.

5) Experimental validation of the algorithm in labora-
tory settings.

6) While the motion planning module considers pres-
ence of obstacles during synthesis of trajectories,
modeling the effects of obstacles in communication
and sensing would require more detailed analysis
with more accurate sensing and communication mod-
els. Analysis of the algorithm under such environ-
ments with more detailed models is a topic of future
research.

REFERENCES

[1] N. Atanasov, J. Le Ny, N. Michael, and G. Pappas, “Stochastic source
seeking in complex environments,” inRobotics and Automation
(ICRA), 2012 IEEE International Conference on, pp. 3013–3018,
May 2012.

[2] S.-J. Liu and M. Krstic, “Stochastic source seeking for nonholonomic
unicycle,” Automatica, vol. 46, no. 9, pp. 1443–1453, 2010.

[3] L. Brinon-Arranz and L. Schenato, “Consensus-based source-seeking
with a circular formation of agents,” inControl Conference (ECC),
2013 European, pp. 2831–2836, July 2013.

[4] M. Jadaliha, J. Lee, and J. Choi, “Adaptive control of multiagent
systems for finding peaks of uncertain static fields,”Journal of
Dynamic Systems, Measurement, and Control, vol. 134, no. 5,
p. 051007, 2012.

[5] S.-i. Azuma, M. S. Sakar, and G. J. Pappas, “Stochastic source
seeking by mobile robots,”Automatic Control, IEEE Transactions
on, vol. 57, no. 9, pp. 2308–2321, 2012.

[6] A. S. Matveev, H. Teimoori, and A. V. Savkin, “Navigation of a
unicycle-like mobile robot for environmental extremum seeking,”
Automatica, vol. 47, no. 1, pp. 85–91, 2011.

[7] J. Choi, S. Oh, and R. Horowitz, “Distributed learning and cooper-
ative control for multi-agent systems,”Automatica, vol. 45, no. 12,
pp. 2802 – 2814, 2009.

[8] M. S. Stankovic and D. M. Stipanovic, “Discrete time extremum
seeking by autonomous vehicles in a stochastic environment,” in
Decision and Control, 2009 held jointly with the 2009 28th Chinese
Control Conference. CDC/CCC 2009. Proceedings of the 48th IEEE
Conference on, pp. 4541–4546, IEEE, 2009.

[9] P. Ogren, E. Fiorelli, and N. Leonard, “Cooperative control of
mobile sensor networks:adaptive gradient climbing in a distributed
environment,”Automatic Control, IEEE Transactions on, vol. 49,
pp. 1292–1302, Aug 2004.

[10] Q. Li, M. De Rosa, and D. Rus, “Distributed algorithms for guiding
navigation across a sensor network,” inProceedings of the 9th annual
international conference on Mobile computing and networking,
pp. 313–325, ACM, 2003.

[11] N. Deshpande, E. Grant, and T. Henderson, “Target localization
and autonomous navigation using wireless sensor networks- A
pseudogradient algorithm approach,”Systems Journal, IEEE, vol. 8,
pp. 93–103, March 2014.

[12] Y. Peres, A. Sinclair, P. Sousi, and A. Stauffer, “Mobile geometric
graphs: Detection, coverage and percolation,” inProceedings of the
Twenty-Second Annual ACM-SIAM Symposium on Discrete Algo-
rithms, pp. 412–428, SIAM, 2011.

[13] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal
motion planning,”The International Journal of Robotics Research,
vol. 30, no. 7, pp. 846–894, 2011.

[14] D. Levine, B. Luders, and J. P. How, “Information-rich path planning
with general constraints using rapidly-exploring random trees,” in
AIAA Infotech@ Aerospace Conference, Atlanta, GA, 2010.

10

D
ow

nl
oa

de
d 

by
 [

So
um

ik
 S

ar
ka

r]
 a

t 0
8:

58
 2

8 
N

ov
em

be
r 

20
15

 



Acc
ep

ted
 M

an
us

cri
pt

[15] A. Bry, A. Bachrach, and N. Roy, “State estimation for aggres-
sive flight in GPS-denied environments using onboard sensing,” in
Robotics and Automation (ICRA), 2012 IEEE International Confer-
ence on, pp. 1–8, IEEE, 2012.

[16] A. Bry and N. Roy, “Rapidly-exploring random belief trees for
motion planning under uncertainty,” inRobotics and Automation
(ICRA), 2011 IEEE International Conference on, pp. 723–730, IEEE,
2011.

[17] D. Li, Q. Li, N. Cheng, and J. Song, “Sampling-based real-time
motion planning under state uncertainty for autonomous micro-aerial
vehicles in GPS-denied environments,”Sensors, vol. 14, no. 11,
pp. 21791–21825, 2014.

[18] S. M. LaValle, Planning algorithms. Cambridge university press,
2006.

[19] P. chattopadhyay, D. Jha, S. Sarkar, and A.Ray, “Path planning
in gps-denied environments: A collective intelligence approach,” in
American Control Conference, Chicago, IL, USA, pp. 3082–3087,
July 2015.

[20] A. Berdahl, C. J. Torney, C. C. Ioannou, J. J. Faria, and I. D.
Couzin, “Emergent sensing of complex environments by mobile
animal groups,”Science, vol. 339, no. 6119, pp. 574–576, 2013.

[21] S. Sarkar, K. Mukherjee, and A. Ray, “Distributed decision propa-
gation in mobile-agent proximity networks,”International Journal
of Control, vol. 86, no. 6, pp. 1118–1130, 2013.

[22] A. Ray, “Signed real measure of regular languages for discrete
event supervisory control,”International Journal of Control, vol. 78,
no. 12, pp. 949–967, 2005.

[23] I. Chattopadhyay and A. Ray, “Language-measure-theoretic optimal
control of probabilistic finite-state systems,”International Journal
of Control, vol. 80, no. 8, pp. 1271–1290, 2007.

[24] D. K. Jha, Y. Li, T. A. Wettergren, and A. Ray, “Robot path
planning in uncertain environments: A language-measure-theoretic
approach,”ASME Journal of Dynamic Systems, Measurement and
Control, vol. 137, no. 1, pp. 034503–1, 2015.

[25] N. A. Atanasov, J. Le Ny, and G. J. Pappas, “Distributed algorithms
for stochastic source seeking with mobile robot networks,”ASME
Journal of Dyn. Sys., Meas., Control, vol. 137, p. 031011, 2015.

[26] Z. Toroczkai and H. Guclu, “Proximity networks and epidemics,”
Physica A: Statistical Mechanics and its Applications, vol. 378,
no. 1, pp. 68–75, 2007.
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Algorithm 1 : Belief updating strategy for mobile sen-
sors

1: while true do
2: for all sensors ‘i’ in the networkdo
3: if Nbhd(i) 6= 0 then
4: di = CARD(Nbhd(i))

{Begin Infinite Asynchronous loop}
{Queryν(θ)j}

5: if νj(θ)|τ ≤ νi(θ)|τ then
6: Πii|τ = Πii|τ + Πij |τ
7: Πij |τ = 0
8: end if
9: if νj(θ)|τ > νi(θ)|τ & Πij |τ = 0 then

10: Πij |τ = 1/di

11: Πii|τ = Πii|τ − 1/di

12: end if
13: end if
14: νi(θ)|τ = (1− θ)

∑
j∈{i}∪Nbhd(i) Πij |τνj(θ)|τ

+θχi|τ
15: end for
16: end while
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Algorithm 2 : Navigation of the Robot

1: while ‖XR −XG‖2 >ε do
2: SolveF(x̃) =

∑M
i=1 wiφ(||x̃− x̃i||)

using boundary constraints{x̃i, νi}, x̃i ∈ Nbhd(R)
3: UseF(x̃) to estimatẽxW = arg maxx̃∈Nbhd(R) F(x̃)

andνW = maxx̃∈Nbhd(R) F(x̃)
4: RRT(XR,K, Δt, x̃W )

{For the function RRT, see Algorithm 3}
5: end while
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Algorithm 3 : Rapidly Exploring Random Tree (RRT)
1: Input :(xi,K, Δt, xf )
2: Output : TreeG = (V,E) with a path P fromxinit to

xfinal

3: V (0) = xinit

4: E(0) = ∅
5: for k = 1 to K do
6: xrand ← RandConf()

{Pick a point randomly in the configuration space
of the robot}

7: xnear ← NearestVertex(xrand, G)
{Calculate the nearest vertex of the tree

to xrand}
8: uk : SelectInput (xrand, xnear)

{select the input that takes the robot closest to
xrand}

9: xnew ← NewState (xnear, uk, Δt)
10: if CollisionFree(xnear, xnew) then
11: V ← V ∪ xnew

12: E ← E ∪ (xnear, xnew)
13: end if
14: end for
15: xfinal,near ← NearestVertex(xfinal, G)
16: Retrace a path P fromxfinal,near to xinit over G.
17: return P
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Fig. 1. Receding-horizon path planning on a distributed sensor network
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Fig. 2. Voronoi Partitioning of the network: A Frozen network in the
slow time scaleτ showing the Voronoi partitioning according to the
mobile sensor location. In this particular setting, the individual cells of
the partition are assigned the belief of the corresponding sensor and in
a sense, is the simplest interpolation of the belief map. The figure also
shows the sequence of cells that could be traversed, based on the gradient
of the spatial belief, to reach the sensed target cell (shown as a red circle).
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Fig. 3. Typical scenario for sensor localization: Relative locations of
sensors are used by the robot to estimate a local implicit correspondence
between a physical location in its neighborhood and the measure function
ν.
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Fig. 4. Sequential estimation of way-points: Four plates show the sequential way-points estimated based on the communication of the robot with the
neighboring sensors using the Inverse Multiquadric RBF. The robot moves to the way-point following the path found by RRT and then estimates the
next way-point until it reaches theε-neighborhood of the target.
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Fig. 5. Performance of way-point estimation on the slow time scale: Plate (a) shows the monotonic improvement in belief of the estimated way-points
νW in the slow time scale (T). It is also considered as the degree of completion of the mission. Plate (b) shows the monotonic decrease in the
Euclidean norm between the robot’s location and the goal, measured in the slow time scaleT.
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Fig. 6. Path found between two consecutive way-points: Rapidly-
exploring random tree (RRT) (shown in black) and the dynamic model
in Eq. (9) have been used. The contour shows the surface interpolated
by using the Gaussian RBF. This is the actual trajectory followed by the
robot between the time instantsT = 5 andT = 6 in Figure 5.
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Fig. 7. Path found between two consecutive way-points in the presence
of obstacles: Rapidly-exploring random tree (RRT) (shown in black) and
the dynamic model in Eq. (9) have been used. The contour shows the
surface interpolated by using the Gaussian RBF. The big circles denote
the obstacles. The trajectory is shown in black.
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Fig. 8. Effect of parameterθ on performance of the distributed algorithm:
Increasing the value ofθ localizes the information of target detection in
a small neighborhood around the target location resulting in high beliefs
around the region of interest and comparatively smaller values away from
the region.
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Fig. 9. Maximum likely (ML) paths followed by the robot under imperfect localization of the mobile sensors in its local neighborhood.
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TABLE I
THE RADIAL BASIS FUNCTIONS USED FORINTERPOLATION

Function Name Functional Form

Inverse Multiquadric 1√
r2+σ2

Gaussian exp
(
− r2

2σ2

)

Thin Plate Spline r2 ∙ log r
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