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Abstract—This short note presents an innovative concept of modeling) and their implementation are compatible with-psy
behavior prediction for decision & control in cognitive au- chological intuitions and concepts of human cognition and
tonomous systems. The objective is to coordinate human-mhaine decision-making; however, the problem of interfacing kesw

collaboration such that human operators can assess and enlab h iti d hi intell s stil
autonomous systems to utilize their experiential & unmodedd uman cognition and machine intelligence 1S stll an open

domain knowledge and perception for mission execution. The research issue. This short note proposes an innovativesponc
concept of quantum probability is proposed to construct a of behavior prediction for decision & control of cognitive

unified mathematical framework for interfacing between modcels gutonomous systems, where a unified mathematical framework
of human cognition and machine intelligence. is presented from the perspectives of:

« resolving the disparities between human cognition models
and machine intelligence models, and
Modern human-engineered systems (e.g., power grid, coms developing analytical transformations for decision & con-
munication, transportation, and smart building) with high 0| at different hierarchical levels of fidelity.
degree of autonomy are becoming increasingly complex duexig, objective here is to enable human operators to gain
subsysten_] heterogeneity, uncertain Operatllqnal&enmmn insight into behavior prediction and to make machines to
tal dynamics, and decentralization of decision & contrdl [1unambiguously interpret human instructions, while assgss

In spite of embedded intelligence and high degree of autofly enabling autonomous systems to utilize their expéailent

omy of current z_;md future-ger_1eratmn autonomous Systems, 1, qeled domain knowledge and perception for mission
it is now recognized that the issues of human factors mt@é

be taken int deration during desi devel ¢ ecution. The major challenge is to achieve and sustain
€ taken 1nto consideration dunng design, deveiopmen deoffs between coherence and performance for opeahtion
operation of such systems [2]. The rationale is that theee

: i Neee de endability, which would require addressing unresofued
several sources of disparities between human cognition at?zﬁfn

oo . X ) ental problems such as aggregation of human and machine

machine intelligence of autonomous systems. These dim”decision models.
often stem from incompatible internal representationsnef i
formation, structural characteristics of logic & reasapiand
learning & inference mechanisms. Along this line, Busemeye
et al. [3] have shown that many of the disparities arise Recent literature (e.g., [5]) advocates two main appraache
due to the use of classical probabilistic axioms in modelirig dealing with interactive and multi-time-scale dynamads
the cognition process. For example, Kolmogorov probathilis multi-agent autonomous systems that are operated by human
logic is often incompatible with human decision-makingtif iagents with diverse training levels and job responsibsiti
requires relaxation of the commutative, distributive alodere The first approach, exemplified by Reinforcement Learning
properties [4] of the underlying cognitive system. and Markov Decision Processes (MDP) [6], attempts to model

Drawing upon the principles of Quantum Mechanics, muthe computational dynamics in terms of human-understdadab
tiple perspectives of events can be simultaneously reptede heuristics (e.g., reward-based actions) to endow a machine
as vectors in a Hilbert space over the complex figldn this with human-like decision-making capabilities. The second
setting, if a vector is expressed in different bases, themay approach [7] is based on mimicking biological cognitive
represent different perspectives of an event. It is hymizieel mechanisms through computational intelligence. Both ehes
that these events can be synthesized by making use of quanfpproaches have their individual limitations.
probability theory to model human perception and decision- This short note introduces an interdisciplinary concept th
making. Recent research publications [3] reveal that quant would utilize the complementary processing and synthegizi
theoretic principles (e.g., superposition of interfelhndn capabilities of humans and machines in a common mathemat-

* This work has been supported in part by the Army Research iy ical framework. The proposed approach is expected to make
(ARL) and the Army Research Office (ARO) under Grant No. WOEAN-1- autonomous systems trustworthy and dependable members of
0376. Any opinions, findings and conclusions or recommeéonsitexpressed tightly knit operational units, where humans and machines

in this publication are those of the authors and do not neciésseflect the learn from each other in-situ to improve the mission perfor-
views of the sponsoring agencies.

TCurrently with the United Technologies Research Centest Eartford, manf:e- The und_erly'ng framework_ '.5 d?p'Cted in Fig. 1 that
CT 06108, USA. entails research issues of model unification, transfoonatnd
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II. SCIENTIFIC APPROACH
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Fig. 1. Schematic for Decision & Control in Cognitive Autonous Systems

construction of co-dependence and coherence measuredl asplenomena in Quantum Mechanics [4]. It is hypothesized that

as identification of precursors for emergent discords. the human cognition model in Fig. 1 can be developed in the
framework of Eq. (2) [3].
A. Human Cognition and Machine Intelligence Modeling The tools of quantum probability for human cognition mod-

The concept of human cognition modeling, proposed in thding are to be developed on a Hilbert space, defined over the
note, draws upon recent developments in Cognitive Sciené8Mmplex fieldC and spanned by (finitely many) orthonormal
which rely on quantum dynamic principles for constructin§asis vectors [3]. As seen in Egs. (1) and (2), the probgbilit
human cognition models of autonomous systems [3]. FBIaSS functions are obtained as the squared moduli of the
example, in quantum probability theory, the state of a sysse coefficients of the quantum state vectors. The resultinglyam
determined by a complex-valued function, called the amgéit ©f (multivariate) distributions, denoted dsy(e), represents
function.4, on the outcome (or sample) space. If the outcom&@rginal probabilities of human behavior as depicted in Eig
z; of an eventE = {zy,z,,---} do not interfere with each The objective here is to construct a mathematical framework

other, then the probability of the evehtis computed as: for interfacing behaviorial models of human agents withstho
of machine agents.

2
P(E) = Z ’A(xk)‘ ) Referring to Fig. 1, two of the inputs to the human cognition
k model, namely, environmental information and machine be-
otherwise (i.e., in the presence of interferences), havior class, are combined to form a tensor product space [3]

2 [4], and the human belief state is represented as a vector on
‘ (2)  this space. It is hypothesized that the remaining inputfi¢o t
human cognition model, namely, meta data (e.g., mission in-

In classical probability theory, the probability of an evenformation and knowledge base), and the feedback informatio

is obtained by Eq. (1) as the sum of the probabilities of tHeom test results, can be combined to assign amplitudes to

sample outcomes composing the event. In quantum prolyabiktach basis vector [3]. A unitary operator could be used to

theory, the probability of an event is obtained by Eq. (2)eregh transform one set of basis vectors to another for evalu#tiag

the event probability?(E) can be decomposed in two partsstate vectors from different perspectives to representipheil

The first part is classical probability in Eq. (1) and the s&to mission objectives. The key idea here is to map a state vector

part consists of the cross terms that represent consteuatid defined on the space of a human behavior model, into the

destructive interferences similar to the characterisifowave space of machine systems by projecting the state vector onto

P(E) = | Alw)
k



the subspaces representing the pertinent action categorie ing sequences. This approach has been developed to for-
Machine intelligence models have been developed as praohdlate co-prediction algorithms that measure causal co-
abilistic finite state automata (PFSA) that belong to a clagependency between symbol sequences via finite state prob-
of Markov decision processes (MDPs) [8]. Wen et al. [9] anabilistic transducers to capture statistically significarter-
Adenis et al. [10] have shown that a class of PFSA formsdependencies [12][13]. It is noted that human and machine
Hilbert space over the real field. In this setting, the norm system dynamics take place at different time scales and may
of a PFSA (induced by the inner product) is interpreted asse different alphabets for symbolic representations dnat
a measure of the information content of the (time seriespt synchronized. Yet they both model the same physical
data represented by the PFSA. This formalism has establlisiplnenomena, albeit as models of different order. Co-deperae
mathematical properties that make it inherently suitabterf- coefficients of event/action sequences, represented hiprgec
situ behavior prediction of autonomous systems. In pdeicu in each of the two above-mentioned Hilbert spaces, are dkfine
such models are robust to noise and exogenous disturbanassieduction in entropy of the next symbol distribution oéon
provide order reduction in the sense of maximum entropyajectory by observing the other.
and capture structural nonlinearities with no significasdsl  Statistical characterization of human-machine inteomdi
of information (e.g., the loss at an infinite horizon tendtng requires derivation of the joint distribution between such
zero). Therefore, it is logical to build machine intelligen heterogeneous systems. Conventional models, such as mul-
models in the PFSA setting instead of solely relying otivariate Gaussian distributions, are inadequate for tvanm
guantum probability theory (QPT). The family of multivaga reasons: (i)F; and Fi, are likely to be disparate distribution
distributions of machine PFSA models, denotedHy(e) as families, and (ii) the dependence structure betwégnand
depicted in Fig. 1, is suitable for representing interadiovith  F; may be nonlinear. Recently, lyengar et al. [14] have shown
human models. how the copula theory can be used to construct models of
It is necessary to establish a common mathematical franfeterogeneous random variables that have disparatebdistri
work for interactions of the human and machine model8pns. Besides the copula theory, there are other viablks too
where F(e) and Fy(e) represent respective families of(e.g., cross machines [13]) that should be investigatedhier
marginal distributions of human and machine behaviors. ptirpose.
would require integration of the above two classes of Hilber
spaces, which entail different algebraic structures ag ére Prediction, Learning, and Adaptation

defined over two different field§ andRR, respectively. The in- . .
ds » resp y Autonomous systems considered in this note are expected to

tegration could be accomplished by constructing a topokidgi . e Do .
imbedding [11] from the low-dimensional space of the humiﬁe endowed with capabilities of distributed learning andpad

cognition model to the high-dimensional space of machi e cont_rol. This would require (_jevelopment of a_lgorlthms
. . . . . . for consistency of machine intelligence models with human
intelligence model, where the image of the imbedding fuorcti

is a (closed) subspace of PFSA models that are (unique) ﬁxcodgmtlon and belief m_odels. Fu_rt_hermore, th_e algonthm_s
Sl : . : o should be able to predict and mitigate emerging discord if
points in the machine dynamics under a given mission pl

The imbedding could be used to construct a homeomorphimo dzllj:jag.s?pg:;%;g“é’:’f;?fn re{srgpceltrﬂgfée;)r/eufr;ge&):n
between these two subspaces. High co-predictability mleasq IStu - N9 9. L, .
oops at three levels of hierarchy. The outermost loop Vel

identify corresponding subspaces of the two Hilbert spases : . . .
. four inputs, namely, environmental information, meta data
regions of coherence, where humans can dependably predict .
nowledge, machine performance, and test results. Based

behaviors of the autonomous system that, in turn, can fgliab . . .
. . : . . e on these inputs, the human may alter his/her actions that,
follow human instructions. In this setting, identificatiari

thresholds for varying degrees of trust would require d(u'rnnai'cnO tzirtri]c,)nmn?g dgfgzes;:r??r?isi ml tr'll'ehemrjr:ipdudt?e (I)c];othercr)]\l/Ji:jncfsn
specific testing and training as explained later in Sectlon | 9 g. L pp

adaptive control of machines that operate with the built-in
inner most closed-loop control of the autonomous agents.
B. Coupling of Human and Machine Decision Spaces Cross-disciplinary concepts borrowed from diverse digugs

Analytical relationships need to be formulated betwee(f"?'g'é dStat'St'(éal Mechanics and Multl-fr?ctals), can ?w bi
event/action sequences (equivalently, the state transitec- to address adaptation issues (€.g., performance anditytabi

tors in the respective Hilbert spaces) in the human cog’nitiSObUStness) /'n the r;uIt|-t|me-5(;]alebople_ratlons Ofl Intemge )
and machine intelligence models. It would also require jflutonomous/manned teams. The built-in control system in

situ discovery of regions of model coherence for achievirjjBe innermost closed-loop is not explicitly addressed is th

acceptable performance under noisy and uncertain conaiitid°te: Pecause this issue has been extensively dealt wittein t

with incomplete information. Specifically, regions of strural  SCientific literature on decision & control theory.

coherence need to be defined in the human and machine

event/action spaces and the critical parameters must bé-ide Ill. TESTMETHODS& A SSESSMENT

fied. It is recognized that subsequent behaviors of autonsmo Test-based verification & validation is a crucial part of

systems may significantly deviate from human predictions. the integrated human-machine framework. Tests need to be
The framework depicted in Fig. 1 adopts a construperformed in distributed settings under realistic assionptof

tive method of measuring co-dependence of two emergpgnitive limitations in human decision-making. For exdenp



humans may maintain quantized priors regarding objects or IV. SUMMARY, CONCLUSIONS ANDFUTURE WORK
events, which have implications on making inferences in a

Bayesian framework. Some of the key objectives of the tgstin Despite significant advances in both fields of Artificial
and assessment process are identified below. Intelligence and Machine Learning, autonomous systems re-

main heavily dependent on human operators for reasoning
and decision-making, which add nontrivial cognitive loads
to (possibly overburdened) human operators. On the other
A crucial step towards verification & validation is charaete hand, humans may not trust machine’s decisions in critical
ization of emergent behaviors of distributed human'mamhiﬁituations, more so when they deviate from their own per-
systems. Observable changes may take place in the interacdieption. This issue is addressed in the short note, where the
dynamics of an autonomous system prior to the appearanggcept of a mathematically structured interface is aimed a
of a critical emergent behavior (e.g., a phase transitioRjegrating autonomous systems as dependable members of
Therefore, the operational parameters need to be extenﬂgquy knit operational units in diverse applications. ap
during testing to capture various phase transition phemameyom an introduction to basic human-machine integratibis, t
and to determine the critical thresholds at which desirablgyte also presents pertinent functional requirementssiintg
behaviors of the autonomous system may begin to break doy#y validation, which are indispensable for robustness and
unpredictably. It is hypothesized that these threshol@sere (esilience of human-machine collaboration.
sent the boundaries of coherence regions beyond which the 1,re research should continue on the confluence of
system behavior becomes more unpredictable. Co'prediCtEbmputational, physical and neuro-sciences, for meaningf
analysis with corresponding trajectories in the quantuetep man/machine collaboration in the direction that bears the

of human cognition is an open area of research to resolg,mise for providing solutions to unresolved problemshsuc
these hypotheses and to determine event/action trajestotig persistent surveillance in critical missions.

that provide precursors for the emergence of such phase
transition phenomena. For example, probabilistic finitdes

A. Emergent Behavior Characterization
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