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Abstract—This short note presents an innovative concept of
behavior prediction for decision & control in cognitive au-
tonomous systems. The objective is to coordinate human-machine
collaboration such that human operators can assess and enable
autonomous systems to utilize their experiential & unmodeled
domain knowledge and perception for mission execution. The
concept of quantum probability is proposed to construct a
unified mathematical framework for interfacing between models
of human cognition and machine intelligence.

I. I NTRODUCTION

Modern human-engineered systems (e.g., power grid, com-
munication, transportation, and smart building) with high
degree of autonomy are becoming increasingly complex due to
subsystem heterogeneity, uncertain operational & environmen-
tal dynamics, and decentralization of decision & control [1].
In spite of embedded intelligence and high degree of auton-
omy of current and future-generation autonomous systems,
it is now recognized that the issues of human factors must
be taken into consideration during design, development and
operation of such systems [2]. The rationale is that there are
several sources of disparities between human cognition and
machine intelligence of autonomous systems. These disparities
often stem from incompatible internal representations of in-
formation, structural characteristics of logic & reasoning, and
learning & inference mechanisms. Along this line, Busemeyer
et al. [3] have shown that many of the disparities arise
due to the use of classical probabilistic axioms in modeling
the cognition process. For example, Kolmogorov probabilistic
logic is often incompatible with human decision-making if it
requires relaxation of the commutative, distributive and closure
properties [4] of the underlying cognitive system.

Drawing upon the principles of Quantum Mechanics, mul-
tiple perspectives of events can be simultaneously represented
as vectors in a Hilbert space over the complex fieldC. In this
setting, if a vector is expressed in different bases, then itmay
represent different perspectives of an event. It is hypothesized
that these events can be synthesized by making use of quantum
probability theory to model human perception and decision-
making. Recent research publications [3] reveal that quantum-
theoretic principles (e.g., superposition of interferences in
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modeling) and their implementation are compatible with psy-
chological intuitions and concepts of human cognition and
decision-making; however, the problem of interfacing between
human cognition and machine intelligence is still an open
research issue. This short note proposes an innovative concept
of behavior prediction for decision & control of cognitive
autonomous systems, where a unified mathematical framework
is presented from the perspectives of:

• resolving the disparities between human cognition models
and machine intelligence models, and

• developing analytical transformations for decision & con-
trol at different hierarchical levels of fidelity.

The objective here is to enable human operators to gain
insight into behavior prediction and to make machines to
unambiguously interpret human instructions, while assessing
and enabling autonomous systems to utilize their experiential
& unmodeled domain knowledge and perception for mission
execution. The major challenge is to achieve and sustain
tradeoffs between coherence and performance for operational
dependability, which would require addressing unresolvedfun-
damental problems such as aggregation of human and machine
decision models.

II. SCIENTIFIC APPROACH

Recent literature (e.g., [5]) advocates two main approaches
in dealing with interactive and multi-time-scale dynamicsof
multi-agent autonomous systems that are operated by human
agents with diverse training levels and job responsibilities.
The first approach, exemplified by Reinforcement Learning
and Markov Decision Processes (MDP) [6], attempts to model
the computational dynamics in terms of human-understandable
heuristics (e.g., reward-based actions) to endow a machine
with human-like decision-making capabilities. The second
approach [7] is based on mimicking biological cognitive
mechanisms through computational intelligence. Both these
approaches have their individual limitations.

This short note introduces an interdisciplinary concept that
would utilize the complementary processing and synthesizing
capabilities of humans and machines in a common mathemat-
ical framework. The proposed approach is expected to make
autonomous systems trustworthy and dependable members of
tightly knit operational units, where humans and machines
learn from each other in-situ to improve the mission perfor-
mance. The underlying framework is depicted in Fig. 1 that
entails research issues of model unification, transformation and
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Fig. 1. Schematic for Decision & Control in Cognitive Autonomous Systems

construction of co-dependence and coherence measures as well
as identification of precursors for emergent discords.

A. Human Cognition and Machine Intelligence Modeling

The concept of human cognition modeling, proposed in this
note, draws upon recent developments in Cognitive Science,
which rely on quantum dynamic principles for constructing
human cognition models of autonomous systems [3]. For
example, in quantum probability theory, the state of a system is
determined by a complex-valued function, called the amplitude
functionA, on the outcome (or sample) space. If the outcomes
xi of an eventE = {x1, x2, · · · } do not interfere with each
other, then the probability of the eventE is computed as:

P (E) =
∑

k

∣

∣

∣
A(xk)

∣

∣

∣

2

(1)

otherwise (i.e., in the presence of interferences),

P (E) =
∣

∣

∣

∑

k

A(xk)
∣

∣

∣

2

(2)

In classical probability theory, the probability of an event
is obtained by Eq. (1) as the sum of the probabilities of the
sample outcomes composing the event. In quantum probability
theory, the probability of an event is obtained by Eq. (2), where
the event probabilityP (E) can be decomposed in two parts.
The first part is classical probability in Eq. (1) and the second
part consists of the cross terms that represent constructive and
destructive interferences similar to the characteristicsof wave

phenomena in Quantum Mechanics [4]. It is hypothesized that
the human cognition model in Fig. 1 can be developed in the
framework of Eq. (2) [3].

The tools of quantum probability for human cognition mod-
eling are to be developed on a Hilbert space, defined over the
complex fieldC and spanned by (finitely many) orthonormal
basis vectors [3]. As seen in Eqs. (1) and (2), the probability
mass functions are obtained as the squared moduli of the
coefficients of the quantum state vectors. The resulting family
of (multivariate) distributions, denoted asFH(•), represents
marginal probabilities of human behavior as depicted in Fig. 1.
The objective here is to construct a mathematical framework
for interfacing behaviorial models of human agents with those
of machine agents.

Referring to Fig. 1, two of the inputs to the human cognition
model, namely, environmental information and machine be-
havior class, are combined to form a tensor product space [3],
[4], and the human belief state is represented as a vector on
this space. It is hypothesized that the remaining inputs to the
human cognition model, namely, meta data (e.g., mission in-
formation and knowledge base), and the feedback information
from test results, can be combined to assign amplitudes to
each basis vector [3]. A unitary operator could be used to
transform one set of basis vectors to another for evaluatingthe
state vectors from different perspectives to represent multiple
mission objectives. The key idea here is to map a state vector,
defined on the space of a human behavior model, into the
space of machine systems by projecting the state vector onto
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the subspaces representing the pertinent action categories.
Machine intelligence models have been developed as prob-

abilistic finite state automata (PFSA) that belong to a class
of Markov decision processes (MDPs) [8]. Wen et al. [9] and
Adenis et al. [10] have shown that a class of PFSA forms a
Hilbert space over the real fieldR. In this setting, the norm
of a PFSA (induced by the inner product) is interpreted as
a measure of the information content of the (time series)
data represented by the PFSA. This formalism has established
mathematical properties that make it inherently suitable for in-
situ behavior prediction of autonomous systems. In particular,
such models are robust to noise and exogenous disturbances,
provide order reduction in the sense of maximum entropy,
and capture structural nonlinearities with no significant loss
of information (e.g., the loss at an infinite horizon tendingto
zero). Therefore, it is logical to build machine intelligence
models in the PFSA setting instead of solely relying on
quantum probability theory (QPT). The family of multivariate
distributions of machine PFSA models, denoted byFM (•) as
depicted in Fig. 1, is suitable for representing interactions with
human models.

It is necessary to establish a common mathematical frame-
work for interactions of the human and machine models,
where FH(•) and FM (•) represent respective families of
marginal distributions of human and machine behaviors. It
would require integration of the above two classes of Hilbert
spaces, which entail different algebraic structures as they are
defined over two different fieldsC andR, respectively. The in-
tegration could be accomplished by constructing a topological
imbedding [11] from the low-dimensional space of the human
cognition model to the high-dimensional space of machine
intelligence model, where the image of the imbedding function
is a (closed) subspace of PFSA models that are (unique) fixed
points in the machine dynamics under a given mission plan.
The imbedding could be used to construct a homeomorphism
between these two subspaces. High co-predictability measures
identify corresponding subspaces of the two Hilbert spacesas
regions of coherence, where humans can dependably predict
behaviors of the autonomous system that, in turn, can reliably
follow human instructions. In this setting, identificationof
thresholds for varying degrees of trust would require domain-
specific testing and training as explained later in Section III.

B. Coupling of Human and Machine Decision Spaces

Analytical relationships need to be formulated between
event/action sequences (equivalently, the state transition vec-
tors in the respective Hilbert spaces) in the human cognition
and machine intelligence models. It would also require in-
situ discovery of regions of model coherence for achieving
acceptable performance under noisy and uncertain conditions
with incomplete information. Specifically, regions of structural
coherence need to be defined in the human and machine
event/action spaces and the critical parameters must be identi-
fied. It is recognized that subsequent behaviors of autonomous
systems may significantly deviate from human predictions.

The framework depicted in Fig. 1 adopts a construc-
tive method of measuring co-dependence of two emerg-

ing sequences. This approach has been developed to for-
mulate co-prediction algorithms that measure causal co-
dependency between symbol sequences via finite state prob-
abilistic transducers to capture statistically significant inter-
dependencies [12][13]. It is noted that human and machine
system dynamics take place at different time scales and may
use different alphabets for symbolic representations thatare
not synchronized. Yet they both model the same physical
phenomena, albeit as models of different order. Co-dependence
coefficients of event/action sequences, represented by vectors
in each of the two above-mentioned Hilbert spaces, are defined
as reduction in entropy of the next symbol distribution of one
trajectory by observing the other.

Statistical characterization of human-machine interactions
requires derivation of the joint distribution between such
heterogeneous systems. Conventional models, such as mul-
tivariate Gaussian distributions, are inadequate for two main
reasons: (i)FH andFM are likely to be disparate distribution
families, and (ii) the dependence structure betweenFH and
FM may be nonlinear. Recently, Iyengar et al. [14] have shown
how the copula theory can be used to construct models of
heterogeneous random variables that have disparate distribu-
tions. Besides the copula theory, there are other viable tools
(e.g., cross machines [13]) that should be investigated forthis
purpose.

C. Prediction, Learning, and Adaptation

Autonomous systems considered in this note are expected to
be endowed with capabilities of distributed learning and adap-
tive control. This would require development of algorithms
for consistency of machine intelligence models with human
cognition and belief models. Furthermore, the algorithms
should be able to predict and mitigate emerging discord if
the human operator alters the reference trajectory under un-
modeled disturbances. Referring to Fig. 1, there are feedback
loops at three levels of hierarchy. The outermost loop involves
four inputs, namely, environmental information, meta data
& knowledge, machine performance, and test results. Based
on these inputs, the human may alter his/her actions that,
in turn, may cause changes in the outputs of the human
cognition model as seen in Fig. 1. The middle loop provides
adaptive control of machines that operate with the built-in
inner most closed-loop control of the autonomous agents.
Cross-disciplinary concepts borrowed from diverse disciplines
(e.g., Statistical Mechanics and Multi-fractals), can be used
to address adaptation issues (e.g., performance and stability
robustness) in the multi-time-scale operations of interacting
autonomous/manned teams. The built-in control system in
the innermost closed-loop is not explicitly addressed in this
note, because this issue has been extensively dealt with in the
scientific literature on decision & control theory.

III. T EST METHODS& A SSESSMENT

Test-based verification & validation is a crucial part of
the integrated human-machine framework. Tests need to be
performed in distributed settings under realistic assumptions of
cognitive limitations in human decision-making. For example,
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humans may maintain quantized priors regarding objects or
events, which have implications on making inferences in a
Bayesian framework. Some of the key objectives of the testing
and assessment process are identified below.

A. Emergent Behavior Characterization

A crucial step towards verification & validation is character-
ization of emergent behaviors of distributed human-machine
systems. Observable changes may take place in the interactive
dynamics of an autonomous system prior to the appearance
of a critical emergent behavior (e.g., a phase transition).
Therefore, the operational parameters need to be extended
during testing to capture various phase transition phenomena
and to determine the critical thresholds at which desirable
behaviors of the autonomous system may begin to break down
unpredictably. It is hypothesized that these thresholds repre-
sent the boundaries of coherence regions beyond which the
system behavior becomes more unpredictable. Co-prediction
analysis with corresponding trajectories in the quantum space
of human cognition is an open area of research to resolve
these hypotheses and to determine event/action trajectories
that provide precursors for the emergence of such phase
transition phenomena. For example, probabilistic finite-state
automata (PFSA) have been constructed from quasi-stationary
time series data for early detection of incipient faults in diverse
dynamical systems [12][13].

B. Assessment of Transfer Learning

Transfer learning, studied extensively in Cognitive Psy-
chology [2][7], is another relevant issue in human-machine
systems that is more complex than conventional learning. In
transfer learning, the cognitive outputs of previously learnt
elements are evoked and subsequently applied to somewhat
different situations with sufficiently similar stimulus charac-
teristics. For example, system behaviors are less predictable
when algorithms learnt in one context do not transfer well
to other contexts. The main objectives of testing from these
perspectives are:

• Determination of the contexts in which the expected
transfer does not happen.

• Analysis of action inconsistencies that are likely to occur.
• Determination of environmental factors for which the

autonomous system has transfer variations.

C. Analysis of Dependability

Tests are needed for dependability analysis perceived as the
dual to reinforcement learning [6] that searches over actions in
a given state for an optimal reward policy. Among the available
test methods, morphological analysis is apparently a viable
method that alternates between analysis of related patterns in
two data streams and synthesis of the solution region obtained
by pruning the large-dimensional input space [15]. It focuses
on totality of the relationships contained in multi-dimensional,
non-quantifiable problem complexes, where traditional quan-
titative methods (e.g., causal modeling and simulation) may
not be sufficient, because inherent uncertainties may not be
readily reducible and are often ill-defined.

IV. SUMMARY, CONCLUSIONS ANDFUTURE WORK

Despite significant advances in both fields of Artificial
Intelligence and Machine Learning, autonomous systems re-
main heavily dependent on human operators for reasoning
and decision-making, which add nontrivial cognitive loads
to (possibly overburdened) human operators. On the other
hand, humans may not trust machine’s decisions in critical
situations, more so when they deviate from their own per-
ception. This issue is addressed in the short note, where the
concept of a mathematically structured interface is aimed at
integrating autonomous systems as dependable members of
tightly knit operational units in diverse applications. Apart
from an introduction to basic human-machine integration, this
note also presents pertinent functional requirements of testing
and validation, which are indispensable for robustness and
resilience of human-machine collaboration.

Future research should continue on the confluence of
computational, physical and neuro-sciences, for meaningful
man/machine collaboration in the direction that bears the
promise for providing solutions to unresolved problems such
as persistent surveillance in critical missions.
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