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Abstract

This paper develops a distributed algorithm for decision/awareness propagation in mobile-agent networks. A time-dependent
proximity network topology is adopted to represent a mobile-agent scenario. The agent-interaction policy formulatedhere is
inspired from the recently developed language-measure-theory. Analytical results related to convergence of statistical moments of
agent states are derived and then validated by numerical simulation. The results show that a single (user-defined) parameter in
the agent interaction policy can be identified to control thetradeoff betweenPropagation Radius(i.e., how far a decision spreads
from its source) andLocalization Gradient(i.e., the extent to which the spatial variations may affectlocalization of the source)
as well as the temporal convergence properties.

1. INTRODUCTION

Analysis and development of distributed decision propagation and control mechanisms in mobile-agent networks have drawn
much attention due to their relevance in engineering problems. For example, surveillance and reconnaissance by autonomous
vehicles with limited capabilities, trust establishmentsin mobile ad hoc networks (MANETs) [1] and threat monitoringby
mobile sensor networks. In many applications, diffusion ofaggregated information is more relevant compared to individual
sensor information [2], [3] mostly due to its robustness to individual agent’s failure in detection/communication. Furthermore,
in a resource-constrained environment, mobile agents havepotential advantages over static networks in terms of coverage and
time-criticality. In this context, this paper deals with global propagation of a localized awareness in a leaderless environment
in a robust and completely distributed manner.

In general, there are two aspects of interacting agent systems, namely (i) network topology and (ii) agent interaction dynamics.
Network topology is inherently time-varying in the presentcontext, which makes the analysis of such complex systems much
harder compared to their static counterparts. Usually, similar time-varying situations arise in social networks [4] and they are
modeled by various graphical structures, such as: multipleinstances of uniform random graphs, scale-free networks and small-
world networks [5]. Synchronization problems have been solved for time-varying networks where essentially the network
topology is modeled as fast switching among a finite number ofinstances of random graphs with same specifications [6].
However, all such models do not necessarily consider the agent mobility statistics or inter-agent communications due to
proximity. Recently, so-called proximity networks [7] (also called the moving neighborhood networks [8]) has been analyzed
to model contact/collision-based disease spreading. Thismay be considered as the first step towards analyzing the mobile-
agent scenario in an actual sense. In a recent paper [9], the current authors used such developments to model mobile-agent
networks for engineering applications. The mobile-agent network used in this paper follows the same structure. Regarding
the second aspect of the problem, distributed agent interaction dynamics for decision propagation has several mechanisms
available in literature, examples are game theoretic [1], biology inspired, physics inspired (Ising/Potts models) [10], bootstrap
percolation [11] and majority voting [12]. Gossip algorithms are the most studied interaction dynamics in the context of
consensus [13]. However, in many applications, large groups of agents do not seek consensus. Often localized percolation of
decision is desired to localize the information source.

The main contribution of this paper is the development of a distributed decision propagation algorithm inspired from
the recently developedlanguage-measure theory[14][15] for a time-dependent network topology. A single parameter in the
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algorithm is identified to control the tradeoff betweenpropagation radius(i.e., how far a decision spreads from its source)
and localization gradient(i.e., the extent to which the spatial variations may affectlocalization of the source). Analysis of
(up to second order) moment dynamics [16], [17] is presentedand the results are validated by numerical simulation. Variance
analysis is performed under the following two conditions:

(i) Congruous time-scale:when the evolution of network topology and dynamics of agentinteractions have similar time
scales. and

(ii) Disparate time-scale:when faster dynamics of agent interactions can be treated assingular perturbations with respect
to the slower evolution of network topology.

The paper is organized in six sections including the presentone. The representation of a mobile-agent scenario in termsof
proximity networks and the agent interaction policy are presented in Section 2. Section 3 presents the main results including
their physical significance. These results are validated bynumerical simulation in Section 4. Finally, the paper is summarized
and concluded in Section 5 with recommendations for future work. Two appendices are provided to (i) explain the proximity
networks in a greater detail and (ii) to briefly describe the basic concepts of the language-measure theory.

2. FORMULATION OF THE PROBLEM

Let us consider the case of multiple agents performing surveillance, where the agents are tasked with detection of threats
in a given region. A typical example of such a threat could be plumes of harmful chemicals that have to be detected. Taking
into account the nature of these threats, they may be modeledas a local hotspot within the surveillance region. Only a few
agents that search areas within the hotspot have a non-zero probability of detecting the threat. The aim of this paper is to
develop a distributed and leader-less algorithm for mobileagents that is able to disseminate the information of a threat to
other agents that may be far off from the local hotspot in a controlled fashion. Previous literature [18] have extensively studied
the gradient-based approaches for detection of a hotspot. These approaches primarily focus on the moving agents towards the
hotspot based on distributed estimation of gradients. However, in this application, it is required that all agents should become
cognizant of the presence of the threat while operating and monitoring in their own respective local areas. In the proposed
approach, the presence of a hotspot does not affect the motion of the agents. Instead, the information states of other agents
are updated to reflect the required level of awareness that the agents should possess regarding the threat. The motivation here
is to disseminate information away from the local hotspot tothe entire population of agents. This section describes thesetup
of mobile-agent population in terms of proximity networks [7] and subsequently formulates the agent interaction policy.

A. Model Description

Proximity network is a particular formulation of time-varying mobile-agent networks, inspired from social networks.In this
setup, mobile agents move around in an operational region with their own mobility characteristics. They communicate with each
other as they become proximal to each other; a link is established from the network perspective between two communicating
agents. The network links do not necessarily affect the mobility characteristics of the agents. Once a link is established, it
is kept for a certain time period (which is termed as the message lifetime in this paper). As time progresses, more links are
established and at the same time, older links disappear after expiry of their respective message lifetime. In this fashion, the
network evolves in time. A specific scenario considered in the paper is formally presented in the sequel.

Let the area of a two dimensional (Euclidean) operational region beA. In the present case,A is assumed to be a square
area with side lengthL, i.e., A = L2. Initially, N agents are distributed randomly in the given area, and the agent density
is defined asρ = N/A. The uniform radius of communication for each agent is denoted by R, i.e., two agents can only
communicate (e.g., to exchange messages) when the distancebetween them is less thanR. The agents move in a 2-D random
walk fashion where the speedv is same for all agents in the current setup. The random walk isrealized by independently
choosing a direction of motion from a uniform distributionU(0, 2π), by all agents at each time step. During its motion, each
agent broadcasts a message over a certain time window that iscalled themessage lifetimeLm. In the present context, the
message can be information-related to an agent’s belief regarding its environment. At the same time, the agent receivessimilar
messages from other proximal agents, which may come within the communication radiusR. After expiry of a message lifetime,
an agent possibly updates its belief based on its own observation and messages from other agents. This aspect is formally
addressed in the next section.

In contrast to the faster time-scale (t) of agent motion, the algorithm for updating the agents’ beliefs runs on a slower
time-scale (denoted asτ ). The time-scale for updating the belief is chosen to be slower as it allows for sufficient interactions
among the agents, especially if the density of agents is low.After the updating, an agent starts broadcasting its new belief for
another window of the message lifetime. For example, if the message lifetimeLm is very small, then the network may not
be able to build up over time and possibly remains sparse. On the other hand, the network would eventually become fully
connected asLm → ∞. Thus, to capture temporal effects in a realistic setting,Lm should be appropriately chosen based



3

on other network parameters. It is noted that, although updating of messages may occur in a non-synchronous manner in
the agent population, only synchronous updating is considered in this paper for analytical tractability of the agent interaction
policy without explicitly addressing the issue of obstacleavoidance. In this context, the notion of the degree of a network is
introduced below.

Definition 2.1: (Degree of a node (or an agent)) The degree (di) of a node (i) is defined to be the number of distinct nodes
in the network, to which it connects (e.g., for information communication) within a specified message lifetimeLm.

A brief discussion on the nature of the distribution of the degree of a node and the expected degree of this network class
is provided in Appendix A while the details are reported in [9].

B. Agent Interaction Policy

The agent interaction policy developed in this paper is essentially inspired from the concepts of signed real measure of
probabilistic regular languages generated by probabilistic finite state automata (PFSA) [14], [15]. However, the details are not
presented here for simplicity and only the policy is described in a self-sufficient way. A brief discussion on the theory of
language measure is provided in Appendix B.

The PFSA is developed on a graphical interaction model amongthe agents by the process described below.
1) Interaction Graph:The interaction graph is constructed in terms of the adjacency matrix of the mobile agent network

after the expiry of the message lifetimeLm. To this end, the following definitions are introduced.
Definition 2.2: (Adjacency Matrix [19]). Let a time-dependent (in the slow-scaleτ ) graph be denoted asG. The adjacency

matrix A of the graphG is defined such that its elementaij in the ijth position is unity if the agenti communicates with the
agentj in the time period ofLm; otherwise the matrix elementaij is zero. To eliminate self-loops, each diagonal element of
the adjacency matrix is constrained to be zero.

The algorithm for simulating a proximity network in the current setting is provided below:

Algorithm 1: Proximity Network simulation
Initialize locations ofN agents randomly in a 2-D region
τend: Total simulation time in the slow scale
τ = 1
while τ < τend do
aij |τ = 0 for all i, j
for t = 1→ Lm (Fast time scale of agent mobility)do

Move each agent by one step with speedv in randomly chosen directions
for all Agentsi, j do

if dist(i, j) < R (Euclidean distance between agentsi, j less than communication radius)then
aij |τ = 1

end if
end for

end for
τ ← τ + 1

end while

Definition 2.3: (Laplacian Matrix [19]) The Laplacian matrix (L) of a graphG is defined as:

L = D −A

where the degree matrixD is a diagonal matrix withdi as itsith diagonal element, wheredi is the degree of the nodei (see
Definition 2.1).

Definition 2.4: (Interaction Matrix [19]) The agent interaction matrixΠ is defined as:

Π = I − βL

where the parameterβ is chosen appropriately such thatΠ becomes a stochastic matrix and its second largest eigenvalue
satisfies the condition|λ2(Π)| < 1.

In the context of proximity networks, the requirement of keeping Π as a stochastic matrix in Definition 2.4 is achieved by
settingβ = 1/(d̄+ 1), whered̄ is a (positive integer) parameter that is pre-determined off-line. To satisfy this condition on-line,
an agent ignores communications with distinct agents that are beyond thēd agents within the message lifetimeLm. However,
the expected degree distribution of the network is obtainedoff-line too at the design stage (see Appendix A); therefore, d̄ is
chosen to be large enough such that the probability that the degreedi > d̄ for any nodei is very low, i.e.,Pr(di > d̄) ≤ ǫ ∀i
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(for simulation exercises reported in this paper,ǫ has been taken to be0.001). Note thatΠ is a stochastic and symmetric (i.e.,
also doubly stochastic) matrix due to the above construction procedure.

Definition 2.5: (Hotspot Model) A hotspot (i.e., a region where threats may exist) is modeled as a map for probability of
detecting the threat.

Let the probability of detection of a hotspot be denoted byPD, which attains the maximum at the center of the hotspot
and decays to zero linearly with distance from the center in aradially symmetric manner. In the present context, a hotspot is
detected only by agents proximal to them. A hotspot is characterized by the following two parameters:

• The maximum probability of detection of the threat,PDmax (= 0.8 in this study)
• The effective radius (rhs) of the circular region within whichPD > 0.5, i.e., agents further than a distance ofrhs from

the center of the hot-spot have less than0.5 probability of detecting the threat.
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Fig. 1. Illustration of a hotspot with radially symmetric strength; probability of detection is maximum at the center and decays to zero linearly with distance
from the center

The length scaleλ = rhs/L of a hotspot is a non-dimensional quantity, whereL is the side length of the operational area;
the parameterλ = 0.1 in this paper. Detection depends on the proximity of the agent to the center of the hotspot, i.e., the value
of PD at its current location. An illustration of this scenario ispresented in Fig. 1. Note that the hotspot model only considers
the Type 2 (i.e., missed detection) error of a sensor; the effects of the Type 1 (i.e., false alarm) error are not considered here
for the sake of model simplicity.

2) Decentralized Strategy:The decentralized strategy proposed here involves two characteristic variables associated with
each agent. The first variable is called thestate characteristic functionthat signifies whether an agent has detected a hotspot
or not. The second variable is called theagent measure functionthat signifies the level of awareness or belief of an agent
regarding the presence of a hotspot in the surveillance region. Formal definitions are presented below.

Definition 2.6: (State characteristic function) The state characteristicfunction (χ) of the agent population is defined as
χ : Q→ {0, 1}, whereQ denotes the set of agents (nodes) andχi = 1 signifies that the agenti has detected a hotspot itself
andχi = 0 denotes otherwise.

Definition 2.7: (Agent measure function) The agent measure function (ν) of the agent population is defined as a real measure
ν : Q→ [0, 1], whereQ denotes the set of agents (nodes).νi encodes the level of awareness or belief that agenti has about
the existence of a hotspot in the operational area.νi = 0 signifies that agenti has no knowledge regarding a hotspot in the
area, whereasνi = 1 means that agenti has maximum belief that a hotspot exists in the area of surveillance.

Based on the current state characteristics functions (χ) and measure functions (ν) of the agent population, synchronous
updating of measures are updated for all agents after the expiry of one message lifetimeLm. Naturally,Lm is homogeneous
in the agent population. Although the global objectives canbe achieved through asynchronous updating with heterogeneous
distribution ofLm, a simpler condition is considered here for the sake of analytical tractability, as explained below.

If an agenti detects a hotspot, then the state characteristic function is maintained atχi = 1 till the next global measure
updating occurs even if the agent does not see the hotspot anymore for the remaining part of the same message lifetime. It is
noted that, based on the discussion up to this point,Π, ν andχ are functions of the slow time-scaleτ as discussed earlier in
Section 2-A.

In the above setting, a decentralized strategy for measure updating in the mobile-agent population is introduced belowin
terms of a user-defined control parameterθ ∈ (0, 1].

νiθ|τ+1 = (1− θ)
∑

j∈{i}∪Nb(i)

Πij |τν
j
θ |τ + θχi|τ (1)
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whereNb(i) denotes the set of agents in the neighborhood of agenti i.e., agents that communicate with the agenti during
the time spanτ and τ + 1. It is noted that that while computing the future (awarenessor belief) measure of an agent, the
parameterθ controls the trade-off between the effects of current self-observation and current measures of all agents.

Expansion of Eqn. (1) yields:

νiθ|τ+1 = (1− θ)



(1− βdi)νiθ|τ +
∑

j∈Nb(i)

βνjθ |τ



+ θχi|τ (2)

The above equation (2) signifies that the self-influence for an agent reduces with increase of its degree. In other words, the
more neighbors an agent communicates to, the less it relies just on its own observation. The evolution of a measure for an
agent over slow-time epochs is illustrated in Fig. 2. In the vector notation, the dynamics can be expressed as:

νθ|τ+1 = (1− θ)Π|τ νθ|τ + θχ|τ (3)

The recursive relation in the Eqn. (3) above is expanded as:

νθ|τ+1 = (1− θ)τ+1[Π|τΠ|τ−1 · · ·Π|0]νθ|0 + θχ|τ

+θ(1− θ)Π|τχ|τ−1 + θ(1− θ)2Π|τΠ|τ−1χ|τ−2

+ · · ·+ θ(1 − θ)τΠ|τΠ|τ−1 · · ·Π|1χ|0 (4)
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Fig. 2. Illustration of Generalized Gossip strategy: evolution of measureνθ of agenti over slow-time epochs; superscriptNb denotes immediate neighbors
andNb2 denotes second-order neighbors

Thus, this policy is simply a gossip algorithm with varying inputχ|τ and varying network topology represented byΠ|τ . The
memory of a past input fades as a function of the parameterθ. Due to this notion, the above policy can be called ageneralized
gossip algorithmwith θ as the generalizing parameter. The decentralized strategyis described in an algorithmic form below:

Algorithm 2: Generalized Gossip policy
Choose global parametersθ, β
τend: Total simulation time in the slow scale
τ = 1
νθ|τ = 0 Initialize Measure values for all agents
χ|τ = 0 Initialize State characteristics function for all agents
while τ < τend do

Evaluateχ|τ based on observations made by agents during slow-time epochτ
for all Agent i do

Determine degreedi for current slow-time epoch
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Current observation:χi|τ
Current measure value:νiθ|τ
Collect current measure values from neighbors:νjθ |τ ∀j ∈ Nb(i)
Compute future measure value:
νiθ|τ+1 = (1− θ)

[

(1− βdi)νiθ|τ +
∑

j∈Nb(i) βν
j
θ |τ

]

+ θχi|τ
end for
χ|τ+1 = 0 Reset State characteristics function for all agents
τ ← τ + 1

end while

3. CONVERGENCE OFSTATISTICAL MOMENTS

The convergence results presented here naturally involve expected quantities due to the inherent stochastic nature ofthe
problem. Thus, even in the steady state,νθ will always fluctuate in the slow time-scale due to the fluctuations in Π andχ.
However, interesting observations regarding slow time-scale evolution of the system can be made in terms of statistical moments
of νθ computed over the agent population. In this paper, both average (over agents)Ma[·] and variance (over agents)Va[·] of
νθ are considered at a steady state. Note,νθ|τ at a slow time instantτ is anN -dimensional vector, whereN is the number
of agents in the population. Hence,Ma[νθ|τ ] andVa[νθ|τ ] are respectively scalar average and variance values, whereνθ|τ is
considered as a random variable withN samples. In general, the functionsMa[·] andVa[·] are defined on anN dimensional
column vectorx = [x1, x2, ..., xN ]T as follows:

Ma(x) =
1

n
1x = xavg (5)

where1 is a row vector with all elements as 1. After the mean is subtracted, let the resulting vector be denoted asx̃, i.e.,
x̃ = x− xavg1T . Therefore,Va(x) = x̃T x̃.

A. Convergence of Measure Average over Agents

Recall the system dynamics as given in Eqn. (3).

νθ|τ+1 = (1− θ)Π|τ νθ|τ + θχ|τ (6)

The following equation is obtained by pre-multiplying1
n

1 on both sides of Eqn. (6).,

νavgθ |τ+1 = (1 − θ)νavgθ |τ + θχavg |τ (7)

Note, 1Π|τ = 1, asΠ|τ is doubly stochastic. Expanding Eqn. (7), one obtains

νavgθ |τ+1 = (1− θ)τ+1νavgθ |0 + θχavg |τ

+θ(1− θ)χavg|τ−1 + θ(1 − θ)2χavg|τ−2

+ · · ·+ θ(1 − θ)τχavg|0 (8)

Considering the unrestricted 2-D random motion of the agents in the entire region, the ensemble expectation ofχavg|k is
denoted asE[χavg] ∀k (i.e., no time dependency). In this case,E[χavg] signifies the fraction of agents that visit the hotspot on
the average. Therefore, it is evident that, with a constant strength of the hotspot,E[χavg] remains constant over time. Taking
(ensemble) expectation on both sides of Eqn. 8, the following relation is obtained at a steady state (asτ →∞).

E[νavgθ |∞] = θ[1 + (1− θ) + (1 − θ)2 + · · · ]E[χavg]

= θ[1− (1− θ)]−1E[χavg]

= E[χavg] for θ ∈ (0, 1] (9)

Therefore, using the notation of steady-state average (over agents) introduced before, the steady-state expected measure average
(over agents) is obtained as:

E[Ma(νθ)] = E[Ma(χ)] (10)

Convergence of the average measure to averageχ implies that, at a steady state, the sum ofχ values over agents is same as
the sum ofν values over agents. In general, the physical significance isthat the detection decision of a hotspot by few agents
is being redistributed as awareness over a (possibly) larger number of agents, where the total awareness measure is conserved.
From this perspective, it is interesting to know the nature of measure distribution in the agent population and measure variance
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(over agents) provides an insight in this aspect. For example, an extreme case would be when measure variance is zero, that is
all agents have the same measure and it is equal to the averagemeasure of the population. In literature, this scenario is known
as consensus. An opposite extreme case is when there is no awareness propagation; only those agents that have detected a
hotspot (i.e., have nonzeroχ) have nonzero measure. The measure variance is equal to the variance ofχ in this case and
the hotspot can be localized very well following the measuredistribution due to a sharp localization gradient. Thus, measure
distribution essentially dictates a tradeoff betweenPropagation RadiusandLocalization Gradientand variance ofν over agents
quantifies the position of the system in this tradeoff scale.

B. Convergence of Measure Variance over Agents

For variance calculation, consider post-multiplication of 1T on both sides of Eqn. (7),

νavgθ |τ+11T = (1− θ)νavgθ |τ1T + θχavg|τ1T

⇒ νavgθ |τ+11T = (1− θ)νavgθ |τΠ|τ1T + θχavg|τ1T (11)

The above equation presents the mean dynamics for the system. Now, the following equation is obtained by subtracting the
mean dynamics in Eqn. (11) from the system equation in Eqn. (6).

ν̃θ|τ+1 = (1− θ)Π|τ ν̃θ|τ + θχ̃|τ (12)

For calculation of variance (over agents),

(ν̃θ|τ+1)
T (ν̃θ|τ+1) = (1− θ)2(ν̃θ|τ )

T (Π|τ )
T (Π|τ )(ν̃θ|τ )

+θ2(χ̃|τ )
T (χ̃|τ ) + 2θ(1− θ)(ν̃θ |τ )

T (Π|τ )
T (χ̃|τ ) (13)

At this point, one needs to take ensemble expectation on bothsides. Since closed form results may not be analytically tractable
in general, certain assumptions are made that may restrict the problem scenario to some extent. It is evident from the discussion
till now that there exists two fundamental aspects of the problem, one related to network evolution and the other relatedto
agent state dynamics and they can have very different time scales. Let us consider a case, where the time scales of these two
aspects are comparable, which means that, at each slow-timeepochτ (when the agent measures are updated), the system has
an independent agent interaction matrixΠ as well as an independent state characteristic vectorχ. Physically, this requires
the agents to move fast enough or the message lifetime to be large enough so that temporal correlations die out between two
slow-time epochs. This case is referred to as the Congruous Time Scale (CTS) case in this paper. Formally, the following
assumptions are made for the CTS case.

• By problem setup,Π at any slow-time epoch depends on the mobility characteristics of the agent population and the
message lifetimeLm, neither of which is affected by the presence of a hotspot. Onthe other hand, the vectorχ at any
slow-time epoch captures the information regarding hotspot detection by agents irrespective of inter-agent communication.
Hence, it is assumed thatΠ|i andχ|k are independent for everyi andk.

• In this setup, the motion dynamics of an agent take place at a fast time-scale, denoted byt, andΠ captures the inter-agent
communication characteristics (due to agent motion) for a window of fast time-scale. Now, for a large enough window
(i.e., a large value ofLm), it is assumed that the fast time-scale mobility correlation dies out within a relatively short
period. As a consequence,Π|i andΠ|j become mutually independent for everyi andj.

• The agents move fast enough (or in other words, the hotspot length scale is reasonably small compared to the scale of
agent motion) such thatχ|i andχ|j are independent for everyi andj.

The first two assumptions are feasible under fairly general conditions, whereas the third one requires a special condition of
agent mobility. The simulation scenario presented in Section 4 provides an example. Future studies will explore the feasibility
conditions of these assumptions in greater details.

By an application of Eqn. (13) under the above assumptions, it follows that the ensemble expectation (givenν̃θ|τ ) on both
sides is:

E[(ν̃θ|τ+1)
T (ν̃θ|τ+1)|ν̃θ|τ ] =

(1− θ)2(ν̃θ|τ )
TE[(Π|τ )

T (Π|τ )](ν̃θ|τ ) +

θ2E[(χ̃|τ )
T (χ̃|τ )] + 2θ(1− θ)(ν̃θ|τ )

TE[(Π|τ )
T ]E[(χ̃|τ )] (14)

Since all the agents perform a random walk motion, they are equally likely to visit the hot spot. This implies thatE[(χ̃|τ )] = 0.
Furthermore,

(1 − θ)2(ν̃θ|τ )
TE[(Π|τ )

T (Π|τ )](ν̃θ |τ ) ≥ 0 (15)
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Therefore, for the lower bound

E[(ν̃θ|τ+1)
T (ν̃θ|τ+1)|ν̃θ|τ ] ≥ θ2E[(χ̃|τ )

T (χ̃|τ )]

⇒ E[(ν̃θ|τ+1)
T (ν̃θ|τ+1)] ≥ θ2E[(χ̃|τ )

T (χ̃|τ )] (16)

The expected (steady-state) variance is expressed as:E [Va[νθ]] = E[(ν̃θ|τ+1)
T (ν̃θ|τ+1)]. Using a similar notation forχ, one

has:
E [Va[νθ]]

E [Va[χ]]
≥ θ2 (17)

Note, by constructioñνθ|τ ⊥ 1T [20]. Also, 1 is the stationary vector (left eigenvector corresponding to the unity eigenvalue)
of a doubly stochastic matrix. Therefore,

(ν̃θ|τ )
TE[(Π|τ )

T (Π|τ )](ν̃θ|τ ) ≤ Λ2(ν̃θ|τ )
T (ν̃θ|τ ) (18)

where,Λ2 = λ2

(

E[(Π|τ )
T (Π|τ )]

)

. Therefore, for the upper bound

E[(ν̃θ|τ+1)
T (ν̃θ|τ+1)|ν̃θ|τ ] ≤ (1− θ)2Λ2(ν̃θ|τ )

T (ν̃θ|τ )

+θ2E[(χ̃|τ )
T (χ̃|τ )]

⇒ E[(ν̃θ|τ+1)
T (ν̃θ|τ+1)] ≤ (1− θ)2Λ2E[(ν̃θ|τ )

T (ν̃θ|τ )]

+θ2E[(χ̃|τ )
T (χ̃|τ )] (19)

At a steady-state,E [Va[νθ]] = E[(ν̃θ|τ+1)
T (ν̃θ|τ+1)] = E[(ν̃θ|τ )

T (ν̃θ|τ )]. Therefore,

E [Va[νθ]]
[

1− (1− θ)2Λ2

]

≤ θ2Va[χ]

⇒
E [Va[νθ]]

E [Va[χ]]
≤

θ2

1− (1− θ)2Λ2
(20)

Note, θ ∈ (0, 1] andΛ2 ∈ [0, 1]. Figure 3 presents the plot of upper bounds of the variance ratio E[Va[νθ ]]
E[Va[χ]]

with θ for three
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Fig. 3. Upper bounds of the variance ratioE[Va[νθ]]
E[Va[χ]]

as a function ofθ andΠ|τ under CTS assumptions; lower bound is independent ofΛ2 and coincides
with the upper bound forΛ2 = 0

possible values ofΛ2. Note that the lower bound of the variance ratio is independent of Λ2 and coincides with the upper
bound forΛ2 = 0.

It is understood that CTS is a special case in the spectrum of time-scale comparison of network evolution and the associated
information propagation. In the CTS case, these time scalesare congruous or comparable. On the other end of this spectrum,
one can consider a situation where the two time scales are very different such that, the network evolution (the slow dynamics)
and the agent state updating (the fast dynamics) can be treated independently as it is done in theSingular Perturbation theory.
The problem becomes much simpler in this case as one may assume thatΠ andχ remain time-invariant over the course of
transience in the agent state dynamics, i.e., agent measures converge before there is a change inΠ andχ. This case is referred
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to as the Disparate Time Scale (DTS) case in this paper. Underthe DTS assumptions,Π andχ are not necessarily functions
of τ . Therefore, from Eqn. (4), asτ →∞, one has:

νθ|∞ = θχ+ θ(1 − θ)Πχ+ θ(1 − θ)2Π2χ

+θ(1− θ)3Π3χ · · · (21)

The following equation is obtained by subtracting the mean dynamics from Eqn. (21).

ν̃θ|∞ = θχ̃+ θ(1 − θ)Πχ̃+ θ(1 − θ)2Π2χ̃

+θ(1− θ)3Π3χ̃ · · · (22)

Using the above equation, the measure variance over agents is calculated as:

Va[νθ] = θ2χ̃T χ̃+ θ2(1− θ)χ̃TΠχ̃+ θ2(1− θ)χ̃TΠT χ̃

+θ2(1− θ)2χ̃TΠTΠχ̃+ θ2(1− θ)2χ̃TΠ2χ̃

+θ2(1− θ)2χ̃T (Π2)T χ̃ · · · (23)

As Π is symmetric, one has:

Va[νθ] = θ2χ̃T χ̃+ 2θ2(1− θ)χ̃TΠχ̃

+3θ2(1− θ)2χ̃TΠ2χ̃ · · · (24)

SinceΠk s are positive definite fork ∈ N, the lower bound is obtained as:

Va[νθ]

Va[χ]
≥ θ2 (25)

Using the same logic as before, it is evident thatχ̃TΠkχ̃ ≤ λ2(Π
k)χ̃T χ̃ for k ∈ N. Also, λ2(Π

k) = λk
2(Π) andλ2(Π) is

denoted simply asλ2 in the sequel. Therefore,

Va[νθ] ≤ θ2Va[χ] + 2θ2(1 − θ)λ2Va[χ]

+3θ2(1− θ)2λ2
2Va[χ] · · · (26)

Based on the infinite sum, the upper bound is obtained as:

Va[νθ]

Va[χ]
≤

θ2

[1− (1 − θ)λ2]2
(27)

Note, θ ∈ (0, 1] andλ2 ∈ [0, 1]. The upper bound for the variance ratio calculated above is valid for a particularΠ. Figure 4
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Fig. 4. Upper bounds of the variance ratioVa[νθ]
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as a function ofθ andΠ under DTS assumptions; lower bound is independent ofλ2 and coincides with
the upper bound forλ2 = 0

presents the plot of upper bounds of the variance ratioVa[νθ ]
Va[χ]

with θ for three possible values ofλ2. Note that the lower bound
of the variance ratio is independent ofλ2 and coincides with the upper bound forλ2 = 0.
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(a) Control Parameter,θ = 0.01
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(b) Control Parameter,θ = 0.10
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(c) Control Parameter,θ = 0.90
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(d) Control Parameter,θ = 0.01
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(e) Control Parameter,θ = 0.10
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(f) Control Parameter,θ = 0.90

Fig. 5. Propagation of global awareness for hotspot length scaleλ = 0.10 on a mobile-agent network with message lifetimeLm = 30. Plates (a), (b), (c)
show the time evolution of average (over agents) ofχ andν and plates (d), (e), (f) show the time evolution of variance (over agents) ofχ andν; hotspot is
switched on atτ = 2 and switched off atτ = 280 for θ = 0.01 and atτ = 70 for θ = 0.10, 0.90.

It is observed in both cases that the upper bound and lower bound coincide asθ approaches extreme values,0 or 1 and as
seen in Section 4,Va[νθ] → 0 as θ → 0 andVa[νθ] → Va[χ] as θ → 1. In other words, the agent population approaches
consensusasθ → 0 (but 6= 0). In this case, although the entire population becomes aware of the hotspot, there is no localization
gradient as every agent has the same measure. On the other hand, with θ → 1, the localization gradient improves at the cost of
propagation radius. In general,Va[νθ] decreases with a reduction inθ. The other system component affecting the variance ratio
is theΠ matrix. In both CTS and DTS cases, this effect is realized through the second largest eigenvalue ofΠ. Reduction in
the magnitude of the second largest eigenvalue ofΠ signifies more connectivity among agents. This fact explains the reduction
in variance ratio with a decrease in the second largest eigenvalue.

4. VALIDATION BY NUMERICAL SIMULATION

An example problem of surveillance and reconnaissance is presented in this section, which involves the mobile multi-agent
network and the interaction policy as explained in Sections2-A and 2-B.

A. Problem Statement

Let us consider a surveillance and reconnaissance mission for a region of areaA performed byN mobile agents, where
each agent has a radius of communicationR. The agents are moving in the region with a 2-D random walk fashion with speed
(i.e., displacement per unit time)v. The individual mission goal of the agents is to detect existence of any possible hotspot in
the region and communicate this information to their neighboring agents. The information that an agent wants to communicate
based on its recent observation, has a message lifetimeLm units in the fast time-scale (corresponding to the agent’s motion).
Thus, an epochτ in the slow time-scale spans overLm units of time in the fast time-scale. However, detection of ahotspot does
not affect mobility characteristics of agents. The global mission objective is to control the extent of information propagation
across the mobile agent network. For the simulation study, the parameters are chosen as follows:A = 10002, N = 100,
R = 100, andv = 20. The message lifetime (Lm) is taken to be30 time units. As described earlier, the state characteristic
functionχi of agenti becomes1 upon detecting a hotspot; otherwise,χi remains0. Also given the detection model described
in Section 2-B, probability of successful detection depends on the proximity of the agent to the center of the hotspot. After
the expiry of message lifetimeLm, theχ value of an agent resets to0. The values of agent measure (ν) are updated based on
the agent interaction policy described earlier.
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Simulation runs have been conducted with different values of θ. In this paper, observations regarding convergence of statistical
moments (e.g., mean and variance) ofνθ with θ = 0.01, 0.10, and0.90 are presented. Top three plates, (a), (b) and (c), in
Fig. 5 present the time evolution of average (over agents) and the bottom three plates, (d), (e), (f), present the corresponding
variance (over agents) for time-series ofχ andν. The hotspot is switched on atτ = 2 for all experiments and switched off at
τ = 280 for θ = 0.01 and atτ = 70 for θ = 0.10 and0.90.

B. Results & Discussions

It is observed in plates (a), (b) and (c) of Fig. 5 that, after the appearance of hotspot, the average (over agents)ν converges
to the average (over agents)χ at the steady state for three different values of the controlparameterθ, where the convergence
time decreases with an increase inθ. The above observation is explained below.

It follows from Eqn. (3) that the system dynamics depend on the largest eigenvalue of(1−θ)Π|τ . SinceΠ|τ is an irreducible
stochastic matrix, Perron-Frobenius theorem ensures thatits largest eigenvalue is 1; thus, the largest eigenvalue of(1−θ)Π|τ is
(1−θ). Therefore, it is expected that the convergence time will increase with decrease inθ. Moreover, the first order dynamics
can be observed in the time evolution of averageν; this can be attributed to the uniqueness of the largest eigenvalue ofΠ.
Plates (d), (e), (f) of Fig. 5 show that the steady state variance (over agents) ofν increases with increase inθ; also,Va[ν]→ 0
as θ → 0 andVa[ν] → Va[χ] as θ → 1. These observations regarding the dependence of steady-state statistical moments of
the agent measure on system parameters further validate theanalytical claims made in the previous section.

Figure 6 shows the results of numerical simulation for verification of upper and lower bounds on the variance ratiosE[Va[νθ]]
E[Va[χ]]

and Va[νθ ]
Va[χ]

for CTS and DTS assumptions, respectively. The results for CTS are presented in Fig. 6(a), where the simulation
results to closely follow the upper bound for this particular case. While the expected degree of the network is kept as3, high
speed (v ∼ 100) is assumed for agents to achieve the conditions described in the CTS assumptions. Results of numerical
simulation for DTS are presented in Fig. 6(b) that shows the data for two cases with expected degree of the network as3 and
7. The agent speed is kept nonzero but very low (v ∼ 5) to achieve the conditions described under the DTS assumptions.
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Fig. 6. Simulation-based verification of bounds on varianceunder CTS and DTS assumptions

Remark 4.1:It is noted that the upper bounds on the variance ratio for both CTS and DTS cases are found to be functions
of the second largest eigenvalue of the agent interaction matrix Π which, in turn, is a function of the degree of the network.
However, the degree is not the only network parameter that determines the decision propagation characteristics as it isobserved
in the simulation for both CTS and DTS cases. Therefore, it isevident that, apart from the network degree, comparability
between time scales of network evolution and agent state dynamics also plays a key role in determining the network system
characteristics.

5. SUMMARY, CONCLUSIONS ANDFUTURE WORK

This paper addresses the problem of decision/awareness propagation in a mobile-agent network environment for surveillance
and reconnaissance. A distributed decision propagation algorithm has been constructed based on the concepts of recently
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developed language-measure theory [14][15]. A completelydecentralized implementation of this algorithm is shown tobe
useful for propagation of awareness regarding a local hotspot in the operational area. Analytical results have been obtained for
convergence of (awareness level) measure distribution in the agent population. A (user-defined) critical parameterθ controls
the tradeoff between the propagation radius and the localization gradient, whereθ has both temporal effects (e.g., convergence
time) and ensemble effects (e.g., the measure distributioncharacteristics in the agent population). In this setting,consensus
can be achieved asθ → 0.

Two cases, congruous time scale (CTS) and disparate time scale (DTS), relating the time scales of network topology and
agent interaction are presented and validated by numericalsimulation on a test bed for a typical example problem. In this
algorithm, the system is reset automatically upon removal of a hotspot. Another advantage of this approach is that it naturally
extends to multiple hotspot scenarios. However, it will be interesting to investigate such conditions with both homogeneous
and heterogeneous hotspots. Following are the future research directions that are currently being pursued:

• Analytical evaluation of the expected characteristics ofΠ (e.g., the second largest eigenvalues), given the expected
characteristics of the proximity network;

• Analysis of convergence dynamics/time under the current framework;
• Investigation of scenarios with asynchronous measure updating and heterogeneous message lifetime distribution;
• Exploration of the feasibility conditions of the assumptions made for the CTS case and the possibility of relaxing these

assumptions for variance calculation;
• Identification of quantitative rules to distinguish between a CTS case and DTS case;
• Evaluation of Generalized Gossippolicy with more realistic hotspot detection model (e.g., inclusion of false alarm

possibility);
• Extension of the decentralized policy presented here to be used forevent-triggeredor self-triggeredco-operative control

problems.
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APPENDIX A
ANALYSIS OF PROXIMITY NETWORKS

This appendix analyzes the effects ofLm on the time averaged proximity network topology that is primarily represented by
the statistics of the degree of a network node. Although these definitions are straightforward for static networks, theyneed to
be carefully constructed in the present context of dynamic networks.

Definition 5.1: (Degree and Degree Distribution) The degreek of a node (agent) is defined to be the number of network
nodes to which it is connected; and the degree distributionP (k) for a network is defined to be the probability distribution of
degrees over the entire network. LetP (k|Lm, i) be the distribution (computed over time) of the number of distinct nodes that
communicate with a given nodei within its message lifetimeLm(i). The degree distribution is defined as:

P (k|L̄m) ,
1

n(L̄m)

∑

i:Lm(i)=L̄m

P (k|L̄m, i) (28)

wheren(L̄m) is number of nodes in the network with message lifetimeL̄m. Finally, the overall network degree distribution
is defined as the expected value ofP (k|Lm), i.e.,

P (k) ,
1

N

∑

Lm

n(Lm) P (k|Lm) (29)

whereN is total number of nodes in the network.
It is reported in literature [7][21] that the degree distributions for proximity networks have different structures (e.g., Poisson

distribution and power law distribution as in scale-free networks), depending on the parameters of the mobile-agent dynamics.
For the parameters selected in Section 4, the time-averageddegree distributionP (k|Lm) follows the Poisson distribution as
explained below.
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Fig. 7. Variation of expected degree< k > of the network with homogeneous message lifeLm.

Let the nodei have the message lifetimeLm and let the probability that an agentj (j 6= i) is within the zone of communication
of i within the time windowLm be denoted aspij(Lm) (that is obviously an increasing function ofLm). At a given stage of
network evolution, let the probability thati andj communicate in the next time step be modeled asαgigj(≤ 1), wheregl is
called thegregariousness(i.e., the tendency to communicate with other agents) of agent l in accordance with social network
literature [7][21] and letα be a parameter that incorporates spatial information of thenetwork (e.g., agent density). Note that
gl is a function of the radius of communication and velocity of agent l.

With this model and assuming independent activity at each time step, the probability that the nodesi and j (i 6= j) do
not communicate withinLm is (1 − αgigj)

Lm . Therefore,pij(Lm) = 1− (1− αgigj)
Lm . The expected value< k >i of the
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degree of the nodei is obtained as:

< k >i =

N
∑

j=1

pij(Lm)

≃ αLmgi(
∑

j

gj) for αLm ≪ 1 (30)

The assumption ofαLm ≪ 1 is realized ifα is very small and at the same timeLm is not very large; a smallα provides an
upper bound on the maximum number of nodes that the nodei can communicate in one time step; this is called theexclusion
constraint [7]). In this paper, the radius of communication and velocity are kept invariant for every node, implying that all
nodes share a uniform gregariousnessg. Therefore,pij(Lm) is independent of agent specificationsi and j and is denoted
as p(Lm) or simply p. Also, all agents are assumed to have same message lifetimeLm. With these assumptions, numerical
experiments are performed to calculate the expected degree< k > of the network for various values of homogeneousLm.
Figure 7 shows the result obtained from these experiments and an approximately linear relation between< k > andLm (as
derived before) is observed beyondLm = 9. Now, with homogeneousp andLm across the network, the degree distribution
P (k|Lm) is written as:

P (k|Lm) =

(

N

k

)

pk(1− p)N−k

≃
< k >k

k!
e−<k> for N >> 1 (31)

Figure 8 shows the degree distributionP (k|Lm) obtained from numerical experiments performed forLm = 1, 20, 30 to be
Poisson in nature. Note that the degree distribution forLm = 1 represents the characteristics of a static proximity network.
However, it is shown in [7] that by choosing non homogeneouspij(Lm), one may obtain other types of degree distributions
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Fig. 8. Plots of degree distributionP (k|Lm) of the mobile-agent network forLm = 1, 20, 30.

(e.g., power-law distribution) as well. Thus, degree distribution and expected degree of the network (i.e., the expected network
topology) can be controlled by varyingLm.
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APPENDIX B
BASIC NOTIONS OFLANGUAGE-MEASURE THEORY

This appendix summarizes the concept of real measure of probabilistic regular languages generated by probabilistic finite
state automata (PFSA) [14], [15]. However, since the topic of regular languages is beyond the scope of this paper, the concept
of real measures have been restricted only to irreducible Markov chains.

A. Brief Review

Let a stationary Markov chain be denoted by the 3-tuple(Q,Π, χ), whereQ = {q1, q2, ..., qN} is the set of states; the state
transition functionΠ : Q×Q→ [0, 1] depicts the transition probabilities of the Markov chain and Π is expressed in the from
of anN ×N stochastic matrix; and the state characteristic functionχ : Q→ R assigns a signed real weight to each state. As
the number of states is finite, the vector form of the characteristic function is written asχ =

[

χ1, χ2, ...χN
]T

.
A real measureνiθ for statei is defined as

νiθ ,

∞
∑

τ=0

θ (1− θ)
τ
v
iΠτχ (32)

whereθ ∈ (0, 1] is a user-specified parameter; andv
i, defined as a1×N vector

[

vi1, v
i
2, ..., v

i
N

]

, is given by

vij =

{

1 if i = j
0 if i 6= j

(33)

Remark 5.1:(Physical Significance of Real Measure) Let us assume that the current state of the Markov precess isi, i.e.,
the (1 × N) state probability vector isvi. At an instantτ time-steps in the future, the state probability vector is given by
v
iΠτ . Further, the expected value of the characteristic function is given byviΠτχ. The measure of statei, as described by

Eqn. (32), is the weighted expected value ofχ over the all the time-steps in future for a the Markov processthat begins in
statei. The weights for each time-step (θ (1− θ)τ ) is a function of the single parameterθ. In addition, the weights form a
decreasing geometric series whose sum equals to 1. As a result, the measureνiθ is a convex combination of all the elements
of theχ vector andminj χ

j ≤ νiθ ≤ maxj χ
j ∀i ≤ N .

The expression for the the measure in Eqn. (32) is expressed in an alternative equivalent form

νiθ = θvi (I − (1− θ)Π)−1 χ (34)

The inverse is guaranteed to exist forθ ∈ (0, 1].
From Eqn. (32), the measure of all the states denoted by the vector νθ =

[

ν1θ , ν
2
θ , ..., ν

N
θ

]T
is written as

νθ = θ (I − (1 − θ)Π)
−1

χ (35)

Remark 5.2:(The effects of the parameterθ) The parameterθ determines the weights (θ (1− θ)
τ ) assigned to the expected

characteristic function for time stepτ . In particular,θ controls the the rate at which the weights decrease with increasing values
of τ . Large values ofθ forces the weights to decay rapidly, thereby placing more importance to the characteristic functions
of states that are adjacent (connected with fewer hops) to the initial statei. In fact, θ = 1 implies thatνiθ = χi. On the other
hand, small values ofθ captures the interaction with a large neighborhood of connected states. Asθ → 0, the dependence of
on the initial statei slowly decays (providedΠ is irreducible) and all the states converge to the same valueof measure.


