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Abstract

This paper develops a distributed algorithm for decisioaf@ness propagation in mobile-agent networks. A timesdeent
proximity network topology is adopted to represent a mebdent scenario. The agent-interaction policy formulgtede is
inspired from the recently developed language-measw@eryh Analytical results related to convergence of staastmoments of
agent states are derived and then validated by numericallation. The results show that a single (user-defined) pat@min
the agent interaction policy can be identified to control tilaeleoff betweerPropagation Radiugi.e., how far a decision spreads
from its source) and.ocalization Gradient(i.e., the extent to which the spatial variations may affectlization of the source)
as well as the temporal convergence properties.

1. INTRODUCTION

Analysis and development of distributed decision propagatnd control mechanisms in mobile-agent networks hasevialr
much attention due to their relevance in engineering probld=or example, surveillance and reconnaissance by autmue
vehicles with limited capabilities, trust establishmemtsmobile ad hoc networks (MANETS) [1] and threat monitoring
mobile sensor networks. In many applications, diffusioragfiregated information is more relevant compared to iddafi
sensor information [2], [3] mostly due to its robustnessridividual agent’s failure in detection/communicationrtiermore,
in a resource-constrained environment, mobile agents patential advantages over static networks in terms of agerand
time-criticality. In this context, this paper deals withoghl propagation of a localized awareness in a leaderlessoament
in a robust and completely distributed manner.

In general, there are two aspects of interacting agentsgsteamely (i) network topology and (ii) agent interactigmamics.
Network topology is inherently time-varying in the preseonntext, which makes the analysis of such complex systenchmu
harder compared to their static counterparts. Usuallyil@irtime-varying situations arise in social networks [4ldathey are
modeled by various graphical structures, such as: multigiances of uniform random graphs, scale-free networlissarall-
world networks [5]. Synchronization problems have beervesblfor time-varying networks where essentially the nekwor
topology is modeled as fast switching among a finite numbeinstances of random graphs with same specifications [6].
However, all such models do not necessarily consider thaetagebility statistics or inter-agent communications doe t
proximity. Recently, so-called proximity networks [7] ¢al called the moving neighborhood networks [8]) has beeiyasd
to model contact/collision-based disease spreading. Miaig be considered as the first step towards analyzing thelenobi
agent scenario in an actual sense. In a recent paper [9],utnent authors used such developments to model mobiletagen
networks for engineering applications. The mobile-agesttvork used in this paper follows the same structure. Reéggrd
the second aspect of the problem, distributed agent interadynamics for decision propagation has several meshai
available in literature, examples are game theoretic [ibJohy inspired, physics inspired (Ising/Potts modelsP][bootstrap
percolation [11] and majority voting [12]. Gossip algonikh are the most studied interaction dynamics in the contéxt o
consensus [13]. However, in many applications, large gsamfpagents do not seek consensus. Often localized perolati
decision is desired to localize the information source.

The main contribution of this paper is the development of strithuted decision propagation algorithm inspired from
the recently developelhnguage-measure theoff4][15] for a time-dependent network topology. A singlergraeter in the
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algorithm is identified to control the tradeoff betwepropagation radius(i.e., how far a decision spreads from its source)
and localization gradient(i.e., the extent to which the spatial variations may affecalization of the source). Analysis of
(up to second order) moment dynamics [16], [17] is preseatetithe results are validated by numerical simulation.avare
analysis is performed under the following two conditions:

0] Congruous time-scalewvhen the evolution of network topology and dynamics of agetgractions have similar time

scales. and

(i)  Disparate time-scalewhen faster dynamics of agent interactions can be treatsthgslar perturbations with respect

to the slower evolution of network topology.

The paper is organized in six sections including the preseat The representation of a mobile-agent scenario in tefms
proximity networks and the agent interaction policy arespreed in Section 2. Section 3 presents the main resultgdimg)
their physical significance. These results are validateduperical simulation in Section 4. Finally, the paper is mamzed
and concluded in Section 5 with recommendations for futuoekwTwo appendices are provided to (i) explain the proxmit
networks in a greater detail and (ii) to briefly describe tlasib concepts of the language-measure theory.

2. FORMULATION OF THE PROBLEM

Let us consider the case of multiple agents performing $llawee, where the agents are tasked with detection of threa
in a given region. A typical example of such a threat could henes of harmful chemicals that have to be detected. Taking
into account the nature of these threats, they may be modaledlocal hotspot within the surveillance region. Only a few
agents that search areas within the hotspot have a non-rebalplity of detecting the threat. The aim of this paperds t
develop a distributed and leader-less algorithm for mohdents that is able to disseminate the information of a thea
other agents that may be far off from the local hotspot in arotled fashion. Previous literature [18] have extensiatldied
the gradient-based approaches for detection of a hotspeseTapproaches primarily focus on the moving agents tenasl
hotspot based on distributed estimation of gradients. lWewen this application, it is required that all agents dddeecome
cognizant of the presence of the threat while operating anditaoring in their own respective local areas. In the praubs
approach, the presence of a hotspot does not affect the motithe agents. Instead, the information states of othentage
are updated to reflect the required level of awareness thaadgkents should possess regarding the threat. The motivatie
is to disseminate information away from the local hotspothi® entire population of agents. This section describesdhep
of mobile-agent population in terms of proximity network§ and subsequently formulates the agent interaction yolic

A. Model Description

Proximity network is a particular formulation of time-vamg mobile-agent networks, inspired from social netwotksthis
setup, mobile agents move around in an operational regitmthéir own mobility characteristics. They communicatéwvéach
other as they become proximal to each other; a link is estaddi from the network perspective between two communigatin
agents. The network links do not necessarily affect the htploharacteristics of the agents. Once a link is establight
is kept for a certain time period (which is termed as the ngesdidetime in this paper). As time progresses, more linkes ar
established and at the same time, older links disappear éftery of their respective message lifetime. In this fashithe
network evolves in time. A specific scenario considered aghper is formally presented in the sequel.

Let the area of a two dimensional (Euclidean) operationgiore be A. In the present casel is assumed to be a square
area with side lengtil, i.e., A = L2. Initially, N agents are distributed randomly in the given area, and teataggensity
is defined asp = N/A. The uniform radius of communication for each agent is desdiy R, i.e., two agents can only
communicate (e.g., to exchange messages) when the didiatween them is less thal The agents move in a 2-D random
walk fashion where the speadis same for all agents in the current setup. The random waitkatized by independently
choosing a direction of motion from a uniform distributiéH0, 27), by all agents at each time step. During its motion, each
agent broadcasts a message over a certain time window tlcatlésl themessage lifetimd.,,,. In the present context, the
message can be information-related to an agent’s beliefdétg its environment. At the same time, the agent recesiredar
messages from other proximal agents, which may come witfl@rcommunication radiuB. After expiry of a message lifetime,
an agent possibly updates its belief based on its own olsemvand messages from other agents. This aspect is formally
addressed in the next section.

In contrast to the faster time-scalg) ©f agent motion, the algorithm for updating the agentsidiglruns on a slower
time-scale (denoted ag. The time-scale for updating the belief is chosen to be stoas it allows for sufficient interactions
among the agents, especially if the density of agents isAdter the updating, an agent starts broadcasting its neveftfelr
another window of the message lifetime. For example, if tressage lifetime.,,, is very small, then the network may not
be able to build up over time and possibly remains sparse.h@rother hand, the network would eventually become fully
connected ad.,, — oo. Thus, to capture temporal effects in a realistic settihg, should be appropriately chosen based



on other network parameters. It is noted that, although tipglacf messages may occur in a non-synchronous manner in
the agent population, only synchronous updating is cons@lan this paper for analytical tractability of the agerteiaction
policy without explicitly addressing the issue of obstaal®idance. In this context, the notion of the degree of a adtis
introduced below.

Definition 2.1: (Degree of a node (or an agent)) The degié® ¢f a node ¢) is defined to be the number of distinct nodes
in the network, to which it connects (e.g., for informatiamnemunication) within a specified message lifetifg .

A brief discussion on the nature of the distribution of thgme of a node and the expected degree of this network class
is provided in Appendix A while the details are reported iih [9

B. Agent Interaction Policy

The agent interaction policy developed in this paper is re&sly inspired from the concepts of signed real measure of
probabilistic regular languages generated by probaibilistite state automata (PFSA) [14], [15]. However, the detare not
presented here for simplicity and only the policy is desadlibn a self-sufficient way. A brief discussion on the theofy o
language measure is provided in Appendix B.

The PFSA is developed on a graphical interaction model antoaggents by the process described below.

1) Interaction Graph: The interaction graph is constructed in terms of the adjgcenatrix of the mobile agent network
after the expiry of the message lifetinig,. To this end, the following definitions are introduced.

Definition 2.2: (Adjacency Matrix [19]). Let a time-dependent (in the slevaler) graph be denoted &s. The adjacency
matrix A of the graphG is defined such that its elememy; in the ;" position is unity if the agent communicates with the
agentj in the time period ofL,,,; otherwise the matrix elemean; is zero. To eliminate self-loops, each diagonal element of
the adjacency matrix is constrained to be zero.

The algorithm for simulating a proximity network in the cemt setting is provided below:
Algorithm 1: Proximity Network simulation

Initialize locations of N agents randomly in a 2-D region
Tend. TOtal simulation time in the slow scale
T=1
while 7 < 74,4 dO
a;jl =0 for all 4, j
for t =1— L,, (Fasttime scale of agent mobilitglo
Move each agent by one step with speeoh randomly chosen directions
for all Agentsi, j do
if dist(i,j) < R (Euclidean distance between agents less than communication radiugjen
aijlr =1
end if
end for
end for
T+ T17+1
end while

Definition 2.3: (Laplacian Matrix [19]) The Laplacian matrix’) of a graphG is defined as:
L=D-A

where the degree matri® is a diagonal matrix withi’ as itsi*" diagonal element, wher# is the degree of the node(see
Definition 2.1).
Definition 2.4: (Interaction Matrix [19]) The agent interaction matiikis defined as:

MI=1I-pCL

where the paramete? is chosen appropriately such thHt becomes a stochastic matrix and its second largest eigenval
satisfies the conditiop\s(IT)| < 1.

In the context of proximity networks, the requirement of fiieg 11 as a stochastic matrix in Definition 2.4 is achieved by
setting = 1/(d + 1), whered is a (positive integer) parameter that is pre-determinédiraé. To satisfy this condition on-line,
an agent ignores communications with distinct agents tteabayond thel agents within the message lifetinig,. However,
the expected degree distribution of the network is obtaiviédine too at the design stage (see Appendix A); thergfdres
chosen to be large enough such that the probability that ¢égeegd’ > d for any nodei is very low, i.e.,Pr(d* > d) < ¢ Vi



(for simulation exercises reported in this papehas been taken to He001). Note thatll is a stochastic and symmetric (i.e.,
also doubly stochastic) matrix due to the above construgiimcedure.

Definition 2.5: (Hotspot Model) A hotspot (i.e., a region where threats meigteis modeled as a map for probability of
detecting the threat.

Let the probability of detection of a hotspot be denotediyy, which attains the maximum at the center of the hotspot
and decays to zero linearly with distance from the center liadgally symmetric manner. In the present context, a hatipo
detected only by agents proximal to them. A hotspot is chiarged by the following two parameters:

o The maximum probability of detection of the thre&t,,,.. (= 0.8 in this study)

o The effective radiusr,s) of the circular region within whichPp > 0.5, i.e., agents further than a distancergf from

the center of the hot-spot have less tliah probability of detecting the threat.
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Fig. 1. lllustration of a hotspot with radially symmetriaestgth; probability of detection is maximum at the cented decays to zero linearly with distance
from the center

The length scale\ = r,,, /L of a hotspot is a non-dimensional quantity, whérés the side length of the operational area;
the parametek = 0.1 in this paper. Detection depends on the proximity of the atgethe center of the hotspot, i.e., the value
of Pp at its current location. An illustration of this scenariopigesented in Fig. 1. Note that the hotspot model only conside
the Type 2 (i.e., missed detection) error of a sensor; thectffof the Type 1 (i.e., false alarm) error are not consitléere
for the sake of model simplicity.

2) Decentralized StrategyThe decentralized strategy proposed here involves twoackenistic variables associated with
each agent. The first variable is called #tate characteristic functiothat signifies whether an agent has detected a hotspot
or not. The second variable is called tagent measure functiothat signifies the level of awareness or belief of an agent
regarding the presence of a hotspot in the surveillancemediormal definitions are presented below.

Definition 2.6: (State characteristic function) The state characterfsticction (¢) of the agent population is defined as
x : @ — {0,1}, where@ denotes the set of agents (nodes) and-= 1 signifies that the agenthas detected a hotspot itself
andy’ = 0 denotes otherwise.

Definition 2.7: (Agent measure function) The agent measure functigf the agent population is defined as a real measure
v:Q — [0,1], whereQ denotes the set of agents (nodeg)encodes the level of awareness or belief that agémwts about
the existence of a hotspot in the operational aréa= 0 signifies that agent has no knowledge regarding a hotspot in the
area, whereas’ = 1 means that agenthas maximum belief that a hotspot exists in the area of siawmee.

Based on the current state characteristics functiansagd measure functions’Y of the agent population, synchronous
updating of measures are updated for all agents after thieyexppone message lifetimé.,,. Naturally, L,,, is homogeneous
in the agent population. Although the global objectives banachieved through asynchronous updating with heteragsne
distribution of L,,,, a simpler condition is considered here for the sake of aicalytractability, as explained below.

If an agenti detects a hotspot, then the state characteristic funcsionaintained af® = 1 till the next global measure
updating occurs even if the agent does not see the hotspotaayfor the remaining part of the same message lifetimes. It i
noted that, based on the discussion up to this paélnt; and y are functions of the slow time-scateas discussed earlier in
Section 2-A.

In the above setting, a decentralized strategy for meagpdating in the mobile-agent population is introduced below
terms of a user-defined control parameter (0, 1].

Vé|7+1 =(1-90) Z Hij|TVg|’r + GXi|T (1)
JE{1}UND(1)



where Nb(i) denotes the set of agents in the neighborhood of agést, agents that communicate with the ageduring

the time spanr and 7 + 1. It is noted that that while computing the future (awarenasselief) measure of an agent, the

parametel controls the trade-off between the effects of current ebHervation and current measures of all agents.
Expansion of Eqn. (1) yields:

Vilrsr=(1-0) |(1=BdWhl-+ > Bl +0x'I (2)
JEND(i)

The above equation (2) signifies that the self-influence foagent reduces with increase of its degree. In other wohnds, t
more neighbors an agent communicates to, the less it relgsopn its own observation. The evolution of a measure for an
agent over slow-time epochs is illustrated in Fig. 2. In tleetor notation, the dynamics can be expressed as:

V9|T+1 = (1 - 9)H|TV9|T + 6‘X|‘r (3)

The recursive relation in the Eqgn. (3) above is expanded as:

volri1 = (1 — 9)T+1[H|TH|771 -+ HloJvelo + Ox|-
FO(1 = O x |71 +6(1 = 0)* 11| 10| 1 x| —2
e 6(1 = 6) | Ty - 1o (4)

Fig. 2. lllustration of Generalized Gossip strategy: etiolu of measure/y of agent: over slow-time epochs; superscriptb denotes immediate neighbors
and Nb2 denotes second-order neighbors

Thus, this policy is simply a gossip algorithm with varyimput x|, and varying network topology representedibly.. The
memory of a past input fades as a function of the parantetBue to this notion, the above policy can be callegeaeralized
gossip algorithmwith 6 as the generalizing parameter. The decentralized stragegdgscribed in an algorithmic form below:

Algorithm 2: Generalized Gossip policy
Choose global parametefisg
Tena. TOtal simulation time in the slow scale
T=1
vgl- = 0 Initialize Measure values for all agents
x|- =0 Initialize State characteristics function for all agents
while 7 < 7¢pq dO
Evaluatey|, based on observations made by agents during slow-time epoch
for all Agent: do
Determine degred’ for current slow-time epoch



Current observationy®|,
Current measure values |, .
Collect current measure values from neighbogg; Vj € Nb(i)
Compute future measure value:
Vilri1 = (1= 0) [(1 = B&)Wlr + Xsenn BVile] +0x'l-
end for
x|r+1 =0 Reset State characteristics function for all agents
T+ T17+1
end while

3. CONVERGENCE OFSTATISTICAL MOMENTS

The convergence results presented here naturally involpeated quantities due to the inherent stochastic natutbeof
problem. Thus, even in the steady statg,will always fluctuate in the slow time-scale due to the flutitwas in II and y.
However, interesting observations regarding slow timaesevolution of the system can be made in terms of statistioanents
of vy computed over the agent population. In this paper, bothaae(over agents)l,[-] and variance (over agents),[-] of
vy are considered at a steady state. Notg, at a slow time instant is an N-dimensional vector, wher& is the number
of agents in the population. Henddl, [vy|-] andV,[vy|,] are respectively scalar average and variance values, whgrés
considered as a random variable withsamples. In general, the functiol,[-] andV,[-] are defined on av dimensional
column vectox = [z1, s, ..., x|’ as follows:

1
M, (x) = —1Ix = x**9 (5)
n
wherel is a row vector with all elements as 1. After the mean is salb#d let the resulting vector be denotedXas.e.,

% =x —x*917, Therefore,V,(x) = X' x.

A. Convergence of Measure Average over Agents
Recall the system dynamics as given in Eqgn. (3).

vglrt1 = (1 — )| vyl + 0x|- (6)
The following equation is obtained by pre-multiplyirjgl on both sides of Eqgn. (6).,
Vo llrar = (1= 0)r5" |- + 60X (")

Note, 11|, = 1, asTl|, is doubly stochastic. Expanding Eqn. (7), one obtains

Vg e = (1= )05 o + 6y
+0(1 — 0)x™9|,—1 + 0(1 — 0)*Xx 9|, o
01— 0) ™o ®)
Considering the unrestricted 2-D random motion of the agémntthe entire region, the ensemble expectation®f | is
denoted a¥[y*"9] Vk (i.e., no time dependency). In this cadd,**9] signifies the fraction of agents that visit the hotspot on

the average. Therefore, it is evident that, with a constaehgth of the hotspotZ[x“*?] remains constant over time. Taking
(ensemble) expectation on both sides of Eqn. 8, the follgwelation is obtained at a steady state fas> co).

Elrg"e] = O+ (1 —=0)+(1—6)7+ - ]BE[x"7]
= O[1—(1-0)] " Bx™]
E[x™9] for 6 € (0,1] 9)

Therefore, using the notation of steady-state average émeants) introduced before, the steady-state expectesureeaverage
(over agents) is obtained as:
E[Ma(VG)] = E[Ma(X)] (10)

Convergence of the average measure to avexameplies that, at a steady state, the sumyofalues over agents is same as
the sum ofv values over agents. In general, the physical significantiegiisthe detection decision of a hotspot by few agents
is being redistributed as awareness over a (possibly)dang@ber of agents, where the total awareness measure isrgeds
From this perspective, it is interesting to know the naturmeasure distribution in the agent population and measariance



(over agents) provides an insight in this aspect. For exengpl extreme case would be when measure variance is zetrés tha
all agents have the same measure and it is equal to the aveesagrire of the population. In literature, this scenarionievn

as consensusAn opposite extreme case is when there is no awarenessgatipa only those agents that have detected a
hotspot (i.e., have nonzerg) have nonzero measure. The measure variance is equal tattemce ofy in this case and
the hotspot can be localized very well following the meadlistribution due to a sharp localization gradient. Thusasuee
distribution essentially dictates a tradeoff betw®sopagation RadiuandLocalization Gradienand variance of over agents
guantifies the position of the system in this tradeoff scale.

B. Convergence of Measure Variance over Agents
For variance calculation, consider post-multiplicatidnld on both sides of Eqn. (7),

ngng-ﬁ-llT =(1- Q)ngglflT + GXaUg|T1T
= Vg T = (1= 0)vg"? |, 10|17 4 6y 9|, 1" (11)

The above equation presents the mean dynamics for the sySi®m the following equation is obtained by subtracting the
mean dynamics in Eqn. (11) from the system equation in Egn. (6

Polr1 = (1— )|, gl + 05, (12)
For calculation of variance (over agents),

(Pl 41)" (Polr1) = (1= 0)* (Bl ) " (11]) " (11 ) (7 )
+0%(X1-)" (X]-) + 201 = 0) (7o )" (11} )" (X1 7) (13)

At this point, one needs to take ensemble expectation ondidés. Since closed form results may not be analyticalltaize

in general, certain assumptions are made that may restegiroblem scenario to some extent. It is evident from theudsion

till now that there exists two fundamental aspects of theblenm, one related to network evolution and the other relébed
agent state dynamics and they can have very different tirakescLet us consider a case, where the time scales of these tw
aspects are comparable, which means that, at each slowepoehr (when the agent measures are updated), the system has
an independent agent interaction mattixas well as an independent state characteristic vegtd?hysically, this requires

the agents to move fast enough or the message lifetime torfpe éamough so that temporal correlations die out between two
slow-time epochs. This case is referred to as the Congruous Bcale (CTS) case in this paper. Formally, the following
assumptions are made for the CTS case.

o By problem setup]l at any slow-time epoch depends on the mobility charactesisif the agent population and the
message lifetimd.,,,, neither of which is affected by the presence of a hotspotti@nother hand, the vectgr at any
slow-time epoch captures the information regarding hdtdptection by agents irrespective of inter-agent comnatian.
Hence, it is assumed thal|; and x|, are independent for everyand k.

« In this setup, the motion dynamics of an agent take place astaifme-scale, denoted byandII captures the inter-agent
communication characteristics (due to agent motion) forirdew of fast time-scale. Now, for a large enough window
(i.e., a large value of.,,), it is assumed that the fast time-scale mobility correlatilies out within a relatively short
period. As a consequencH|; andII|; become mutually independent for everand j.

o The agents move fast enough (or in other words, the hotspgtHescale is reasonably small compared to the scale of
agent motion) such that|; and x|, are independent for everyand j.

The first two assumptions are feasible under fairly genesatltions, whereas the third one requires a special camdaf
agent mobility. The simulation scenario presented in 8addi provides an example. Future studies will explore thsildiy
conditions of these assumptions in greater details.

By an application of Eqn. (13) under the above assumptiarfe]lows that the ensemble expectation (givien,) on both
sides is:

E(@olr+1)" (o] 7+1)|7l-] =
(1= 0)*(7]-) " BI(1]-) " (11];)] (76 ) +
O*E((x]-)" (x]-)] + 20(1 = 0)(7|-) " E[(11]-) "] E[(X]-)] (14)
e

Since all the agents perform a random walk motion, they avalgglikely to visit the hot spot. This implies thd[(x|,)] = 0.
Furthermore,

(1= 0)*(Zo|-) " E[(11]-) " (11])] (7o) > 0 (15)



Therefore, for the lower bound
E(@o]r+1)" (o] r+1)[70]-] = 0*E[(x]-)" (X]-)]
= B[l r+1)" (Bl 1)) = O E[(x|-)" (X]-)] (16)
The expected (steady-state) variance is expressef @&;[vy]] = E[(7g]-+1)" (¥9]-+1)]- Using a similar notation fog, one
has:
EValvel] _ oo
EValx]] —

Note, by construction|, L 17 [20]. Also, 1 is the stationary vector (left eigenvector correspondimghe unity eigenvalue)
of a doubly stochastic matrix. Therefore,

(’79|T)TE[(H|T)T(H|T)](59|T) < A2(’79|T)T(’79|T) (18)
where,A; = X (E[(1I]-)T(I1])]). Therefore, for the upper bound

(17)

+02E[(x]7)" (x| (19)
At a steady-statel [V, [vg]] = E[(Dg|r+1)T (Po|r+1)] = El(76]+)T (7],)]. Therefore,
E [Va[wp]] [1 = (1= 6)*As] < 67V, [y]
E[Va[ve]] _ 6 (20)

E[V.] = 1- (- 074,

Note, 6 € (0,1] and A, € [0,1]. Figure 3 presents the plot of upper bounds of the varianie X,Z[[l;’]]]] with @ for three
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Fig. 3. Upper bounds of the variance ra K,Z[[”)f]]]] as a function ob andII|; under CTS assumptions; lower bound is independent-0&nd coincides

with the upper bound foAs = 0

possible values of\,. Note that the lower bound of the variance ratio is indepah@é A, and coincides with the upper
bound forAs = 0.

It is understood that CTS is a special case in the spectruimefscale comparison of network evolution and the assediat
information propagation. In the CTS case, these time s@legongruous or comparable. On the other end of this spegctru
one can consider a situation where the two time scales ayediféerent such that, the network evolution (the slow dyinzsh
and the agent state updating (the fast dynamics) can bedra@adependently as it is done in tBéngular Perturbation theory
The problem becomes much simpler in this case as one may asbatil and y remain time-invariant over the course of
transience in the agent state dynamics, i.e., agent measongerge before there is a changdlimnd . This case is referred



to as the Disparate Time Scale (DTS) case in this paper. UhéeDTS assumptiong] andy are not necessarily functions
of 7. Therefore, from Eqn. (4), as — oo, one has:

Voloo = Ox + 0(1 — O)IIx + 6(1 — 6)*11%y
+6(1 —0)31x - - - (21)
The following equation is obtained by subtracting the megnadhics from Eqn. (21).
Dgloe = OX + 0(1 — O)IIX + 6(1 — 6)*11% Y
+0(1 — 0)31I3% - - - (22)
Using the above equation, the measure variance over ageotdculated as:
Valve] = 02X+ 60%(1 — )T Ty + 0*(1 — 0)x 1T
+02(1 — 0)>XTIT IR + 6%(1 — )2}  T1%%
+02(1 = 0)’ X" ()X - (23)
As II is symmetric, one has:

Valve] = 602X7 X +20%(1 — 0)x " TIx

+360%(1 — 0)2xTT%y - -- (24)
Sincell” s are positive definite fok € N, the lower bound is obtained as:
Va[VG] 2
>0 25
Valx] — (29)

Using the same logic as before, it is evident tRATTFy < \o(IT*)xTx for k& € N. Also, Ao (ITF) = \5(I1) and A (IT) is
denoted simply as. in the sequel. Therefore,
Va[vg] < 62Va[x] +26%(1 — ) A2V, [x]
+360%(1 — 0)* X3V, [x] - -- (26)

Based on the infinite sum, the upper bound is obtained as:

Va[Vg] < 92

Valx] = 1= (1 —=0)X)?
Note, # € (0,1] and A2 € [0, 1]. The upper bound for the variance ratio calculated aboveligl Yor a particularll. Figure 4

(27)

0.8r

o
o
T

Variance Ratio
o

S

;

0.2

0 0.2 0.4 0.6 0.8 1

Fig. 4. Upper bounds of the variance ra a[[")f]] as a function of) andII under DTS assumptions; lower bound is independentsofind coincides with
the upper bound foh, = 0

presents the plot of upper bounds of the variance r H X] with 6 for three possible values of,. Note that the lower bound
of the variance ratio is independent bf and coincides with the upper bound & = 0.
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Fig. 5. Propagation of global awareness for hotspot leng#less = 0.10 on a mobile-agent network with message lifetithg, = 30. Plates (a), (b), (c)
show the time evolution of average (over agents)aind v and plates (d), (e), (f) show the time evolution of varianoee( agents) ofy andv; hotspot is
switched on at- = 2 and switched off at- = 280 for 6 = 0.01 and atr = 70 for # = 0.10, 0.90.

It is observed in both cases that the upper bound and loweandoaincide a® approaches extreme valu@sor 1 and as
seen in Section 4V,[vy] — 0 asf — 0 andV,[vp] — V,[x] as@® — 1. In other words, the agent population approaches
consensuasf — 0 (but# 0). In this case, although the entire population becomeseawfihe hotspot, there is no localization
gradient as every agent has the same measure. On the otliemhny — 1, the localization gradient improves at the cost of
propagation radius. In generdl, [vy]| decreases with a reductionn The other system component affecting the variance ratio
is the IT matrix. In both CTS and DTS cases, this effect is realizedubh the second largest eigenvaluelbfReduction in
the magnitude of the second largest eigenvaluH sfgnifies more connectivity among agents. This fact exgl#ie reduction
in variance ratio with a decrease in the second largest ediga

4., VALIDATION BY NUMERICAL SIMULATION

An example problem of surveillance and reconnaissanceeisepied in this section, which involves the mobile multag
network and the interaction policy as explained in Secti®#s and 2-B.

A. Problem Statement

Let us consider a surveillance and reconnaissance missioa fegion of aread performed byN mobile agents, where
each agent has a radius of communicatitiThe agents are moving in the region with a 2-D random walkiéaswith speed
(i.e., displacement per unit time) The individual mission goal of the agents is to detect exisé of any possible hotspot in
the region and communicate this information to their neayiriy agents. The information that an agent wants to comcat®i
based on its recent observation, has a message lifdtimenits in the fast time-scale (corresponding to the agentsian).
Thus, an epoch in the slow time-scale spans ovy, units of time in the fast time-scale. However, detection bbtspot does
not affect mobility characteristics of agents. The glob@sion objective is to control the extent of information pagation
across the mobile agent network. For the simulation stuuy, garameters are chosen as followls:= 10002, N = 100,

R = 100, andv = 20. The message lifetimel(,) is taken to be30 time units. As described earlier, the state characteristic
function x* of agenti becomesl upon detecting a hotspot; otherwisg¢, remains0. Also given the detection model described
in Section 2-B, probability of successful detection depend the proximity of the agent to the center of the hotspoterAf
the expiry of message lifetimg,,,, the x value of an agent resets to The values of agent measuté @re updated based on
the agent interaction policy described earlier.
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Simulation runs have been conducted with different valdes m this paper, observations regarding convergence a$ttail
moments (e.g., mean and variance)upfwith § = 0.01,0.10, and0.90 are presented. Top three plates, (a), (b) and (c), in
Fig. 5 present the time evolution of average (over agentd)the bottom three plates, (d), (e), (f), present the cooeding
variance (over agents) for time-seriesyoindv. The hotspot is switched on at= 2 for all experiments and switched off at
7 =280 for § = 0.01 and atr = 70 for 6 = 0.10 and 0.90.

B. Results & Discussions

It is observed in plates (a), (b) and (c) of Fig. 5 that, after 4ppearance of hotspot, the average (over agerdshverges
to the average (over agentg)at the steady state for three different values of the copmohmeter), where the convergence
time decreases with an increasefinThe above observation is explained below.

It follows from Eqn. (3) that the system dynamics depend enldngest eigenvalue ¢l — 0)I1|,. Sincell|, is an irreducible
stochastic matrix, Perron-Frobenius theorem ensurestshiargest eigenvalue is 1; thus, the largest eigenvalye of))II| is
(1—0). Therefore, it is expected that the convergence time wiliéase with decrease #h Moreover, the first order dynamics
can be observed in the time evolution of averagehis can be attributed to the uniqueness of the largesne#dee ofII.
Plates (d), (e), (f) of Fig. 5 show that the steady state maggover agents) aof increases with increase & also,V,[v] — 0
asf — 0 andV,[v] — V,[x] asf — 1. These observations regarding the dependence of steaigyssatistical moments of
the agent measure on system parameters further validatn#igtical claims made in the previous section.

Figure 6 shows the results of numerical simulation for veatfion of upper and lower bounds on the variance r [[”9]]}]

and ¥z ’;f for CTS and DTS assumptions, respectively. The results fi® @re presented in Fig. 6(a), where the simulation
results to closely follow the upper bound for this particutase. While the expected degree of the network is kegt aggh
speed ¢ ~ 100) is assumed for agents to achieve the conditions describedei CTS assumptions. Results of numerical
simulation for DTS are presented in Fig. 6(b) that shows @@ dor two cases with expected degree of the network asd

7. The agent speed is kept nonzero but very law~(5) to achieve the conditions described under the DTS assanpti

1 I
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0.8 0.8 ‘.
E S ege 9
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0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8
6 6
(a) Variance ratlo% under CTS assumptions (b) Variance ratioX,“ [[’;f]] under DTS assumptions

Fig. 6. Simulation-based verification of bounds on variannder CTS and DTS assumptions

Remark 4.1:1t is noted that the upper bounds on the variance ratio fon XS and DTS cases are found to be functions
of the second largest eigenvalue of the agent interactiami>xmié which, in turn, is a function of the degree of the network.
However, the degree is not the only network parameter thtaténes the decision propagation characteristics astbserved
in the simulation for both CTS and DTS cases. Therefore, @vislent that, apart from the network degree, comparability
between time scales of network evolution and agent statardigs also plays a key role in determining the network system
characteristics.

5. SUMMARY, CONCLUSIONS ANDFUTURE WORK

This paper addresses the problem of decision/awarenegagation in a mobile-agent network environment for sutaede
and reconnaissance. A distributed decision propagatigarithm has been constructed based on the concepts of Isecent
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developed language-measure theory [14][15]. A completiglgentralized implementation of this algorithm is shownb®®
useful for propagation of awareness regarding a local lobispthe operational area. Analytical results have beeninbtl for
convergence of (awareness level) measure distributiohénagent population. A (user-defined) critical paraméteontrols
the tradeoff between the propagation radius and the |latadiz gradient, wheré has both temporal effects (e.g., convergence
time) and ensemble effects (e.g., the measure distribufi@macteristics in the agent population). In this setticapsensus
can be achieved as— 0.

Two cases, congruous time scale (CTS) and disparate tinke @2aS), relating the time scales of network topology and
agent interaction are presented and validated by numesicallation on a test bed for a typical example problem. Iis thi
algorithm, the system is reset automatically upon remofal lbotspot. Another advantage of this approach is that itrady
extends to multiple hotspot scenarios. However, it will beeiesting to investigate such conditions with both homeges
and heterogeneous hotspots. Following are the future n&selirections that are currently being pursued:

« Analytical evaluation of the expected characteristicsIbf(e.g., the second largest eigenvalues), given the expected
characteristics of the proximity network;

« Analysis of convergence dynamics/time under the currerhéwork;

« Investigation of scenarios with asynchronous measuretingdand heterogeneous message lifetime distribution;

« Exploration of the feasibility conditions of the assumpsomade for the CTS case and the possibility of relaxing these
assumptions for variance calculation;

« lIdentification of quantitative rules to distinguish betwese CTS case and DTS case;

o Evaluation of Generalized Gossipolicy with more realistic hotspot detection model (e.g¢lusion of false alarm
possibility);

« Extension of the decentralized policy presented here tosee forevent-triggeredor self-triggeredco-operative control
problems.
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APPENDIX A
ANALYSIS OF PROXIMITY NETWORKS

This appendix analyzes the effectsiof, on the time averaged proximity network topology that is @ity represented by
the statistics of the degree of a network node. Althoughedttedinitions are straightforward for static networks, tinegd to
be carefully constructed in the present context of dynaretevarks.

Definition 5.1: (Degree and Degree Distribution) The degkeef a node (agent) is defined to be the number of network
nodes to which it is connected; and the degree distribul?oh) for a network is defined to be the probability distribution of
degrees over the entire network. LBt{k|L,,, i) be the distribution (computed over time) of the number ofiés nodes that
communicate with a given nodewithin its message lifetimd.,,,(i). The degree distribution is defined as:

| .
P(k|Ly,) & T i:Lm%:_Lm P(k|Lp, ) (28)

wheren(L,,) is number of nodes in the network with message lifetimg. Finally, the overall network degree distribution
is defined as the expected value Bfk|L,,), i.e.,

1
A
Pk) = LZ (L) P(k|Lm) (29)
where N is total number of nodes in the network.
It is reported in literature [7][21] that the degree distitions for proximity networks have different structuregy(ePoisson
distribution and power law distribution as in scale-freéwwgks), depending on the parameters of the mobile-agemmycs.

For the parameters selected in Section 4, the time-averdggee distributionP(k|L,,) follows the Poisson distribution as
explained below.

10

Expected Degree <k>

i i

0 5 10 15 20 25 30
Message Life Lm

3 i

Fig. 7. Variation of expected degree k£ > of the network with homogeneous message lifg .

Let the node have the message lifetindg,, and let the probability that an agent; # 7) is within the zone of communication
of ¢ within the time windowL,,, be denoted ag;;(L,,) (that is obviously an increasing function &f,,). At a given stage of
network evolution, let the probability thatand j communicate in the next time step be modeledvag); (< 1), whereg; is
called thegregariousnessi.e., the tendency to communicate with other agents) ohagé accordance with social network
literature [7][21] and letx be a parameter that incorporates spatial information ohtitevork (e.g., agent density). Note that
¢; is a function of the radius of communication and velocity géat!.

With this model and assuming independent activity at eatle tstep, the probability that the nodesind j (i # j) do
not communicate withirl.,, is (1 — agigj)Lm. Thereforep;;(L,,) =1— (1 — agigj)Lm. The expected value k >; of the
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degree of the nodéis obtained as:
N
<k>;, = Zpij(Lm)
j=1

~ angi(Z g;) for aly, <1 (30)

J

The assumption ofL,, < 1 is realized if« is very small and at the same tinig, is not very large; a smalk provides an
upper bound on the maximum number of nodes that the n@d® communicate in one time step; this is calledgkelusion
constraint[7]). In this paper, the radius of communication and velpeite kept invariant for every node, implying that all
nodes share a uniform gregariousngssherefore,p;;(L,,) is independent of agent specificationsind j and is denoted
asp(L,,) or simply p. Also, all agents are assumed to have same message liféimé&Vith these assumptions, numerical
experiments are performed to calculate the expected degrkee> of the network for various values of homogenedus.
Figure 7 shows the result obtained from these experimemtsaarapproximately linear relation betweenk > and L,, (as
derived before) is observed beyorig, = 9. Now, with homogeneous and L,, across the network, the degree distribution
P(k|L,,) is written as:

N B
P(k|Ly) = (k)p’“(l —p)NF
k
~ %f“ﬁ for N>>1 31)

Figure 8 shows the degree distributiét{k|L,,) obtained from numerical experiments performed foy = 1, 20, 30 to be
Poisson in nature. Note that the degree distributionifgr = 1 represents the characteristics of a static proximity nekwo
However, it is shown in [7] that by choosing non homogeneay&L,,,), one may obtain other types of degree distributions

0.25 : :
——Ilm=1
=—©—Lm =20

ol ——1m=30|]

Probability P(k|Lm)

20
Degree k
Fig. 8. Plots of degree distributiof?(k|L,) of the mobile-agent network fak,,, = 1, 20, 30.

(e.g., power-law distribution) as well. Thus, degree distion and expected degree of the network (i.e., the explecetwork
topology) can be controlled by varying,,.
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APPENDIX B
BASIC NOTIONS OFLANGUAGE-MEASURE THEORY

This appendix summarizes the concept of real measure ofapiiiiic regular languages generated by probabilistiitefin
state automata (PFSA) [14], [15]. However, since the topiegular languages is beyond the scope of this paper, theepbn
of real measures have been restricted only to irreduciblgkiachains.

A. Brief Review

Let a stationary Markov chain be denoted by the 3-tu@dleIl, x), where@ = {q1, ¢2, ..., qn } is the set of states; the state
transition functionlI : @ x @ — [0, 1] depicts the transition probabilities of the Markov chaimldhis expressed in the from
of an N x N stochastic matrix; and the state characteristic functior) — R assigns a signed real weight to each state. As
the number of states is finite, the vector form of the charette function is written asy = [x', x?, ...XN}T

A real measurey; for statei is defined as

vp 2D 0(1—0)" vy (32)
7=0
wheref € (0,1] is a user-specified parameter; anid defined as a x NV vector [vi, vi, ..., v’], is given by
i 1 af i=g
”J"{o if i (33)

Remark 5.1:(Physical Significance of Real Measlieet us assume that the current state of the Markov precess.&s,
the (1 x N) state probability vector is*. At an instantr time-steps in the future, the state probability vector igegiby
v'II7. Further, the expected value of the characteristic funcisogiven byviII™y. The measure of state as described by
Eqgn. (32), is the weighted expected valuexobver the all the time-steps in future for a the Markov prodbsg begins in
statei. The weights for each time-steg (1 — 0)") is a function of the single parametér In addition, the weights form a
decreasing geometric series whose sum equals to 1. As 4, rémumeasure’; is a convex combination of all the elements
of the x vector andmin; y’ < v} < max; x/ Vi < N.

The expression for the the measure in Eqn. (32) is expressad alternative equivalent form

vh=0v' (I —(1—60)I) "y (34)

The inverse is guaranteed to exist foe (0, 1].
From Eqn. (32), the measure of all the states denoted by tttene, = [v}, 17, ..., uéV]T is written as

v =0(I—(1—60)I) 'y (35)

Remark 5.2:(The effects of the parametéy The parametefl determines the weight# (1 — #)") assigned to the expected
characteristic function for time step In particular,d controls the the rate at which the weights decrease witleasing values
of 7. Large values of forces the weights to decay rapidly, thereby placing morpartance to the characteristic functions
of states that are adjacent (connected with fewer hops)etanilial statei. In fact, & = 1 implies thatv, = x*. On the other
hand, small values of captures the interaction with a large neighborhood of cotatkstates. A§ — 0, the dependence of
on the initial statei slowly decays (providedi is irreducible) and all the states converge to the same \aflueeasure.



