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The concept of symbolic dynamics has been used in recent literature for feature

extraction from time series data for pattern classification. The two primary steps of this

technique are partitioning of time series to optimally generate symbol sequences and

subsequently modeling of state machines from such symbol sequences. The latter step

has been widely investigated and reported in the literature. However, for optimal

feature extraction, the first step needs to be further explored. The paper addresses this

issue and proposes a data partitioning procedure to extract low-dimensional features

from time series while optimizing the class separability. The proposed procedure has

been validated on two examples: (i) parameter identification in a Duffing system and

(ii) classification of fatigue damage in mechanical structures, made of polycrystalline

alloys. In each case, the classification performance of the proposed data partitioning

method is compared with those of two other classical data partitioning methods,

namely uniform partitioning (UP) and maximum entropy partitioning (MEP).

& 2011 Elsevier B.V. All rights reserved.
1. Introduction

Early detection of anomalies (i.e., deviations from the
nominal behavior) in human-engineered systems is essen-
tial for prevention of catastrophic failures, performance
enhancement, and survivability. Often, the success of data-
driven anomaly detection depends on the quality of infor-
mation extraction from sensor time-series; the problem of
handling time series accrues from the data volume and
the associated computational complexity. Unless the data
sets are appropriately compressed into low-dimensional
ll rights reserved.

under Cooperative

y Research Office

, findings and con-

ication are those of

of the sponsoring

X. Jin),

.

features, it is almost impractical to use such databases. In
general, feature extraction is considered as the process of
transforming high-dimensional data to be represented in a
low-dimensional feature space with no significant loss of
class separability. To this end, several tools of feature
extraction, such as principal component analysis (PCA) [1],
independent component analysis (ICA) [2], kernel PCA [3],
and semi-definite embedding [4], have been reported in the
literature. Among nonlinear methods for feature extraction
and dimensionality reduction, commonly used ones are
neighborhood-based graphical methods [5] and local
embedding methods [6]. Recent literature has reported
another nonlinear method, namely symbolic dynamic filter-
ing (SDF) [7] for feature extraction and pattern classification
[8] from time-series, which consists of the following four
major steps:
1.
 Generation of symbol sequences via partitioning of the
time series data sets.
2.
 Construction of probabilistic finite state automata
(PFSA) from the respective symbol sequences.
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3.
 Extraction of features as probability morph matrices or
as state probability vectors from PFSA.
4.
 Pattern classification based on the extracted features.
In the above context, SDF serves as a tool for compressing
and transferring information pertaining to a dynamical
system from the space of time-series data to a low-
dimensional feature space. Feature extraction and pattern
classification algorithms, based on SDF, have been experi-
mentally validated for real-time execution in different
applications. Algorithms, constructed in the SDF setting,
are shown to yield superior performance in terms of early
detection of anomalies and robustness to measurement
noise in comparison with other existing techniques such
as principal component analysis (PCA), neural networks
(NN) and Bayesian techniques [9].

While the properties and variations of transformation
from a symbol space to a pattern space have been thor-
oughly studied in the disciplines of mathematics, computer
science and especially data mining, similar efforts have not
been expended to investigate partitioning of time series
data to optimally generate symbol sequences for pattern
classification. Steuer et al. [10] reported a comparison of
maximum entropy partitioning and uniform partitioning; it
was concluded that maximum entropy partitioning is a
better tool for change detection in symbol sequences than
uniform partitioning. Symbolic false nearest neighbor parti-
tioning (SFNNP) [11] optimizes a generating partition by
avoiding topological degeneracy. However, SFNNP may
become extremely computation intensive if the dimension
of the phase space of the underlying dynamical system is
large. Furthermore, if the time series data become noise-
corrupted, the symbolic false neighbors rapidly grow in
number and may erroneously require a large number of
symbols to capture pertinent information on the system
dynamics. The wavelet transform largely alleviates the
above shortcoming and is particularly effective with noisy
data for large-dimensional dynamical systems [12]. Subbu
and Ray [13] introduced a Hilbert-transform-based analytic
signal space partitioning (ASSP) as an alternative to the
wavelet space partitioning (WSP). Sarkar et al. [14] general-
ized ASSP for symbolic analysis of noisy signals. Never-
theless, these partitioning techniques primarily attempt to
provide an accurate symbolic representation of the under-
lying dynamical system under a given quasi-stationary
condition, rather than trying to capture the data-evolution
characteristics due to a fault in the system. The goal of this
paper is to overcome the difficulties of the above-mentioned
partitioning methods with the objective of making SDF a
robust time-series feature extraction tool for enhancement
of pattern classification performance.

In the current SDF methodology [7], a time series at
the nominal condition is partitioned to construct a frame-
work for generating patterns from time series at (possi-
bly) off-nominal conditions. Recently, Jin et al. [8] have
reported the theory and validation of a wavelet-based
feature extraction tool that used maximum entropy
partitioning of the space of wavelet coefficients. Even if
this partitioning is optimal (e.g., in terms of maximum
entropy or some other criteria) under nominal conditions,
it may not remain optimal at other conditions. The key
idea of the work reported in this paper is to take
advantage of non-stationary dynamics (in a slower scale)
and optimize the partitioning process based on the
statistical changes in the time series over a given set of
training data belonging to different classes. This concept
has been validated on two examples: (i) parameter
identification in a Duffing system [15] and (ii) classifica-
tion of fatigue damage in mechanical structures, made of
polycrystalline alloys [16]. In each case, the classification
performance of the proposed data partitioning method is
compared with those of two other data partitioning
methods, namely uniform partitioning (UP) and maxi-
mum entropy partitioning (MEP). Major contributions of
the paper are delineated below:
1.
 Partitioning of time series for optimization of pattern
classification.
2.
 Construction of a cost function to incorporate trade-offs
among sensitivity to changes in data characteristics,
robustness to spurious disturbances, and quantization
error by using fuzzy partitioning cell boundaries.
3.
 Validation of the proposed concepts on a simulation
test bed of a nonlinear Duffing system for multiple
parameter identification [7] and on a computer-instru-
mented and computer-controlled fatigue test machine
for fatigue damage classification.

The paper is organized into six sections including the
present one. Section 2 presents a brief background of SDF
in the context of feature extraction and classification. The
partitioning optimization scheme is elaborated in Section
3 along with its key features. Section 4 validates the
proposed concepts on a simulation test bed of a second
order non-autonomous forced Duffing equation [15]; the
second validation example dealing with fatigue damage
classification is presented in Section 5. Section 6 sum-
marizes the paper and makes major conclusions along
with recommendations for future research.

2. Symbolic dynamic filtering (SDF)

Although the methodology of symbolic dynamic filter-
ing (SDF) has been reported in recent literature [7,12,13],
a brief outline of the procedure is succinctly presented
here for completeness of the paper.

2.1. Partitioning: a nonlinear feature extraction technique

Symbolic feature extraction from time series data is
posed as a two-scale problem, as depicted in Fig. 1. The
fast scale is related to the response time of the process
dynamics. Over the span of data acquisition, dynamic
behavior of the system is assumed to remain invariant,
i.e., the process is statistically quasi-stationary on the fast
scale. In contrast, the slow scale is related to the time span
over which non-stationary evolution of the system
dynamics may occur. It is expected that the features
extracted from the fast-scale data will depict statistical
changes between two different slow-scale epochs if the



Fig. 1. Pictorial view of the two time scales: (i) slow time scale of

anomaly evolution and (ii) fast time instants of data acquisition.
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underlying system has undergone a change. The method
of extracting features from quasi-stationary time series on
the fast scale is comprised of the following steps:
�
 Sensor time series, denoted as q, is generated at a
slow-scale epoch from a physical system or its dyna-
mical model. A compact (i.e., closed and bounded)
region O 2 Rn, where n 2 N, within which the (quasi-
stationary) time series is circumscribed, is identified.
Let the space of time series data sets be represented as
QDRn�N , where the N 2 N is sufficiently large for
convergence of statistical properties within a specified
threshold. (Note: n represents the dimensionality of
the time-series and N is the number of data points in
the time series.)

�
 Encoding of O is accomplished by introducing a partition

B� fB0, . . . ,Bðm�1Þg consisting of m mutually exclusive
(i.e., Bj \ Bk ¼ | 8jak), and exhaustive (i.e.,

Sm�1
j ¼ 0 Bj ¼O)

cells. Let each cell be labeled by symbols sj 2 S, where
S¼ fs0, . . . ,sm�1g is called the alphabet. This process of
coarse graining can be executed by uniform, maximum
entropy, or any other scheme of partitioning. Then, the
time series data points in fqg which visit the cell Bj are
denoted as sj 8j¼ 0;1, . . . ,m�1. This step enables trans-
formation of the time series data fqg to a symbol
sequence fsg.

�
 A probabilistic finite state automaton (PFSA) is then

constructed from the symbol sequence fsg, where j,k 2
f1;2, . . . ,rg are the states of the PFSA with the ðr � rÞ

state transition matrix P¼ ½pjk� that is obtained at
slow-scale epochs (Note: P is a stochastic matrix, i.e.,
the transition probability pjkZ0 and

P
kpjk ¼ 1). To

compress the information further, the state probability
vector p¼ ½p1 . . . pr� that is the left eigenvector corre-
sponding to the (unique) unity eigenvalue of the irre-
ducible stochastic matrix P is calculated. The vector p
is the extracted feature vector and is a low-dimensional
compression of the long time series data representing
the dynamical system at the slow-scale epoch.

2.2. Classification using low-dimensional feature vectors

For classification using SDF, the reference time series,
belonging to a class denoted as Cl1, is symbolized by one of
the standard partitioning schemes (e.g., uniform partitioning
(UP) or maximum entropy partitioning (MEP)) [7,12,13].
Then, using the steps described in Section 2.1, a low-
dimensional feature vector pCl1 is constructed for the
reference slow-scale epoch. Similarly, from a time series
belonging to a different class denoted as Cl2, a feature vector
pCl2 is constructed using the same partitioning as in Cl1.

The next step is to classify the data in the constructed
low-dimensional feature space. In this respect, there are
many options for selecting classifiers that could either be
parametric or non-parametric. Among the parametric
classifiers, one of the commonly used techniques relies
on the second-order statistics in the feature space, where
the mean feature is calculated for every class along with
the variance of the feature space distribution in each class
of the training set. Then, a test feature vector is classified
by using the Mahalnobis distance [17] or the Bhatta-
charya distance [18] of the test vector from the mean
feature vector of each class. However, these methods are
not efficient for non-Gaussian distributions, where the
feature space distributions may not be adequately
described by the second order statistics. Consequently, a
non-parametric classifier (e.g., k-NN classifier [19]) is
potentially a better choice. In this study, Gaussian prob-
ability distribution may not be assured in the feature
space due to the nonlinear partitioning process and
therefore, k-NN classifier has been chosen. However, in
general, any other suitable classifier such as the support
vector machines (SVM) or the Gaussian Mixture Models
(GMM) may also be used [19]. To classify the test data set,
the time series sets are converted into feature vectors
using the same partitioning that has been used to gen-
erate the training features. Then, using the labeled train-
ing features, the test features are classified by a k-NN
classifier with suitable specifications (e.g., neighborhood
size and distance metric).

3. Optimization of partitioning

In the literature of multi-class classification, many
optimization criteria can be found for optimal feature
extraction. However, the primary objective across all the
criteria is minimization of classification error. In this
context, an ideal objective function may be described in
terms of the classification confusion matrix [20]. In
pattern recognition literature, a confusion matrix is used
to visualize the performance of a classification process,
where each column represents the instances in a class
predicted by the classifier, while each row represents the
instances in an actual class. Formally, in a classification
problem with n classes, Cl1, . . . ,Cln, the ijth element cij of
confusion matrix C denotes the frequency of data from
class Cli being classified as data from Clj. Therefore, ideally
one should jointly minimize every off-diagonal element
and maximize every diagonal element of the confusion
matrix. However, in that case, the dimension of the
objective space may rapidly increase with an increase in
the number of classes. To circumvent this situation in the
present work, two costs are defined on the confusion
matrix by using another weighting matrix, elements of
which denote the relative penalty values for different
confusions in the classification process.
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Fig. 2. Fuzzy cell boundaries to obtain CostErobust and CostWrobust.
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Let there be Cl1, . . . ,Cln classes of labeled time-series
data in the training set. A partitioning B is employed to
extract features from each sample and a k-NN classifier K
is used as a classifier. The confusion matrix C is obtained
upon completion of the classification process. Let W be
the weighting matrix, where the ijth element wij of W
denotes the penalty incurred for classifying data from Cli
as data from class Clj. (Note: since there is no penalty for
correct classification, the diagonal elements of W are
identically equal to 0, i.e., wii ¼ 0 8i.) With these specifica-
tions, two costs, CostE and CostW, that are to be mini-
mized are defined as follows.

The cost CostE due to expected classification error is
defined as

CostE¼
1

Ns

X
i

X
j

wijcij

0
@

1
A ð1Þ

where Ns is the total number of training samples includ-
ing all classes. The above equation represents the total
penalty for misclassification across all classes. Thus CostE

is related to the expected classification error. The weights
wij are selected based on the domain knowledge and user
requirements (e.g., trade-off between false alarm and
missed detection [21]). In many fault detection problems,
missed detections are more risky compared to false
alarms. Accordingly, the weights for missed detection
(false negative) should be chosen to be larger compared
to those for false alarms (false positive).

It is implicitly assumed in many supervised learning
algorithms [22] that the training data set is a statistically
similar representation of the whole data set. However,
this assumption may not be accurate in practice. A
solution to this problem is to choose a feature extractor
that minimizes the worst-case classification error. In this
setting, that cost CostW due to worst-case classification
error is defined as

CostW ¼max
i

1

Ni

X
j

wijcij

0
@

1
A ð2Þ

where Ni is the number of training samples in the class Cli.
(Note: in the present formulation, the objective space is
two-dimensional for a multi-class classification problem
and the dimension is not a function of the number of
classes.)

3.1. Sensitivity and robustness

Cost minimization requires a choice of partitioning
that could be sensitive to class separation in the data
space. However, the enhanced sensitivity of optimal
partitioning may cause large classification errors due to
noise and spurious disturbances in the data and statistical
variations among training and testing data sets. Hence, it
is important to invoke robustness properties into the
optimal partitioning. In this paper, robustness has been
incorporated by modifying the costs CostE and CostW,
introduced in the previous subsection.

For one-dimensional time series data, a partitioning
consisting of 9S9 cells is represented by ð9S9�1Þ points that
serve as cell boundaries. In the sequel, a S-cell partitioning
B is expressed as L9S99fl1,l2, . . . ,l9S9�1g, where li denotes
a partitioning boundary. Thus, a Cost is dependent on the
specific partitioning L9S9 and is denoted by CostðL9S9Þ. The
key idea of a robust cost for a partitioning L9S9 is that it is
expected to remain invariant under small perturbations of
the partitioning points, l1,l2, . . . ,l9S9�1 (i.e., fuzzy cell
boundaries). To define a robust cost, a distribution of
partitioning fL9S9

ð�Þ is considered, where a sample of the
distribution is denoted as ~L9S9 ¼ f

~l1, ~l2, . . . , ~l9S9�1g and ~l i’s
are chosen from independent Gaussian distributions with
mean li and a uniform standard deviation sl; the choice of
sl is discussed later in Section 3.2.

The resulting cost distribution is denoted as fCostðL9S9Þ
ð�Þ,

and Costrobust is defined as the cost value below which 95%
of the population of distribution fCostðL9S9Þ

ð�Þ remains and is
denoted as

Costrobust ¼ P95½fCostðL9S9Þ
ð�Þ� ð3Þ

For the analysis to be presented in Section 3.2, it is
assumed that sufficient samples are generated to obtain
a good estimate of Costrobust as explained in Fig. 2, where
the firm lines denote the boundaries that divide the range
space into four cells, namely a,b,c and d. However, in
general, the cell boundaries are fuzzy in nature, which
leads to a probabilistic Costrobust instead of a deterministic
cost based on the firm partitioning boundaries. Thus, a
robust cost due to expected classification error, CostErobust,
and a robust cost due to worst-case classification error,
CostWrobust, are defined for a given partitioning L9S9.

Finally, a multi-objective overall cost CostO is defined
as a linear convex combination of CostErobust and CostWro-

bust in terms of a scalar parameter a 2 ½0;1�:

CostO9aCostErobustþð1�aÞCostWrobust ð4Þ

Ideally, the optimization procedure involves construction
of the Pareto front [23] by minimizing CostO for different
values of a that can be freely chosen as the operating
point. Thus, the optimal S-cell partitioning Bn is the
solution to the following optimization problem:

Bn
¼ arg min

B
CostOðBÞ ð5Þ

Fig. 3 depicts a general outline of the classification
process. Labeled time series data from the training set are
partitioned. The low-dimensional feature vectors that are



Fig. 3. General framework for optimization of feature extraction.
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generated by symbolization and PFSA construction are fed
to the classifier. After classification, the training error
costs, defined above, are computed and fed back to the
feature extraction block. In the classification aspect, the
classifier may be tuned to the obtain better classification
rates. For example, for k-NN classifiers [19], the choice of
neighborhood size or the distance metric can be tuned.
Similarly, for support vector machines [19], an appropri-
ate hyperplane should be selected to achieve good classi-
fication. The key idea is to update the partitioning to
reduce the cost based on the feedback. The iteration is
continued until the set of optimal partitioning in a multi-
objective scenario and the correspondingly tuned classi-
fier are obtained. In particular, the iteration can be
stopped as the rate of decrease of overall cost fall below
a certain threshold. This stopping rule is specified in the
following subsection. Generally, the choice of the optimal
partitioning is made based on the choice of operating
point a by the user. After the choice is made, the optimal
partitioning and the tuned classifier are used to classify
the test data set. Although a general framework is
proposed for optimization, the issue of tuning the classi-
fier is not the main focus of this paper. However, the
reported work specifically uses the k-NN classifier. The
neighborhood size and distance metric are tuned appro-
priately depending on the data sets used for validation.

3.2. Optimization procedure

A sequential search-based technique has been adopted
in this paper for optimization of the partitioning. As the
continuity of the partitioning function with respect to the
range space of classification error-related costs may not
exist or at least are not adequately analyzed, gradient-
based optimization methods are not explored here. To
construct the search space, a suitably fine grid size
depending on the data characteristics needs to be
assumed. Each of the grid boundaries denotes a possible
position of a partitioning cell boundary, as illustrated in
Fig. 2. Here, the dotted lines denote the possible positions
of a partitioning cell boundary and as discussed before, for
a chosen partitioning (denoted by firm lines), the parti-
tioning boundaries are perturbed to obtain a Costrobust.

Let the data space region O be divided into G grid cells
for search, i.e., there are ðG�1Þ grid boundaries excluding
the boundaries. Thus, there are 9S9�1 partitioning
boundaries to choose among ðG�1Þ possibilities, i.e., the
number of elements (i.e., ð9S9�1Þ-dimensional partition-
ing vectors) in the space P of all possible partitioning is
ðG�1ÞCð9S9�1Þ. It is clear from this analysis that the partition-
ing space P may become significantly large with an
increase in values of G and 9S9 (e.g., for Gb9S9, computa-
tional complexity increases approximately by a factor of
G=9S9 with increase in the value of 9S9 by one). Further-
more, for each element of P, a sufficiently large number of
perturbed samples need to be collected in order to obtain
the Costrobust. Therefore, usage of a direct search approach
becomes infeasible for evaluation of all possible partition-
ings. Hence, a sub-optimal solution is developed in this
paper to reduce the computational complexity of the
optimization problem.

The objective space consists of the scalar-valued cost
CostO, while decisions are made in the space P of all
possible partitionings. The overall cost is dependent on a
specific partitioning L and is denoted by CostOðLÞ. This
sub-optimal partitioning scheme involves sequential esti-
mation of the elements of the partitioning L.

The partitioning process is initiated by searching the
optimal cell boundary to divide the data set into two cells,
i.e., L2 ¼ fl1g, where l1 is evaluated as

ln

1 ¼ arg min
l1

CostOðL2Þ ð6Þ

Now, the two-cell optimal partitioning is given by Ln

2 ¼ fl
n

1g.
Note that to obtain CostO (i.e., both CostErobust and

CostWrobust) for a given partitioning, a suitable sl needs to
be chosen. Let the gap between two search grid bound-
aries (i.e., two consecutive dotted lines in Fig. 2) be ll, and
sl is chosen as ll=3 in this paper. The choice of such a
standard deviation of the Gaussian perturbation is made
for approximately complete coverage of the search space.
Note that there could be an overlap of perturbation
regions between two consecutive search grid boundaries,
which leads to a smoother (that is essentially robust) cost
variation across the domain space. This issue will be
further discussed in Section 4.2. In addition, depending
on the gap ll and data characteristics, a suitable sample
size is chosen to approximate the cost distribution under
the fuzzy cell boundary condition.

The next step is to partition the data into three cells as
L3 by dividing either of the two existing cells of Ln

2 with
the placement of a new partition boundary at l2, where l2
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is evaluated as

ln

2 ¼ arg min
l2

CostOðL3Þ ð7Þ

where L3 ¼ fl
n

1,l2g. The optimal 3-cell partitioning is
obtained as Ln

3 ¼ fl
n

1,ln

2g. In this (local) optimization
procedure, the cell that provides the largest decrement
in CostO upon further segmentation ends up being parti-
tioned. Iteratively, this procedure is extended to obtain
the 9S9 cell partitioning as follows:

ln

9S9�1 ¼ arg min
l9S9�1

CostOðL9S9Þ ð8Þ

where L9S9 ¼Ln

9S9�1 [ fl9S9�1g and the optimal 9S9 cell
partitioning is given by Ln

9S9 ¼Ln

9S9�1 [ fl
n

9S9�1g.
In this optimization procedure, the cost function

decreases monotonically with every additional sequential
operation, under the assumption of correct estimation of
CostErobust, CostWrobust and hence, CostO under the fuzzy cell
boundary condition. Formally, CostOðLn

9S9�1ÞZCostOðLn

9S9Þ

as explained below.
Let Ln

9S9�1 be the (9S9�1)-cell partitioning that minimizes
CostO, based on the algorithm, L9S9 ¼Ln

9S9�1 [ fl9S9�1g. If
l9S9�1 is chosen such that it already belongs to Ln

9S9�1, then
there would be no change in the partitioning structure, i.e.,

CostOðL9S9Þ ¼ CostOðLn

9S9�1Þ for l9S9�1 2 L
n

9S9�1 ð9Þ

If l9S9�1 2 L
n

9S9�1 then the partitioning L9S9 is essen-
tially treated as a ð9S9�1Þ-cell partitioning for the purpose
of cost calculation. By definition,

CostOðLn

9S9ÞrCostOðL9S9Þ 8L9S9 ð10Þ

Then it follows that

min ðCostOðL9S9�1ÞÞZminðCostOðL9S9ÞÞ ð11Þ

or

CostOðLn

9S9�1ÞZCostOðLn

9S9Þ ð12Þ

The monotonicity in the cost function allows formula-
tion of a rule for termination of the sequential optimiza-
tion algorithm. The process of creating additional
partitioning cells is stopped if the cost decrease falls
below a specified positive scalar threshold Zstop and the
stopping rule is as follows.

Ln

9S9�1 is the optimal partitioning (and 9S9�1 is the
optimal alphabet size) if

CostOðLn

9S9�1Þ�CostOðLn

9S9ÞrZstop ð13Þ

In contrast to the direct search of the entire space of
partitioning, the computational complexity of this approach
increases linearly with 9S9. This approach also allows the
user to have finer grid size for the partitioning search.

4. Validation example 1: parameter identification

This section describes the first example and the asso-
ciated results to validate the merits of the proposed techni-
que. The problem of parameter identification in the
nonlinear Duffing system that is posed as a multi-class
classification problem in Section 4.1 and Section 4.2 presents
the classification results along with relevant discussions.
4.1. Problem description

The exogenously excited Duffing system [15] is non-
linear with chaotic properties and its governing equation is

d2yðtÞ

dt2
þb

dy

dt
þa1yðtÞþy3ðtÞ ¼ A cosðOtÞ ð14Þ

where the amplitude A¼22.0, excitation frequency
O¼ 5:0, and reference values of the remaining parameters,
to be identified, are a1 ¼ 1:0 and b¼ 0:1. It is known that
this system goes through a bifurcation at different combi-
nations of a1 and b, which can be identified by standard
feature extraction procedures [19]. The problem at hand is
to accurately identify the ranges of the parameters a1 and
b when the system has not undergone any bifurcation. In
this paper, multiple classes are defined based on the
combination of approximate ranges of the parameters a1

and b as described below.
Parameter
 Values of a1
Range 1
 0.800–0.934
Range 2
 0.934–1.067
Range 3
 1.067–1.200
Parameter
 Values of b
Range 1
 0.100–0.147
Range 2
 0.147–0.194
Range 3
 0.194–0.240
In this study, classes are defined as Cartesian products
of the ranges of a1 and b. Thus, there are nine (i.e., 3�3)
classes of data, where a class is uniquely defined by a
range of a1 and a range of b. Two hundred simulation runs
of the Duffing system have been conducted for each class
to generate data set for analysis among which 100
samples are chosen as the training set and the remaining
100 samples are kept as testing set. Parameters a1 and b
are chosen randomly from independent uniform distribu-
tions for both parameters within the prescribed ranges
given in above table. Fig. 4 plots the samples generated
using the above logic in the two-dimensional parameter
space. Different classes of samples are shown in different
colors and as well as marked with the class numbers in
the figure. For each sample point in the parameter space,
time series has been collected for State y, the length of the
simulation time window being 80 s sampled at 100 Hz,
which generates 8000 data points. Fig. 5 exhibits typical
phase plots of the Duffing system from each of the nine
classes. The following section presents the classification
performance of the optimal partitioning along with a
comparison with that of the classical partitioning
schemes.

4.2. Results and discussion

A weighting matrix W needs to be defined to calculate
the classification error related costs as discussed in
Section 3. In the present case, W is defined according to
the adjacency properties of classes in the parameter
space. That means wii ¼ 0, 8i 2 f1;2, . . . ,9g, i.e., there is
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no penalty when Cli is classified as Cli and in general
wij ¼ 9Ra1

ðiÞ�Ra1
ðjÞ9þ9RbðiÞ�RbðjÞ9, 8i 2 f1;2, . . . ,9g, where

RgðkÞ denotes the range number (see Section 4.1) for
parameter g (in this case, a1 or b) in class k. In this
context, W is written as

W¼

0 1 2 1 2 3 2 3 4

1 0 1 2 1 2 3 2 3

2 1 0 3 2 1 4 3 2

1 2 3 0 1 2 1 2 3

2 1 2 1 0 1 2 1 2

3 2 1 2 1 0 3 2 1

2 3 4 1 2 3 0 1 2

3 2 3 2 1 2 1 0 1

4 3 2 3 2 1 2 1 0

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

The data space region O is divided into 40 grid cells, i.e.,
39 grid boundaries excluding the boundaries of O. The
sequential partitioning optimization procedure described in
Section 3.2 is then employed to identify the optimal parti-
tioning. The parameter a is taken to be 0.5 in this example,
i.e., equal weights for the costs CostErobust and CostWrobust.
Fig. 6 depicts the optimization process for obtaining the
optimal partitioning, where ln

1 is evaluated by minimizing
CostOðL2Þ. Both the cost curve and its corresponding optimal
value ln

1 are shown in Fig. 6. Similarly, the second optimal
partitioning boundary ln

2 is obtained by minimizing the cost
function CostOðL3Þ9CostOðfln

1,l2gÞ. As described in Section
3.2, ln

1 is kept fixed while l2 is optimized. This suboptimal
process is recursively continued until the threshold
Zstop ¼ 0:01 is reached, which leads to the creation of six
cells (i.e., five partitions) denoted by Ln

6 ¼ fl
n

1, . . . ,ln

5g as
shown in Fig. 6. For SDF analysis, the depth for constructing
PFSA states is taken to be D¼1 and features are classified by a
k-NN classifier (with k¼5) using the Euclidean distance
metric. Also, for estimation of CostErobust and CostWrobust, sl
is taken to be ll ¼ 0:0333 and 50 perturbed samples are
taken for each partitioning elements in the search space.
Choice of such sl leads to smooth cost curves across the
State y values (domain space) as seen in Fig. 6.

Fig. 7 plots the optimal partitioning Ln

6 on a represen-
tative time-series from the reference class 5. Finally, the
decrease in CostErobust and CostWrobust with the increase in
alphabet size is shown in Fig. 8. The optimal alphabet size
and corresponding cost values are marked on each plate.
The confusion matrix obtained by using the optimal
partitioning (OptP) on the test data set is given below:

COptP
test ¼

98 2 0 0 0 0 0 0 0

3 92 5 0 0 0 0 0 0

0 4 96 0 0 0 0 0 0

6 0 0 88 5 0 1 0 0

0 0 0 3 84 12 0 1 0

0 1 1 0 1 94 0 0 3

0 0 0 4 0 0 92 4 0

0 0 0 1 4 0 8 83 4

0 0 0 0 0 0 0 13 87

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

It is observed that the class separability is retained in
an efficient way by the nonlinear feature extraction
(partitioning) process even after compressing a time
series data (with 8000 data points) into a six-dimensional
feature (state probability) vector. The confusion matrices
for uniform and maximum entropy partitioning on the
test data set are also provided below for comparison:

CUP
test ¼

84 10 5 1 0 0 0 0 0

7 87 4 1 1 0 0 0 0

14 3 77 1 5 0 0 0 0

10 1 2 76 11 0 0 0 0

0 1 0 16 79 3 0 1 0

0 0 3 3 3 84 0 2 5

0 0 0 2 2 0 88 8 0

0 0 0 0 3 0 13 76 8

0 0 0 0 0 1 3 11 85

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

CMEP
test ¼

83 12 4 1 0 0 0 0 0

13 82 3 2 0 0 0 0 0

2 5 87 1 5 0 0 0 0

1 1 4 85 3 6 0 0 0

0 2 0 9 84 5 0 0 0

0 0 0 0 10 81 0 4 5

0 0 0 2 0 1 86 11 0

0 0 0 0 0 8 11 74 7

0 0 0 0 0 0 3 10 87

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

Table 1 presents the comparison of the classification
error related costs for OptP, UP and MEP on the test data set.

The observations made from these results indicate that
the classification performance may be improved compared
to that of the classical partitioning schemes by optimizing
the partitioning process over a representative training set for
the particular problem at hand. However, it should be noted
that for some problems, the classical partitioning schemes
may perform as well as the optimal one. Therefore, the
optimization procedure may also be used to evaluate the
capability of any partitioning scheme toward achieving a
better classification rate. The evaluation can be performed by
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using a part of the labeled training data set as the validation
set. Finally, although the construction of the cost functions
theoretically allow problems with large number of classes, in
practice it should be understood that its upper limit will be
constrained by the alphabet size used for partitioning which
is also the dimension of the feature space. Also note that the
model complexity of a probabilistic finite state automaton
(PSFA), as obtained from time series data, is related to the
number of states (hence, to the number of partitions) in the
PSFA. Therefore, the choice of Zstop is critical in our approach
during the process of partitioning optimization to alleviates
the issue of over-training [12].

5. Validation example 2: damage classification

Fatigue damage is one of the most commonly encoun-
tered sources of structural degradation of mechanical



Table 1
Comparison of classification performances of partitioning schemes on

test-data set (100�9 samples).

Partitioning CostE CostW

OptP 0.0978 0.1800

UP 0.2289 0.4400

MEP 0.2200 0.3400
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optimal partitioning 9S9 is chosen to be 6.

S. Sarkar et al. / Signal Processing 92 (2012) 625–635 633
structures, made of polycrystalline alloys. Therefore, ana-
lytical tools for online fatigue damage detection are critical
for a wide range of engineering applications. Recently,
symbolic time series analysis (STSA) [16] has been pro-
posed and successfully demonstrated on ultrasonic time
series data for early detection of evolving fatigue damage.
This section uses the concepts of optimal partitioning for
feature extraction from the ultrasonic signals collected
from an experimental apparatus, described in Section 5.1,
for quantification of fatigue damage.

The process of fatigue damage is broadly classified into
two phases: crack initiation and crack propagation. The
damage mechanism of these two phases are significantly
different and similar feature extraction policies may not
work effectively to classify different damage levels in
these two phases. For example, damage evolution in the
crack initiation phase is much slower, resulting in smaller
change in ultrasonic signals as compared to that in the
crack propagation phase. The phase transition from crack
initiation to crack propagation occurs when several small
micro-cracks coalesce together to develop a single large
crack that propagates under the oscillating load.

This section focuses on damage level identification in the
crack propagation phase. Several crack propagation models
have been developed based on the inherent stochastic
nature of fatigue damage evolution for prediction of the
remaining useful life. Due to stochastic nature of material
microstructures and operating conditions, a physics-based
model would require the knowledge of the parameters
associated with the material and geometry of the
component. These parameters are often randomly varying
and may not be accurately predicted a priori. Crack propa-
gation rate is a function of crack length and, after a certain
crack length, it becomes unstable. The crack propagation
stage is divided into four classes as presented below.
Class
 Crack length
1
 0.5–1.75 mm
2
 1.75–3.5 mm
3
 3.5–5.5 mm
4
 More than 5.5 mm
As described earlier, the weighing matrix W is chosen
based on the user’s requirement. In the present case, W is
defined from the perspective of risk involved in misclas-
sification. For example, penalty is low when data in Class
1 (i.e., small crack length) is classified as in classes for
larger crack length; however, penalty is high for the
converse. For the results presented in this paper, W
matrix is defined as follows:

W¼

0 1 2 3

3 0 1 2

6 3 0 1

9 6 3 0

0
BBB@

1
CCCA

In the present work, a large volume of ultrasonic data
has been collected for different crack lengths on different
specimens to demonstrate the efficiency of the present
classification scheme to account for the stochastic nature
of material properties. The following subsection presents
the details of the experimental apparatus used for damage
detection using ultrasonic sensors. It also describes the
test specimens and the test procedure.
5.1. Experimental apparatus and test procedure

The experimental apparatus is designed to study the
fatigue damage growth in mechanical structures. The appa-
ratus consists of an MTS 831.10 Elastomer Test System that
is integrated with Olympus BX Series microscope with a long
working-distance objective. A camera, mounted on the
microscope, takes images with a resolution of 2 m per pixel
at a distance of 20 mm. The ultrasonic sensing device is
triggered at a frequency of 5 MHz at each peak of the
fluctuating load. Various components of the apparatus com-
municate over a TCP/IP network and post sensor, microscope
and fatigue test data on the network in real time. This data
can used by analysis algorithms for anomaly detection and
health monitoring of the specimens in real-time.

A side-notched 7075-T6 aluminum alloy specimen has
been used in the fatigue damage test apparatus. Each
specimen is 3 mm thick and 50 mm wide, and has a slot of
1.58 mm�4.57 mm on one edge. The notch is made to
increase the stress concentration factor that localizes
crack initiation and propagation under the fluctuating
load. Fatigue tests were conducted at a constant ampli-
tude sinusoidal load for low-cycle fatigue, where the
maximum and minimum loads were kept constant at
87 MPa and 4.85 MPa, respectively. For low cycle fatigue



Table 2
Performance comparison of partitioning schemes.

Partitioning CostE CostW

OptP 0.255 0.5

UP 0.40333 0.68

MEP 0.31333 0.52
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studied in this paper, the stress amplitude at the crack tip
is sufficiently high to observe the elasto-plastic behavior
in the specimens under cyclic loading. A significant
amount of internal damage caused by multiple small
cracks, dislocations and microstructural defects alters
the ultrasonic impedance, which results in signal distor-
tion and attenuation at the receiver end.

The optical images were collected automatically at
every 200 cycles by the optical microscope which is always
focussed in the crack tip. As soon as crack is visible by the
microscope, crack length is noted down after every 200
cycles. Ultrasonic waves with a frequency of 5 MHz were
triggered at each peak of the sinusoidal load to generate
data points in each cycle. Since the ultrasonic frequency is
much higher than the load frequency, data acquisition was
done for a very short interval in the time scale of load
cycling. Therefore, it can be implied that ultrasonic data
were collected at the peak of each sinusoidal load cycle,
where the stress is maximum and the crack is open causing
maximum attenuation of the ultrasonic waves. The slow
time epochs for data analysis were chosen to be 1000 load
cycles (i.e., � 80 s) apart. To generate training and test data
sample multiple experiments are conducted on different
specimens. For each specimen all ultrasonic signals are
labeled with crack length.

5.2. Results and discussion

This section presents the damage level classification
results for the crack propagation phase using the optimal
partitioning along with results obtained by using max-
imum entropy and uniform partitioning [12]. The classi-
fication process is started by wavelet transformation of
the time series data with suitable scales and time shifts
for a given basis function. Each transformed signal is
normalized with the maximum amplitude of transformed
signal obtained at the beginning of experiment, when
there is no damage in the specimen. The data are normal-
ized to mitigate the effects of variability in the placement
of ultrasonic sensors during different experiments.

As described earlier, both training and test data sets
are divided into four classes based on crack length as all
the ultrasonic signals are labeled with the corresponding
crack lengths. The sequential optimization of partitioning
has been carried out on the training data set to find
optimal partitioning. The parameter a is taken to be 0.5 in
this example, i.e., equal weights for the costs CostErobust

and CostWrobust. The specifications of SDF and the classifier
remain same as in the first example. The optimal alphabet
size is 6 with stopping threshold value Zstop ¼ 0:005. The

confusion matrices for optimal, uniform and maximum

entropy partitioning on the test data set are given by COptP
test

CUP
test and CMEP

test , respectively. Table 2 shows the comparison

of classification performances using different partitioning
processes:

COptP
test ¼

93 7 0 0

5 89 6 0

0 4 92 4

0 3 7 90

0
BBB@

1
CCCA
CUP
test ¼

94 5 1 0

15 74 11 0

0 9 85 6

1 5 11 83

0
BBB@

1
CCCA

CMEP
test ¼

93 7 0 0

12 82 6 0

0 7 89 4

1 3 7 89

0
BBB@

1
CCCA

It is observed that both costs CostE and CostW are reduced
for optimal partitioning as compared to maximum entropy
and uniform partitioning. It is also evident from the confu-
sion matrix that optimal partitioning has improved the
classification results. A close observation of confusion
matrix indicates that chances of higher damage level data
samples being classified as a lower level damage is reduced.

6. Summary, conclusions and future work

This article presents symbolic feature extraction from
time-series of observed sensor data. The feature extraction
algorithm maximizes the classification performance with a
trade-off between sensitivity and robustness, where the
time series is optimally partitioned in the symbolic
dynamic filtering (SDF) framework. It is demonstrated that
the classification performance is improved beyond what is
achieved using the conventional partitioning techniques
(e.g., maximum entropy partitioning and uniform parti-
tioning). The optimization procedure can also be used to
evaluate the capability of other partitioning schemes
toward achieving a particular objective. Nevertheless, effi-
cacy of the proposed partitioning optimization process
depends on the very nature of the time series.

Often class separability among time series data sets is
more conducive in the frequency or time-frequency
domain than in the time domain. Thus, identifying sui-
table data pre-processing methods from the training data
set is an important aspect, which is a topic of future
investigation. Apart from this issue, the following
research topics are currently being pursued as well.
�
 Use of other classifiers (e.g., support vector machines
[19]) and performance comparison among different
classifiers.

�
 Tuning of the classifier within the optimization loop as

described in the general framework in Fig. 3.

�
 Development of an adaptive feature extraction frame-

work for optimal partitioning under different environ-
mental and signal conditions.

�
 Validation of the proposed algorithm in other applica-

tions of pattern classification.
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