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a b s t r a c t

A recent publication has reported a Hilbert-transform-based partitioning method, called

analytic signal space partitioning (ASSP), which essentially replaces wavelet space

partitioning (WSP) for symbolic analysis of time series data in dynamical systems. When

used in conjunction with D-Markov machines, also reported in the recent literature,

ASSP provides a fast method of pattern recognition. However, wavelet transform

facilitates denoising, which allows D-Markov machines to have a small depth D even if

the time series data have a low signal-to-noise ratio. Since Hilbert transform does not

specifically address the issue of noise reduction, usage of D-Markov machines with a

small D could potentially lead to information loss for noisy signals. On the other hand, a

large D tends to make execution of pattern recognition computationally less efficient

due to an increased number of machine states. This paper explores generalization of

Hilbert transform that addresses symbolic analysis of noise-corrupted dynamical

systems. In this context, theoretical results are derived based on the concepts of

information theory. These results are validated on time series data, generated from a

laboratory apparatus of nonlinear electronic systems.

& 2008 Elsevier B.V. All rights reserved.

1. Introduction

Hilbert transform and the associated concept of analytic
signals, introduced by Gabor [1], have been widely adopted
for time–frequency analysis in diverse applications of signal
processing. Hilbert transform [2] of a real-valued signal xðtÞ

is defined as

exðtÞ9H½x�ðtÞ ¼
1

p

Z
R

xðtÞ
t � tdt (1)

That is, exðtÞ is the convolution of xðtÞ with 1=pt

over R9ð�1;1Þ, which is represented in the Fourier
domain as

bexðoÞ ¼ �i sgnðoÞbxðoÞ (2)

where bxðoÞ9F½x�ðoÞ and

sgnðoÞ9
þ1 if o40

�1 if oo0

(
Given the Hilbert transform of a real-valued signal xðtÞ,

the complex-valued analytic signal [2] is defined as

XðtÞ9xðtÞ þ iexðtÞ (3)

and the (real-valued) transfer function with input bxðoÞ
and output bXðoÞ is formulated as

GðoÞ9
bXðoÞbxðoÞ ¼ 1þ sgnðoÞ (4)

Recently, Subbu and Ray [3] have reported an applica-
tion of Hilbert transform for symbolic time series analysis
of dynamical systems where the space of (complex-
valued) analytic signals, derived from real-valued time
series data, is partitioned for symbol sequence generation.
This method, called analytic signal space partitioning
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(ASSP), is comparable or superior to other partitioning
techniques, such as symbolic false nearest neighbor
partitioning (SFNNP) [4] and wavelet space partitioning
(WSP) [5], in terms of performance, complexity and
computation time. A major shortcoming of SFNNP is that
the symbolic false neighbors rapidly grow in number for
noisy data and may erroneously require a large symbol
alphabet to capture pertinent information on the system
dynamics. The wavelet transform largely alleviates these
shortcomings and thus WSP is particulary effective for
noisy data from high-dimensional dynamical systems.
However, WSP has several other shortcomings such as
identification of an appropriate basis function, selection of
appropriate scales and nonunique and lossy conversion
of the two-dimensional scale-shift wavelet domain to a
one-dimensional domain of scale-series sequences [5].

When applied to symbolic analysis in dynamical
systems, ASSP is used to formulate a probabilistic finite-
state model, called the D-Markov model [6], where the
machine states are symbol blocks of depth D. For noisy
systems, it is expected that modeling with a large D in
the D-Markov machine would result in higher gain in
information on the system dynamics. However, a large D

increases the number of machine states, which in turn
degrades computation efficiency (e.g., increased execution
time and memory requirements) [7].

This paper introduces a generalization of the classical
Hilbert transform to modify ASSP for application to noisy
systems. The objective here is to partition the transformed
signal space such that D-Markov machines can be
constructed with a small D without significant loss of
information for noisy signals. The key idea is to provide
a mathematical structure of the generalized Hilbert
transform such that the low-frequency region is more
heavily weighted than that in the classical Hilbert trans-
form.

2. Generalization of Hilbert transform

Lohmann et al. [8] introduced the concept of a
generalized Hilbert transform in the fractional Fourier
space instead of the conventional Fourier space; a discrete
version of this generalized Hilbert transform was devel-
oped later [9]. For geophysical applications, Luo et al. [10]
proposed another type of generalized Hilbert transform
that is essentially the windowed version of traditional
Hilbert transform. However, the notion of generalization
of Hilbert transform presented in the sequel is different
from that in the previously published literature.

Let us define a generalized Hilbert transform as: Ha of
a real-valued signal xðtÞ as the convolution:

exaðtÞ9Ha
½x�ðtÞ ¼ xðtÞ �

sgnðtÞ

pjtja
� �

for a 2 ð0;1� (5)

It is shown in the sequel that, as a " 1 (i.e., the values of
a form an increasing sequence of positive real numbers
with the limit equal to 1), Ha converges to H, where H
is the classical Hilbert transform defined in Eq. (1); that is,
H1
�H.

Two lemmas are presented, which are necessary for
derivation of the main results in the Fourier space.

Lemma 1.Z 1
�1

e�iot

pjtja sgnðtÞdt ¼ �i sgnðoÞ 2p
Gð1� aÞ
joj1�a

sin
p
2
ð1� aÞ

� �
(6)

where a 2 ð0;1Þ; and Gð1� aÞ9
R1

0 e�y=ya dy.

Lemma 2. As a " 1, the integral
R1
�1

e�iot=pjtja sgnðtÞdt!

�i sgnðoÞ, i.e.,

lim
a"1

Gð1� aÞ 2

p sin
p
2
ð1� aÞ

� �
¼ 1 (7)

Proofs of the above two lemmas are provided in
Appendix A.

Taking Fourier transform of the convolution in Eq. (5)
and an application of Lemma 1 yield

bexaðoÞ ¼F xðtÞ �
sgnðtÞ

pjtja
� �

¼FðxðtÞÞ �F
sgnðtÞ

pjtja
� �

¼ � i sgnðoÞ 2
p

x̂ðoÞGð1� aÞ
joj1�a

sin
p
2
ð1� aÞ

� �
(8)

Since Gð1� aÞo1 for a 2 ð0;1Þ, the generalized Hilbert
transform exaðtÞ can be evaluated by taking the inverse
Fourier transform of bexaðoÞ.

The above formulation shows that a reduced a puts
more weight on the low frequency part of the signal xðtÞ

and hence more effectively attenuates the high-frequency
noise than the classical Hilbert transform. Following
Lemma 2, as a " 1, Fourier transform of the signal
sgnðtÞ=pjtja converges to �i sgnðoÞ. This leads to the fact,
that as a " 1, Ha converges to H, where H is the
classical Hilbert transform defined in Eq. (1).

Analogous to the analytic signal in Eq. (3), the
(complex-valued) generalized analytic signal of the real-
valued signal xðtÞ is defined as

Xa
ðtÞ9xðtÞ þ iexaðtÞ (9)

and the (real-valued) transfer function with input bxðoÞ
and output bXa

ðoÞ is formulated as

Ga
ðoÞ9

bXa
ðoÞbxðoÞ ¼ 1þ sgnðoÞ o0ðaÞ

joj

� �ð1�aÞ
(10)

where o0ðaÞ9ð2=pGð1� aÞ sinðp2 ð1� aÞÞÞ
1=ð1�aÞ.

Remark 1. For a ¼ 1, it follows from Eq. (5) that the real-
valued signal xðtÞ is convoluted with 1=pt. The implication
is that the effects of memory in the signal xðtÞ reduce
as fast as 1=pjtj. As a is decreased, the tail of the impulse
response of the generalized Hilbert transform exaðtÞ
becomes increasingly fat as seen in Fig. 1. Hence, for
0oao1, the generalized analytic signal Xa

ðtÞ captures
more (low-frequency) information from time series data
than that for a ¼ 1.

Remark 2. Fourier transform of a real-valued signal does
not contain any additional information beyond what is
provided by the positive frequency components, because
of the symmetry of its spectrum. Therefore, in the
construction of an analytic signal in Eq. (3) and its transfer

ARTICLE IN PRESS

S. Sarkar et al. / Signal Processing 89 (2009) 1245–12511246



Author's personal copy

function in Eq. (4), Hilbert transform removes the negative
frequency components while doubling the positive fre-
quency components. For ao1, it follows from Fig. 2 that
the negative frequency components of the transfer
function Ga

ðoÞ of a generalized analytic signal are
no longer zero. Therefore, the generalized analytic signal
in Eq. (9) is not an analytic signal in the sense of Gabor [1]
for ao1. However, the transfer functions of both analytic
and generalized analytic signals are real-valued almost
everywhere in the range o 2 R. The phase of the
(real-valued) transfer function Ga

ðoÞ is either 0 or �p as
explained below.

� The phase of GðoÞ (i.e., Ga
ðoÞ for a ¼ 1) is 0 radians

in the frequency range ð0;1Þ. Its magnitude in the
negative frequency range ð�1;0Þ is identically equal to
0; therefore, the phase in this range is inconsequential.
� For 0oao1, the phase of Ga

ðoÞ is �p radians in the
range of frequency ð�o0ðaÞ;0Þ, where o0 is defined in

Eq. (10), and is 0 radians in the range of frequency
ð�1;�o0ðaÞÞ

S
ð0;1Þ.

3. Test results and validation

The concept of generalized Hilbert transform is tested
and validated by symbolic analysis of time series data,
generated from the same apparatus of nonlinear electro-
nic systems reported in the earlier publication [3]. The
symbol sequence, constructed from time series data, is
passed through a fixed structure D-Markov machine [6] to
compute the state-transition matrices, called P-matrices,
for two values of the depth parameter, D ¼ 1 and 2.
Performance of the two D-Markov representations for
each partition, corresponding to different values of the
parameter a, is compared in terms of the mutual
information [11] and the associated information gain.
The procedure is delineated below.

3.1. Collection of time series data

The nonlinear active electronic system in the test
apparatus emulates the forced Duffing equation:

d2x

dt2
þ b

dx

dt
þ xðtÞ þ x3ðtÞ ¼ A cosðotÞ (11)

Having the system parameters set to b ¼ 0:24, A ¼ 22:0
and o ¼ 5:0, time series data of the variable xðtÞ were
collected from the electronic system apparatus. These
data sets do not contain any substantial noise because
the laboratory apparatus is carefully designed to shield
spurious signals and noise. Therefore, to emulate the
effects of noise in the time series data, additive first-order
colored Gaussian noise was injected to the collected time
series data to investigate the effects of signal-to-noise
(SNR) ratio. The profile of a typical signal, contaminated
with 10 db additive Gaussian noise (i.e., SNR ¼ 10), is
shown in Fig. 3.

3.2. Construction of the transformed phase space

Let the real-valued noisy time series data xðtÞ contain N

data points. Upon generalized Hilbert transformation of
this data sequence, a complex-valued generalized analytic
signal Xa

ðtÞ is constructed. Similar to the procedure
described in [3], Xa

ðtÞ is represented as a one-dimensional
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trajectory in the two-dimensional pseudo-phase space.
Let O be a compact region in the pseudo-phase space,
which encloses the trajectory of N such data points.

3.3. Partitioning and symbol generation

The next task is to partition O into finitely many
mutually exclusive and exhaustive segments, where each
segment is labeled with a symbol or letter. The partition-
ing is based on the magnitude and phase of the complex-
valued signal Xa

ðtÞ as well as the density of data points in
these segments, following the procedure described in [3].
Each point in the partitioned data set is represented by a
pair of symbols; one belonging to the alphabet SR based
on the magnitude (i.e., in the radial direction) and the
other belonging to the alphabet SA based on the phase
(i.e., in the angular direction). In this way, the complex-
valued signal Xa

ðtÞ is partitioned into a symbol sequence
by associating each pair of symbols to a single symbol
belonging to an alphabet S that is defined as

S9fðsi;sjÞ 2 SR � SAg and jSj ¼ jSRjjSAj (12)

The results presented in this paper are generated with
SR ¼ 8 in the radial direction and SA ¼ 5 in the angular
direction, i.e., jSj ¼ 40.

3.4. State transition matrices

The symbol sequence is now used to construct D-
Markov machine models [6]. The assumption of statistical
stationarity of the symbol sequence is implicit in the
construction of Markov models. In this paper, Markov
chain models of depth D ¼ 1 and 2 have been constructed.

Modeling of the symbolic process as a (D ¼ 1) Markov
chain involves evaluation of the P1 matrix, where the
ijth matrix element p1

ij is defined as the probability that
ðnþ 1Þth state is i given that the nth state was j, i.e.,

p1
ij9Pðqnþ1 ¼ ijqn ¼ jÞ (13)

where qk is the state at discrete time instant k. Evidently,
the size of the P matrix is jSj � jSj, where jSj is the
number of symbols in the alphabet S.

Modeling the symbolic process as a (D ¼ 2) Markov
chain involves evaluation of a 3-dimensional matrix,
where the ijkth matrix element p2

ijk is defined as

p2
ijk9Pðqnþ2 ¼ ijqnþ1 ¼ j; qn ¼ kÞ (14)

and size of the (sparse) P2 matrix is jSj � jSj � jSj.

Remark 3. Elements of both P1 and P2 matrices are
estimated by conditional frequency count and their con-
vergence requires a symbol sequence of sufficient length.
This aspect has been discussed in [7,12] and is referred to
as the stopping rule that assigns a bound on the length
of the symbol sequence for parameter identification of the
stochastic matrices P1 and P2.

3.5. Computation of mutual information

Effectiveness of generalized Hilbert transform for
Markov model construction has been examined from an
information theoretic perspective [11]. The rationale is
that, in a noise-corrupted system, higher values of mutual
information imply less uncertainties in the symbol
sequence. The mutual information I is expressed in
terms of entropy S for both (D ¼ 1 and 2) Markov chains
in the following set of equations:

Iðqnþ3; qnþ2Þ9Sðqnþ3Þ �Sðqnþ3jqnþ2Þ (15)

Sðqnþ3Þ9�
XjSj
‘¼1

Pðqnþ3 ¼ ‘Þ log2 Pðqnþ3 ¼ ‘Þ (16)

Usage of maximum entropy partitioning [5] for symbol
generation yields: Sðqnþ3Þ ¼ log2ðjSjÞ.

Sðqnþ3jqnþ2Þ9
XjSj
‘¼1

Pðqnþ2 ¼ ‘Þ Sðqnþ3jqnþ2 ¼ ‘Þ (17)

where

Sðqnþ3jqnþ2 ¼ ‘Þ ¼ �
XjSj
j¼1

Pðqnþ3 ¼ jjqnþ2 ¼ ‘Þ

� log2Pðqnþ3 ¼ jjqnþ2 ¼ ‘Þ (18)

Iðqnþ3; qnþ2; qnþ1Þ9Sðqnþ3Þ �Sðqnþ3jqnþ2; qnþ1Þ (19)

Sðqnþ3jqnþ2; qnþ1Þ9�
XjSj
i¼1

XjSj
j¼1

Pðqnþ2 ¼ i; qnþ2 ¼ jÞ

�Sðqnþ3jqnþ2 ¼ i; qnþ1 ¼ jÞ (20)

where

Sðqnþ3jqnþ2 ¼ i; qnþ1 ¼ jÞ

¼ �
XjSj
‘¼1

Pðqnþ3 ¼ ‘jqnþ2 ¼ i; qnþ1 ¼ jÞ

� log2Pðqnþ3 ¼ ‘jqnþ2 ¼ i; qnþj ¼ jÞ (21)

Based on Eq. (13) and Eqs. (15)–(18), the mutual
information Iðqnþ3; qnþ2Þ is calculated from the P1

matrix. Similarly, based on Eq. (14) and Eqs. (19)–(21),
Iðqnþ3; qnþ2; qnþ1Þ is calculated from the P2 matrix. Then,
information gain (abbreviated as IG) with D ¼ 2 instead
of D ¼ 1 in the Markov chain construction is defined as

IG9Iðqnþ3; qnþ2; qnþ1Þ �Iðqnþ3; qnþ2Þ (22)

3.6. Pertinent results

This subsection presents test and validation of the
concept of generalized Hilbert transform based on the
time series data collected from the laboratory apparatus of
nonlinear electronic system. The test results are inter-
preted in terms of mutual information for (D ¼ 1 and 2)
Markov chains for noise-contaminated data for different
values of SNR and the parameter a (see Eq. (5)). The
pertinent results on mutual information and information
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gain are presented in Figs. 4 and 5, respectively. Although
results are shown only for SNR ¼ 1;10;4 and 0, several
other experiments with intermediate values of SNR

between 1 and 0 were performed, which shows the
same trend.

The information gain is always a positive quantity as
seen in Eq. (22). In other words, there is always a gain in
information upon increasing the depth of the Markov
chain model. Pertinent inferences, drawn from these
results, are presented below.

(1) Mutual information increases with decrease in a
irrespective of D and SNR as seen in Fig. 4.

(2) Information gain IG (see Eq. (22) and Fig. 5) is
minimal for SNR!1 (i.e., for the signal with no noise
injection). Therefore, D ¼ 1 Markov chain should be
adequate with ASSP using conventional Hilbert trans-
form (see Eq. (1)) for low-noise signals.

(3) As SNR is decreased (i.e., percentage of additive noise
is increased), information gain IG increases for all

values of a in the range of 1:0 down to about 0:2. As a
is decreased, information gain decreases as seen in
Fig. 5. Therefore, even for a considerable amount of
noise, a smaller value of a should be able to achieve
noise attenuation and thus allow usage of D ¼ 1 in
D-Markov machines.

(4) Results for a pathological case with SNR! 0, (i.e.,
complete noise capture of the signal) in Figs. 4 and 5
show similar trends as above. The crossing of the
information gain curves in Fig. 5 at low values of a
(e.g., ap0:2) could possibly be attributed to the effects
of coarse graining [13] due to symbol generation.

The rationale for the observed trends in Figs. 4 and 5 is
reiterated as follows. An increase in depth D captures the
effects of longer memory in the signal, and a smaller value
of the parameter a 2 ð0;1Þ puts more weight on the low-
frequency components, which assists noise reduction.

4. Summary, conclusion and future work

This section summarizes the specific contributions of
the paper highlighting the pertinent conclusions. Future
research in several areas has also been recommended.

4.1. Summary

This paper formulates a generalization of the classical
Hilbert transform along with proofs of the pertinent
lemmas that are required for the theoretical formulation.
The proposed scheme of generalized Hilbert transform
is shown to be potentially useful for symbolic time series
analysis of noise-corrupted dynamical systems. The
proposed concept of noise reduction via generalization
of Hilbert transform is tested and validated on experi-
mental data collected from a laboratory test apparatus.

4.2. Pertinent conclusions

The following conclusions are drawn from the vali-
dated results of the proposed generalization of Hilbert
transform on a laboratory apparatus of nonlinear electro-
nic systems as presented in the previous section.

� Generalized Hilbert transform with a smaller value of
parameter a is capable of extracting more information
from a data sequence irrespective of the depth of the
D-Markov machine chosen for modeling.
� Information gain for a larger depth D reduces with

smaller values of the parameter a.
� By selecting small values of the parameter a in

the generalized Hilbert transform, it is possible to
avoid using a computationally expensive larger depth
D without loss of significant information.

4.3. Recommendations for future research

The proposed method of noise attenuation via general-
ization of Hilbert transform is potentially useful for

ARTICLE IN PRESS
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symbolic time series analysis of noise-corrupted dynami-
cal systems. The future work should be directed toward
advancement of the theory of partitioning as well as on
application to different real-life uncertain systems. Ex-
amples include sensor networks that require on-board
real-time analysis of noisy signals with very low compu-
tation capacity.
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Appendix A. Proofs of Lemmas

This appendix presents the proofs of Lemmas 1 and 2
that are stated in Section 2.

A.1. Proof of Lemma 1

Proof. The lemma is proved by integration around
a quarter circular contour as shown in Fig. 6(a). Follow-
ing Cauchy residual theorem, if z is a complex number,
thenZ
G

eiz

za
dz ¼ 0 (23)

where the closed contour G contains no residues and
consists of the paths G1, G2, G3 and G4. As R!1 and
r! 0, the integral around G2 and the integral around G4

goes to 0, respectively. Therefore,Z
G1

eiz

za
dzþ

Z
G3

eiz

za
dz ¼ 0 (24)

)

Z 1
0

eix

xa
dxþ

Z 0

1

e�y

ðiyÞa
dy ¼ 0 (25)

The following two equations are derived from Eq. (25).Z 1
0

eix

xa
dx ¼ eiðp=2Þð1�aÞGð1� aÞ (26)

Z 1
0

e�ix

xa
dx ¼ e�iðp=2Þð1�aÞGð1� aÞ (27)

Now,Z 1
1

e�iot

jtja
sgnðtÞdt ¼

Z 1
0

e�iot

ta
dt �

Z 0

�1

e�iot

jtja
dt (28)

For o40, it follows from Eq. (27) thatZ 1
0

e�iot

ta
dt ¼

Gð1� aÞ
joj1�a

e�iðp=2Þð1�aÞ (29)

and using Eq. (26)Z 0

�1

e�iot

jtja
dt ¼

Gð1� aÞ
joj1�a

eiðp=2Þð1�aÞ (30)

Similarly, for oo0Z 1
0

e�iot

ta
dt ¼

Gð1� aÞ
joj1�a

eiðp=2Þð1�aÞ (31)

Z 0

�1

e�iot

jtja
dt ¼

Gð1� aÞ
joj1�a

e�iðp=2Þð1�aÞ (32)

It follows from Eqs. (29)–(32) thatZ 1
�1

e�ðiotÞ

jtja
sgnðtÞdt

¼

Gð1�aÞ
joj1�a ½e

�iðp=2Þð1�aÞ � eiðp=2Þð1�aÞ� if o40

Gð1�aÞ
joj1�a ½e

iðp=2Þð1�aÞ � e�iðp=2Þð1�aÞ� if oo0

8><>: (33)

)

Z 1
�1

e�ðiotÞ

pjtja sgnðtÞdt

¼ �i
2

p sgnðoÞGð1� aÞ
joj1�a

sin
p
2
ð1� aÞ

� �
& (34)

Given GðzÞ ¼
R1

0 tðz�1Þe�tdt for ReðzÞ40, it follows that
0oGð1� aÞo1 for a 2 ð0;1Þ.
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Fig. 6. Contours of integration paths for generalized Hilbert transform. (a) 0oao1 and (b) a ¼ 1.
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A.2. Proof of Lemma 2

Proof. Let y9ð1� aÞ and Z9ð2=pÞ sinððpyÞ=2ÞGðyÞ. Then,
for y 2 ð0;1Þ, it follows that

lim
y!0

Z ¼ lim
y!0

GðyÞ2 sin py
2 cos py

2

p cos py
2

¼

lim
y!0

GðyÞ sinðpyÞ

p lim
y!0

cos py
2

¼

lim
y!0

p
Gð1�yÞ

p
¼ 1 (35)

because 8z 2 C;GðzÞGð1� zÞ ¼ p= sinðpzÞ and Gð1Þ ¼ 1.
&

It follows from the proofs of the two lemmas that the
integration path changes from a quarter circular contour
to a half circular contour, as seen in Fig. 6(a) and (b),
as a " 1.
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