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a b s t r a c t

This paper addresses statistical estimation of multiple parameters that may vary

simultaneously but slowly relative to the process response in nonlinear dynamical

systems. The estimation algorithm is sensor-data-driven and is built upon the concept of

symbolic dynamic filtering for real-time execution on limited-memory platforms, such

as local nodes in a sensor network. In this approach, the behavior patterns of the

dynamical system are compactly generated as quasi-stationary probability vectors

associated with the finite-state automata for symbolic dynamic representation. The

estimation algorithm is validated on nonlinear electronic circuits that represent

externally excited Duffing and unforced van der Pol systems. Confidence intervals are

obtained for statistical estimation of two parameters in each of the systems.

& 2009 Elsevier B.V. All rights reserved.

1. Introduction

Recent literature has reported various methods for
estimation of multiple parameters, such as those based on
joint state estimation [1], parity equations [2], generalized
likelihood ratio [3], Karhunen–Loéve and Galerkin multi-
ple shooting [4], similarity measures [5], and orthogonal
Haar transform [6]. An application of parameter estima-
tion is the detection and mitigation of evolving faults in
interconnected dynamical systems [7]. Often evolution of
gradual deviations from the nominal behavior in indivi-
dual components of such systems may lead to cascaded
faults because of strong input–output and feedback
interconnections between the system components, and

may eventually cause catastrophic failures and forced
shutdown of the entire system. In such a scenario, the
problem of degradation monitoring of the system reduces
to simultaneous estimation of several slowly varying
critical parameters.

Many conventional methods of parameter estimation
are model-based and they are often inadequate for
human-engineered complex systems due to unavailability
of a reliable model of the process dynamics. To alleviate
this problem, data-driven parameter estimation methods
have been formulated in the setting of hidden Markov
models (HMM) [8]. One such method is symbolic dynamic
filtering (SDF) [9,10] that is based on the concept of
symbolic time series analysis (STSA) [11]; SDF belongs to
the class of data-driven statistical pattern recognition and
enables compression of information into pattern vectors
of low dimension for real-time execution on limited-
memory platforms, such as small microprocessors in a
sensor network. In a recent publication [12], performance
of SDF has been shown to be superior to that of several
pattern classification techniques such as principal com-
ponent analysis (PCA), artificial neural networks (ANN),
kernel regression analysis (KRA), particle filtering (PF) and
unscented Kalman filtering (UKF), in terms of early
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detection of changes, computation speed and memory
requirements.

As an extension of the parameter estimation method of
Tang et al. [13], which is also based on STSA, Piccardi [14]
proposed multiple-parameter estimation in chaotic sys-
tems; although the symbolic analysis was performed on a
probabilistic finite-state model, the parameter vector was
estimated by (genetic algorithm) optimization in a
deterministic setting. The present paper, which is built
upon the concept of SDF, proposes an alternative approach
to estimation of multiple parameters as described below.

The framework of SDF includes preprocessing of time
series data by time–frequency analysis (e.g., wavelet
transform [15] and Hilbert transform [16,17]). The trans-
formed data set is partitioned using the maximum
entropy principle [18] to generate the symbol sequences
from the transformed data set without any significant loss
of information. Subsequently, statistical patterns of the
evolving system dynamics are identified from these
symbol sequences through construction of probabilistic
finite-state automata (PFSA). An additional advantage of
transform space-based partitioning is reduction of spur-
ious noise in the data set from which the PFSA is
constructed; this feature provides additional robustness
to SDF as discussed in [18]. The state probability vectors
that are derived from the respective state transition
probability matrices of PFSA serve as behavioral patterns
of the evolving dynamical system under nominal and off-
nominal conditions.

Parameter estimation algorithms, based on SDF, have
been experimentally validated for real-time execution in
different applications, such as degradation monitoring
in electronic circuits [12] and fatigue damage monitoring
in polycrystalline alloys [19]. While these applications of
SDF have focused on estimation of only a single parameter,
the work reported here addresses statistical estimation
of multiple parameters. Specifically, this paper is an
extension of the earlier work [20] on single-parameter
estimation to estimation of multiple parameters that may
vary simultaneously. The resulting algorithms are vali-
dated on the same test apparatus as [20] for the following
electronic systems:

(1) Externally excited Duffing system [21]:

d2xðtÞ

dt2
þ b

dx

dt
þ a1xðtÞ þ x3ðtÞ ¼ A cosðoetÞ (1)

where the amplitude A ¼ 22:0, excitation frequency
oe ¼ 5:0, and nominal values of the parameters, to be
estimated, are a1 ¼ 1:0 and b ¼ 0:1.

(2) Unforced van der Pol system [22]:

d2xðtÞ

dt2
� mð1� x2ðtÞÞ

dxðtÞ

dt
þo2xðtÞ ¼ 0 (2)

where nominal values of the parameters, to be
estimated, are m ¼ 1:0 and o ¼ 1:0.

While the parameter estimation algorithm is tested on
an experimental apparatus, a system model is generally
used for the purpose of training. Therefore, model
reliability or statistic of the modeling error is crucial for

robustness of the algorithm and should be known a priori.
However, this issue is not within the scope of this paper as
both training and testing are carried out on similar
experimental devices.

2. Review of SDF and single-parameter estimation

This section succinctly reviews the theory of SDF [9]
and explains the underlying concept of single-parameter
estimation [20] in the SDF framework.

Extraction of statistical behavior patterns from time
series data is posed as a two-scale problem. The fast scale is
related to response time of the process dynamics. Over the
span of data acquisition, dynamic behavior of the system is
assumed to remain invariant, i.e., the process is quasi-
stationary at the fast scale. In other words, variations in the
statistical behavior of the dynamical system are assumed
to be negligible on the fast scale. The slow scale is related to
the time span over which deviations (e.g., parametric
changes) may occur and exhibit non-stationary dynamics.
The parameters are estimated based on the information
generated by SDF of the data collected over the fast scale at
a slow scale epoch. This method is also applicable to
estimation of slowly varying parameters. The rationale is
that, since the parameters vary slowly, they are treated as
invariants at a given slow scale epoch; accordingly, the
fast-scale statistical behavior of the dynamical system may
change at different slow scale epochs (that are simply
referred to as epochs in the sequel).

2.1. Forward problem in the symbolic dynamic setting

This subsection summarizes the forward problem for
detection of deviation patterns in the SDF setting:

(1) Time series data acquisition on the fast scale from

sensors and/or analytical measurements (i.e., outputs

of a physics-based or an empirical model). Data sets
are collected at the parameter values as a set
fs0; s1; . . . ; sk; . . .g, where sk denotes the value of the
parameter at the epoch k.

(2) Generation of wavelet transform coefficients with an

appropriate choice of the wavelet basis and scales.
The wavelet transform largely alleviates the difficul-
ties of phase-space partitioning and is particularly
effective with noisy data from high-dimensional
dynamical systems.

(3) Maximum entropy partitioning of the wavelet space at a

reference condition. Each segment of the partitioning is
assigned a particular symbol from the symbol alpha-
bet S. This step enables transformation of time series
data from the continuous domain to the symbolic
domain [23].

(4) Construction of a probabilistic finite-state automaton

(PFSA) at the reference condition. The structure of the
finite-state machine is fixed for subsequent parameter
values until a new reference is selected.

(5) Computation of the reference pattern vector pðs0Þ whose

elements represent state occupation probabilities of the

PFSA at the reference condition. Such a pattern vector is
recursively computed as an approximation of the
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natural invariant density of the dynamical system,
which is a fixed point of the local Perron–Frobenius
operator [24]. Thus, pðs0Þ � ½p1ðs

0Þ p2ðs
0Þ � � � pjSjðs

0Þ�,
where jSj is the number of states in the PFSA.

(6) Time series data acquisition on the fast scale at

subsequent parameter values, and their conversion to

respective symbolic sequences based on the reference

partitioning at the reference value.
(7) Generation of the pattern vectors, pðs1Þ;pðs2Þ; . . . ;

pðskÞ; . . . at parameter values, s1; s2; . . . ; sk; . . . from the

respective symbolic sequences using the state machine

constructed at nominal parameter value s0. Thus,
pðskÞ � ½p1ðs

kÞ p2ðs
kÞ � � � pjSjðs

kÞ�, where jSj is the
number of states in the PFSA. (Note that only ðjSj �
1Þ out of the jSj elements of pðskÞ are linearly
independent because pðskÞ is sum-normalized to
unity.) The structure of the PFSA at all epochs is
identical in the SDF framework, while the pattern
vectors pðskÞ are possibly different at different para-
meter values sk.

(8) Computation of deviation measures: Evolving deviation
measures Mðs1Þ;Mðs2Þ; . . . ;MðskÞ; . . . at parameter
values, s1; s2; . . . ; sk; . . . ; are computed with respect to
the nominal condition at s0, by selecting an appro-
priate distance function dð�; �Þ (e.g., the standard
Euclidean norm) such that

MðskÞ9dðpðskÞ;pðs0ÞÞ (3)

2.2. Inverse problem of single-parameter estimation

This subsection focuses on the inverse problem of
single-parameter estimation based on computed values of
the deviation measure in the forward problem. The
parameter to be estimated is treated as a random variable
at each epoch, for which the deviation measure is an
observable. To account for the inherent uncertainties in
the system components and to ensure robust estimation, a
large number of experiments are performed and the
deviation measures are calculated from observed sets of
time series data during each experiment, with the
objective of estimating the unknown parameter. The steps
for the statistical identification of the system parameter
from the measured value of deviation measure are
delineated below:

(1) Upon generation of deviation measure profiles in the

forward problem, a statistical relationship is identified

between deviation measure and the parameter asso-

ciated with the deviation. In particular, probability
distributions of the parameter are obtained for various
values of the deviation measure. Then, statistical tests
are performed to determine goodness-of-fit of the
distributions. For example, mean and variance asso-
ciated with a two-parameter distribution provide
adequate statistical information on the bounds and
confidence levels of the estimated parameter.

(2) Data acquisition on the fast scale at an unknown

parameter value. Time series data are collected

(in the fast scale) under operating conditions similar
to those in Step 1 of the forward problem. Data are
analyzed to generate pattern vectors as described in
the forward problem. The deviation measure Mtest at
parameter value stest is then calculated by quantifying
the deviation of the current pattern vector ptest from
the nominal pattern vector pðs1Þ.

(3) Parameter estimation from generated statistics of devia-

tion profile. The estimated value of the parameter and
its confidence interval are obtained based on the
computed deviation measure and the probability
distribution derived in Step 1 of the inverse problem.

In the above procedure, the range of the computed
deviation measure profile is discretized into finitely many
levels. A statistical distribution is hypothesized for
determining spread of the parameter and goodness-of-fit
of the hypothesized distribution that is assessed with w2

and Kolmogorov–Smirnov tests [25].

3. Framework of multi-parameter estimation

In general, extension of single-parameter estimation
[20] to multiple-parameter extension is not a straightfor-
ward task as explained below.

Let us consider the Duffing system in Eq. (1), where the
parameters to be estimated are chosen as a1 and b; and
the deviation measure M (see Eq. (3)) is obtained for the
parameter pair s9ðs1; s2Þ ¼ ða1; bÞ. Fig. 1 shows a plot
with a1 on the x-axis, b on the y-axis and the contours of
the deviation measure M. Each contour is constructed by
joining points with the same value of deviation measure
M; this is indicated by the gray scale (color) correspond-
ing to the vertical bar on the right hand side of the plot.
Values of deviation measure M are chosen in steps of 0.1
and a plane parallel to the x–y axis is constructed at these
values of M to join points of equal values of deviation
measure. As the system deviates in either direction
from the nominal condition of a1 ¼ 1:0 and b ¼ 0:1, the
deviation measure M increases until bifurcation occurs
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Fig. 1. Contour plot of the deviation measure M.
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(e.g., a1 ¼ 1:0 and b � 0:32). It is obvious that the inverse
image of a singleton set of M may contain infinitely many
combinations of a1 and b. Hence, the information on M
alone is insufficient for uniquely identifying the para-
meters a1 and b that characterize the system. It
demonstrates that non-uniqueness of estimation could
occur if a scalar-valued function is chosen as the cost
functional for optimized estimation of multiple para-
meters. This problem is resolved by considering
the individual elements of the frequency probability
vector for statistical estimation of the parameters as
explained below.

If the estimation of multiple parameters is set as an
optimization problem with deviation measure M being
the cost functional, then non-convexity may arise due to
existence of contours; this situation could occur even if
the range of optimization is narrow. Therefore, instead of
relying on the deviation measure for parameter estima-
tion MðskÞ, as it was done in [13,14,20], variations in the
individual elements of pðskÞ9½p1ðs

kÞ; p2ðs
kÞ; . . . ;pjSjðs

kÞ�

are used in this paper. That is, the parameter estima-
tion problem is reduced to identification of contours for
ðjSj � 1Þ independent elements of the state probability
vector pðskÞ. The information derived from these ðjSj � 1Þ
independent contours would yield a statistical estimate of

the parameter vector sk. This approach circumvents the
aforementioned non-convexity problem.

For a given parameter pair of the Duffing system
having values sk ¼ ðak

1; b
k
Þ, the pattern vectors are

generated as pðskÞ � ½p1ðs
kÞ p2ðs

kÞ � � � pjSjðs
kÞ�. Having

jSj ¼ 8, eight plates in Fig. 2 shows contours for each of
the eight elements of pðskÞ for a given value of
ðak

1 ¼ 0:75; bk
¼ 0:23Þ. The following two subsections

describe a method that makes use of the ensemble of
information in different contours to arrive at a more
precise estimation of the parameters.

3.1. Construction of the multi-parameter algorithm

Let S denote the collection of (finitely many) points in
the n-dimensional parameter space, where the positive
integer n is the number of parameters that are to be
estimated. That is, S ¼ fs1; s2; . . . ; sjSjg, on which the
training process is executed. Let O be the convex hull of
S, which represents the range over which the parameters
take values. It is noted that O is a convex and compact
subset of the separable space Rn.

Let each element sk9ðsk
1; s

k
2; . . . ; s

k
nÞ represent a parti-

cular set of parameters. For the Duffing system in Eq. (1),
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the set S consists of different values of parameters a1 and
b in the range where the experiments have been
conducted; for example, a permissible value of s is
ða1; bÞ ¼ ð0:3; 0:4Þ. Given an experimental time series
data set !, the problem at hand is to identify the
conditional probability density f ðs j!Þ, where s 2 O. The
procedure of multi-parameter estimation consists of
the forward problem and the inverse problem that are
analogous to, but much more involved than, the single-
parameter estimation procedure described in Section 2.

3.1.1. Forward problem/training

For the forward problem, sets of time series data
are generated by experimental runs at parameter values
sk; 8k ¼ 1;2; . . . ; jSj. A symbolic dynamic filter is con-
structed to analyze each data sequence as outlined in
Section 2. For jSj being the number of automaton states,
the n-dimensional pattern vector pðskÞ is generated for
every sk 2S. The procedure for data acquisition and
storage for statistical analysis is described below.

For each sk 2S, L different samples of the random
parameter vector were collected, which were realized as
identically manufactured but different electronic cards in
experimental apparatus [20]. This implies that L� jSj
experiments need to be conducted on the apparatus. In
this paper, there were L ¼ 40 different realizations of the
experimental apparatus. For each of Duffing and van der
Pol experiments, jSj ¼ 50 and hence the total number of
experiments was 40� 50 ¼ 2000.

Let the elements pjðs
kÞ, j ¼ 1;2; . . . ; jSj of the state

probability vector pðskÞ, k ¼ 1;2; . . . ; jSj be modeled as a
random variable qjðs

kÞ that is constructed from the
ensemble of data points. The resulting random vector is
obtained as

qðskÞ � ½q1ðs
kÞ q2ðs

kÞ � � � qjSjðs
kÞ� (4)

where qjðs
kÞ	N½mjðs

kÞ;s2
j ðs

kÞ�, i.e., qjðs
kÞ is modeled to be

Gaussian with mean mjðs
kÞ and variance s2

j ðs
kÞ, as

explained below from the perspectives of state machine
construction in the SDF setting. The equation for the
modeled distribution is given as

f qj jS
ðpjjs

kÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ps2
j ðs

kÞ

q exp �
ðpj �mjðs

kÞÞ
2

2s2
j ðs

kÞ

 !
(5)

The underlying dynamical system is modeled as an
irreducible Markov process via SDF, where the state
probability vector is the sum-normalized eigenvector of
the state transition matrix corresponding to the unique
unity eigenvalue. Hence, no element in the state proba-
bility vector is either 0 or equal to 1. However, due to
process noise and sensor noise, the random variable qjðs

kÞ

fluctuates around its mean mjðs
kÞ. While analyzing the

experimental data, the standard deviation sjðs
kÞ of the

random variables qjðs
kÞ was found to be very small

compared to its expected value mjðs
kÞ, i.e., the ratio

sjðs
kÞ=mjðs

kÞ51 8k ¼ 1;2; . . . ; jSj 8j ¼ 1;2; . . . ; jSj. There-
fore, a parametric or non-parametric two-sided unimodal
distribution should be adequate to model the random
variable qjðs

kÞ. The choice of Gaussian distribution for qj

would facilitate estimation of the statistical parameters

and involve only second order statistics. This assumption
has been validated by using the w2 and Kolmogorov–
Smirnov tests for goodness-of-fit [25] of each qj for
Gaussian distribution.

Remark 3.1. The random variables qjðs
kÞ must satisfy the

following two conditions:

� Positivity, i.e., qjðs
kÞ40 8 s 2S 8j ¼ 1;2; . . . ; jSj. This is

made possible by truncating the far end of the
Gaussian distribution tail on the left side. The good-
ness-of-fit of the distribution as Gaussian still remains
valid at a very high significance level.
� Unity sum of the state probabilities, i.e.,

PjSj
j¼1 qjðs

kÞ

¼ 1 8 s 2S. This is achieved by sum-normalization.

Remark 3.2. The automaton states are analogous to
energy states in statistical mechanics of ideal gases [26].
This fact is used for formulating the inverse problem as
explained below.

3.1.2. Inverse problem/testing

Let time series data be generated from a new test on
the experimental apparatus. The task at hand is to
identify, from this data set, the unknown parameter
vector s 2 O; however, it is possible that seS. The data
are analyzed using the same symbolic dynamic filter
constructed in the forward/training problem (see Section
3.1.1), and the resulting probability vector p � ½p1 � � � pjSj�

is a realization of a random vector q � ½q1 � � � qjSj�. The
density function fOjqðs jpÞ is obtained as

fOjqðs jpÞ ¼
f qjOðpj sÞfOðsÞ

f qðpÞ
¼

f qjOðpj sÞfOðsÞR
O f qjOðpj s̃ÞfOðs̃Þd s̃

(6)

In the absence of a priori information, an assumption is
made that all operating conditions are equally likely, i.e.,
fOðsÞ ¼ fOðs̃Þ 8 s; s̃ 2 O. With this assumption of uniform
probability, Eq. (6) reduces to

fOjqðs jpÞ ¼
f qjOðpj sÞR

O f qjOðpj s̃Þd s̃
(7)

It is noted that accuracy of the above distribution would
be improved if the actual prior mapping, i.e., fOðs̃Þ is
known. The integral in the denominator of Eq. (7) is
approximated by a Reimann sum as

fOjqðs jpÞ � k
f qjOðpj sÞP
Sf qjOðpj s̃Þ

(8)

where k is a constant. This approximation converges to
the exact solution as the training set S approaches a
(countable) dense subset of O 
 Rn.

The density function in Eq. (8) is now sampled at the
points sk in the training set S to construct the following
sampled density to yield

fOjqðs jpÞ
��
s¼sk � k

f qjO pjsk
� �

P
s̃2Sf qjO pj s̃ð Þ

8sk 2S (9)

Furthermore, it is observed from experimental data that
fluctuations of pi are uncorrelated with those of pj for all
iaj, where i; j ¼ 1;2; . . . ; jSj. Therefore, the joint density
function of the Gaussian random vector p is reduced to the
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product of individual Gaussian distributions of the
random variables pj. That is,

fOjqðs jpÞjs¼sk � k
QjSj�1

j¼1 f qj jOðpjjs
kÞP

s̃2S

QjSj�1
j¼1 f qj jOðpjjs̃

kÞ
(10)

The density functions in the numerator and denominator
of Eq. (10) are obtained from Eqs. (9) and (5), which were
determined in the training phase. A most likely estimate
of the parameter vector s is obtained from the probabil-
istic map in Eq. (10). It should be noted that the nature of
the density function fOjqðs

kjpÞ does not depend on the
constant k.

The probability mass functions are obtained by
evaluating the probability density function in Eq. (9) at
points sk 2S.

PðskjpÞ9
fOjqðs

kjpÞPjSj
j¼1fOjqðs

jjpÞ
�

f qjOðpjs
kÞPjSj

j¼1f qjOðpjsjÞ
(11)

Substitution of Eqs. (5) and (10) in Eq. (11) yields

PðskjpÞ �

QjSj�1
j¼1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ps2

j ðs
kÞ

q exp �
ðpj �mjðs

kÞÞ
2

2s2
j ðs

kÞ

 !

PjSj
l¼1

QjSj�1
j¼1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ps2

j ðs
lÞ

q exp �
ðpj �mjðs

lÞÞ
2

2s2
j ðs

lÞ

 !

(12)

where the probability vector p � ½p1 � � �pjSj� is calculated
from the observed time series data; and the remaining
parameters are already evaluated in the training phase.

Estimated mean ŝ and estimated covariance matrix Ĉs

of the parameter set s, where s is in the column vector
form, are obtained directly from Eq. (12) as

ŝðpÞ9
XjSj
k¼1

skPðskjpÞ (13)

ĈsðpÞ9
XjSj
k¼1

ðsk � ŝðpÞÞPðskjpÞðsk � ŝðpÞÞT (14)

Since the statistical information is available in the form of
probability mass functions, the third and higher moments
of the parameter vector can be estimated in a similar way;
however, third and higher moments are redundant
because the inherent distribution is assumed to have a
Gaussian structure that carries full statistical information
in the first two moments.

4. Test results and discussion

This section presents the test results of multiple-
parameter estimation on two electronic circuits, namely
the externally excited Duffing system [21] and the
unforced van der Pol system [22], on the test apparatus
described in a previous publication [20].

4.1. Test results on the duffing system

This subsection analyzes and presents the experimen-
tal results for multiple-parameter estimation in the
Duffing system described by Eq. (1). For the forward

problem/training (see Section 3.1), training data sets were
generated with a1 ranging from 0.10 to 1.50 in steps of
0.05, and b ranging from 0.10 to 0.40 in steps of 0.02, and;
the nominal condition was chosen as a1 ¼ 1:0 and
b ¼ 0:1; and an SDF was constructed with the number of
states in the automaton jSj ¼ 8. This information on time
series data was then fed into the SDF to compute the
components pj of pattern vectors p at different values of
the parameter pair ða1; bÞ. As the dynamics of the Duffing
system changed due to variations in the parameters a1

and b, the statistics of the symbol sequences were altered
and so were the pattern vectors.

For the inverse problem/testing (see Section 3.1.2),
experiments were conducted at the assigned values of the
parameters that were different from those in the forward
problem of SDF but within the range of a1 and b where the
training was conducted. The components pj of pattern
vectors p at different values of the parameter pair ða1; bÞ
were computed from the data sets that were generated
with these assigned values of parameters. For a typical
test at a1 ¼ 0:75 and b ¼ 0:23, the 3-dimensional plot in
Fig. 3 shows the bivariate probability distribution,
followed by a close-up view of the contour plots in
Fig. 4. The parameter pair ða1; bÞ is crisply identified by a
single, sharp spike in the probability distribution plot of
Fig. 3, where the estimates â1 and b̂ lie in the ranges of
(0.745, 0.755) and (0.235, 0.240), respectively, as seen in
Fig. 4. Table 1 shows the results for mean, standard
deviation, and confidence intervals of the parameter
estimates, â1 and b̂ for test runs with four different pairs
of atest

1 and btest that do not belong to the set S of training
data. It is seen that the estimated mean values of
both a1 and b are orders of magnitude greater than

their respective standard deviations ŝa1
9

ffiffiffiffiffiffiffiffiffiffiffi
Ĉa1a1

q
and

ŝb9
ffiffiffiffiffiffiffiffi
Ĉbb

q
. This observation suggests that the estimates

are relatively close to the true values of the parameters. It
is also seen in Table 1 that the correlation coefficient
Ĉa1b=ŝa1

ŝb is a positive fraction, which implies that the
parameters a1 and b are positively correlated. The
rationale for this correlation is that variations even in a
single component of a dynamical system may cause
simultaneous variations in several parameters of its
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governing equations. In the Duffing system, usage of
different but identically manufactured electronic cards
caused simultaneous variations of both parameters a1 and
b in Eq. (1).

4.2. Results on van der Pol System

This subsection analyzes and presents experimental
results for multiple-parameter estimation in the van der
Pol system described by Eq. (2). For the forward problem/
training (see Section 3.1), training data sets were gener-
ated with both parameters m and o ranging from 0.5 to 4.0
in increments of 0.5; and an SDF was constructed with the
number of states in the automaton jSj ¼ 8. This informa-

tion on time series data was then fed into the SDF to
compute pattern vectors p and deviation measures M at
different values of the parameter pair ðm; oÞ. As the
dynamics of the van der Pol system changed due to
variations in the parameters m and o, the statistics of
the symbol sequences were altered and so were the
pattern vectors. However, unlike the Duffing system,
no abrupt change (e.g., bifurcation) in the dynamic
behavior was observed as m and o were varied from the
nominal condition.

For the inverse problem/testing (see Section 3.1.2),
experiments were conducted at the assigned values of the
parameters that were different from those in the forward
problem of SDF, i.e., they do not belong to the set S of
training data. Pattern vectors p and the associated
deviation measures M were estimated from of the data
sets generated with these assigned values of parameters.
Table 2 shows the results for mean, standard deviation,
and confidence intervals of the parameter estimates, m̂
and ô for test runs with four different pairs of mtest and
otest. It is seen that the estimated mean values of both m
and o are orders of magnitude greater than their

respective standard deviations ŝm9
ffiffiffiffiffiffiffiffi
Ĉmm

q
and

ŝo9
ffiffiffiffiffiffiffiffiffi
Ĉoo

q
. This observation suggests that the estimates

are relatively close to the true values of the parameters. It
is also seen in Table 2 that the correlation coefficient
Ĉmo=ŝmŝo is close to 0, implying that the parameters m
and o are very weakly correlated.

5. Summary, conclusion, and future work

This paper presents an application of SDF [9] for
multiple-parameter estimation in nonlinear dynamical
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Table 1

Predicted values of ðâ1 ; b̂Þ and confidence intervals for the Duffing equation.

Estimates

Parameter a1 Ĉa1b
Parameter b 95% confidence interval 90% confidence interval

atest
1 â1 ŝa1 btest b̂ ŝb ða1min

;a1max
Þ ðbmin;bmaxÞ ða1min

;a1max
Þ ðbmin ;bmaxÞ

0.30 0.30 8.4e�4 2.67e�7 0.10 0.10 4.0e�4 (0.30, 0.30) (0.30, 0.30) (0.10, 0.10) (0.10, 0.10)

0.45 0.46 0.015 5.15e�4 0.20 0.20 0.057 (0.45, 0.46) (0.20, 0.20) (0.45, 0.46) (0.20, 0.20)

0.15 0.15 3.3e�3 2.465e�5 0.14 0.14 8.0e�3 (0.15, 0.15) (0.14, 0.14) (0.15, 0.15) (0.14, 0.14)

0.65 0.65 3.0e�3 8.16e�6 0.35 0.36 7.0e�3 (0.65, 0.65) (0.36, 0.36) (0.65, 0.65) (0.36, 0.36)

Table 2

Predicted values of ðm̂; ôÞ and confidence intervals for the van der Pol equation.

Estimates

Parameter m Ĉmo Parameter o 95% confidence interval 90% confidence interval

mtest m̂ ŝm otest ô ŝo ðmmin ;mmaxÞ ðomin ;omaxÞ ðmmin;mmaxÞ ðomin ;omaxÞ

2.50 2.50 0.006 �6.7e�6 1.00 1.00 0.028 (2.49, 2.51) (0.99, 1.01) (2.49, 2.50 ) (0.99, 1.00)

3.30 3.32 0.059 3.0e�4 3.40 3.42 0.035 (3.29, 3.35) (3.39, 3.43) (3.30, 3.33) (3.40, 3.42)

4.00 3.99 0.069 1.1e�5 2.50 2.49 0.087 (3.98, 4.02) (2.46, 2.52) (3.99, 4.00) (2.48, 2.50)

3.50 3.51 0.016 2.5e�4 4.00 3.99 0.220 (3.48, 3.52) (3.75, 4.12) (3.49, 3.51) (3.89, 4.08)
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systems. The reported work is an extension of earlier
work [20] on single-parameter estimation and is vali-
dated on an experimental apparatus for electronic
circuits of externally excited Duffing and unforced van
der Pol systems.

The proposed parameter estimation tool is sensor-
data-driven and is apparently suitable for applications
such as early detection of parametric faults for prognosis
of catastrophic failures in human-engineered systems.
A previous publication [12] has shown that the training
process of the SDF-based parameter estimation method is
significantly less time-consuming than those of mutilayer-
perceptron and radial-basis-function neural networks.
This is so because the underlying algorithm of SDF makes
use of a stopping rule [12] to limit the length of the time
series and then compresses the pertinent information into
pattern vectors of low dimension.

The proposed method provides a closed form solution
of the estimated expected value and estimated covariance
matrix of the parameter vector. This parameter-estimation
method can be implemented in a sensor network for
real-time execution on limited-memory small micro-
processors.

The major contributions of this paper are delineated
below:

� Information fusion of observed evidence to obtain a
statistical estimate of simultaneously varying para-
meters.
� Demonstration of possible non-uniqueness in para-

meter estimation, which may result due to selection of
a scalar deviation measure as a cost functional in the
multiple-parameter estimation problem.
� Robustness to process noise, sensor noise, and small

fluctuations in parameter values, as discussed exten-
sively in [18].
� Closed form solutions of estimated statistical para-

meters allowing for real-time execution on limited-
memory platforms.

While there are many other issues that need to be
addressed before the proposed estimation method can
be considered for industrial applications, the following
research topics are being currently pursued:

� Extension of the proposed method for estimation of a
larger number (i.e., more than two) parameters in a
variety of nonlinear dynamical systems.
� Extension of the parameter estimation problem under

different types of nonlinearities with structured and
unstructured uncertainties.
� Usage of the information on the state transition matrix

for improved robustness of the parameter identifica-
tion framework.
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