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Abstract: The main cause of performance degradation in entrained-bed slagging gasification
systems is attributed to evolution of structural damage in the refractory walls. Early detection
of such damage is necessary to avert unscheduled shutdown of a gasification plant. This paper
develops an integrated computer simulation model of a generic entrained-bed slagging gasifier
for formulation of a damage prediction algorithm with the objective of real-time degradation
monitoring and condition-based maintenance of refractory walls. The integrated simulation
model yields: (a) quasi-steady-state spatial temperature profiles at any cross-section of the gasi-
fication system, and (b) dynamic response of the refractory wall temperature that is measured by
an array of sensors installed at specified locations on the external surface of the gasifier wall. The
key idea for early detection of refractory-wall damage is built upon the fact that a local anomaly
(i.e. deviation from the nominal condition) is likely to influence the temperature gradient in
the refractory wall due to changes in the thermal impedance. The information from dynamic
response of refractory temperature is extracted in a compressed form as statistical patterns of
evolving anomaly through usage of a recently reported data-driven pattern identification tool
called symbolic dynamic filtering (SDF). The results of this model-based investigation show that
the proposed anomaly detection and damage prediction method is potentially capable of char-
acterizing the health status of refractory walls in particular and the entire gasification system in
general. The SDF algorithms in this paper are implemented on the MATLAB platform and are
interfaced with the gasification plant simulation model for emulation of real-time degradation
monitoring.

Keywords: entrained-bed slagging gasification systems, refractory failure, fault diagnostics, time
series data analysis

1 INTRODUCTION

Modern day gasification plants offer a versatile and
clean way to convert coal and other alternative fuels
into electricity, hydrogen, and a variety of readily
usable energy products [1]. Instead of directly burning
the fuel, a gasification plant chemically breaks down
the feedstock into its basic constituents. For example, a
carbon-based feedstock (e.g. coal) is typically exposed
to hot steam and carefully controlled amounts of air
or oxygen at high temperatures and pressures. Carbon
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molecules in the feedstock break apart and set off
a chain of chemical reactions that typically produce
a mixture of carbon monoxide, hydrogen, and other
gaseous compounds [1].

The key component of a gasification plant is the gasi-
fier that converts feedstock into gaseous constituents.
However, a gasifier differs from a conventional com-
bustor in the sense that it allows for only partial oxida-
tion that breaks down most of the carbon-containing
feedstock to produce the syngas [2]. The syngas is
essentially a mixture of hydrogen (H2), carbon monox-
ide (CO), and other gases; their proportions may
vary depending upon the conditions in the gasifier
and the type of feedstock. Gasification-based electric
power plants are now operating commercially in the
United States and in other countries [1]. It is predicted
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that gasification will be a major source of clean-fuel
technology (e.g. US Department of Energy’s Future-
Gen prototype advanced coal gasifier [1]) for several
decades into the future. A major challenge in this
endeavour is to ensure safe and reliable operation of
gasification systems, specifically, prediction of (possi-
bly distributed) structural damage and quantification
of structural integrity in the gasifier wall.

Although much research and development effort
has been expended to improve the refractory materi-
als that can resist slag penetration and survive longer
in the adverse operational environments of gasifiers,
the life span of refractory walls in laboratory-scale
gasifiers has been found to be short and widely fluctu-
ating (e.g. approximately in the range of 4–14 months).
Two dominant refractory failure mechanisms include
(a) chemical dissolution and (b) fatigue damage in
the material microstructure. If unchecked, these faults
evolve in time to cause loss of performance and possi-
bly unscheduled shutdown of the plant. Hence, early
detection of incipient damage in the refractory walls is
a critical issue in the gasification industry.

The above discussions evince that it is necessary
to develop real-time diagnosis tools with capabili-
ties of generating early warnings as needed for the
maintenance of gasifiers to enhance their service
life. Current state-of-the-art in degradation moni-
toring of entrained-bed slagging gasifiers provides a
variety of fault diagnostic methodologies that are pri-
marily built upon microstructural analytical models
of damaged refractory bricks [3] apparently without
taking advantage of sensor-based analytical tools. It
is necessary to address these issues from the per-
spectives of condition-based maintenance (CBM) that
requires advanced tools of degradation monitoring
and must be capable of real-time detection and
information-based intelligent decision-making and
control [4].

This paper presents the development of an inte-
grated simulation model of a generic entrained-bed
slagging gasifier for formulation of a damage detection
procedure with the objective of real-time degradation
monitoring and (CBM) of refractory walls. The sim-
ulation model integrates the mechanisms of gasifier
kinetics, slag formation and flow, and heat trans-
fer through the refractory wall. The integrated model
yields steady-state spatial temperature profiles at any
cross-section of the gasification system as well as
dynamic response of the refractory wall temperature
that is measured by an array of sensors installed at
different axial locations on the external surface of
the gasifier wall. The key idea for early detection of
refractory-wall damage accrues from the fact that a
local anomaly (i.e. deviation from the nominal con-
dition) is likely to influence the temperature gradient
in the refractory wall due to a change in the thermal
impedance.

A variety of statistical pattern recognition tools
have been reported in references [5] and [6] for
fault detection and estimation in dynamical systems.
This paper has adopted a recently reported data-
driven pattern identification technique called sym-
bolic dynamic filtering (SDF) [4, 7, 8] that enables
compression of information into pattern vectors of low
dimension; the theory of SDF is succinctly reviewed
in Appendix 2. Specifically, this paper shows how
to extract information from the sensor data and/or
response of the gasification model in a compressed
form as statistical pattern of the evolving damage
using the concepts of SDF. Recent literature has
reported experimental validation and efficacy of SDF
in various applications, such as fatigue damage detec-
tion in structural materials [9, 10] and impending
failures in active electronic circuits [11, 12].

From the perspectives of real-time damage detec-
tion and CBM of the refractory wall of a gasifier,
the major contributions of the paper are delineated
below.

1. Integrated simulation modelling of a generic
entrained-bed slagging gasification system for for-
mulation of a degradation monitoring algorithm.

2. Statistical pattern analysis of sensor time-series
data in combination with the integrated simulation
model for damage detection and failure prediction.

The paper is organized as follows. Section 2 explains
the degradation mechanisms in the refractory wall of
a gasifier. Section 3 provides details of the simula-
tion model. Section 4 describes the proposed method
for degradation monitoring, which involves dynamic
modelling of the refractory wall and placement of sen-
sors on the external surface of the gasifier. Section 5
presents the simulation results including possible fail-
ure scenarios. Finally, the paper is summarized and
concluded in section 6 along with recommendations
for future research. Appendix 2 briefly reviews the
underlying concepts and salient features of SDF [4]
that has been adopted for robust detection of incipient
damage in the refractory wall.

2 DEGRADATION MECHANISMS IN REFRACTORY
WALLS

Two inter-dependent damage mechanisms that cause
degradation in the refractory wall of an entrained-
bed slagging gasifier, leading to gradual failure and
unscheduled shutdown, are explained below.

1. Chemical dissolution of the refractory material. This
phenomenon is caused due to penetration of slag
through the porous structure of the refractory wall
that reacts and chemically dissolves the refractory
material.
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2. Fatigue damage from growth of microstructural
cracks. This phenomenon is caused due to thermal
fluctuations and interstitial pressure that develops
from differential expansion between the refractory
material and the slag. This leads to gradual devel-
opment of several microstructural cracks inside the
refractory surface, which eventually merge together
into a single large crack causing rapid failure.

Slag penetration is the root cause of the above dam-
age mechanisms that gradually degrade the refrac-
tory lining and lead to bulk removal of the material
of refractory walls at random discrete intervals of
time; this phenomenon is called spalling [13, 14].
The chemical dissolution of refractory walls due to
slag penetration weakens the material properties and
also leads to crack initiation by creating several crack
sites due to irregular dissolution of the material. This
phenomenon causes fatigue crack initiation and also
enhances fatigue crack propagation due to local weak-
ening of the refractory materials. Fatigue crack growth
leads to further slag penetration that, in turn, causes
more chemical dissolution. The interdependence of
these two phenomena has not been adequately mod-
elled in the current state-of-the-art. Even with the
simplifying assumption that they are independent of
each other, the process of damage evolution in refrac-
tory walls of slagging gasifiers is a complex stochastic
phenomenon due to unknown slag penetration and
reaction mechanisms through porous medium of the
refractory. Therefore, the development of detailed fail-
ure models has not been addressed in this paper and
is beyond the scope of this investigation.

The purpose of the present investigation is the
detection of refractory wall damage through statis-
tical analysis of observed time-series data, rather
than accurate modelling of failure mechanisms. For
the purpose of damage detection and monitoring,
the pertinent information of failure characteristics
in refractory walls (e.g. time to failure and average
spalling depth), reported from laboratory experiments
and field studies [13], has been incorporated in the
simulation model (see section 4). In essence, the objec-
tive of this paper is in situ damage monitoring of the
refractory walls by time-series analysis of temperature
response and compressing the relevant information
into statistical patterns of evolving damage.

Once a refractory undergoes degradation, the dete-
riorated refractory structure affects the gas-path and
the slag-refractory-heat transfer models. The change
in the boundary condition of heat transfer and temper-
ature distribution also affects the chemical-kinetics,
which in turn leads to a new thermochemical equi-
librium condition for the entire gasification system.
In this altered equilibrium, the temperature profile
could be significantly different from the original. Both
steady-state spatial distributions of temperature and

dynamic characteristics of the temperature profiles
undergo different types of changes that become an
important clue for detection and identification of an
anomalous plant condition.

3 SIMULATION MODEL OF GASIFICATION
SYSTEM

Technical literature provides ample information on
modelling and analysis of various aspects of coal gasi-
fication. Computational fluid dynamic (CFD) analysis
for both gas-path [15, 16] and slag flow has been
reported independently and extensive literature exists
on modelling of stress distribution and thermal fail-
ure of refractory materials [17, 18]. Apparently, the
current state-of-the-art does not provide any reliable
integrated model of the entrained-bed slagging gasi-
fication system for online damage monitoring in the
refractory walls. Since the present paper focuses on
real-time degradation monitoring in refractory mate-
rials, an isolated CFD model of gas-path dynamics
may not be adequate due to insufficient information
on slag flow and heat transfer and due to its com-
putational overhead and complexity. Therefore, an
integrated model is required to generate time series of
fluctuations in process variables (e.g. gas and refrac-
tory wall temperatures) at different spatial locations.
A quasi-steady-state model suffices for the gas-path
while the dynamics could be extraneously incorpo-
rated in the heat transfer model of the refractory wall
as explained below. As shown in Fig. 1, a simulation
model of the gasification system is constructed by
integrating the models of the following subsystems:

(a) gas-path kinetics;
(b) slag flow;
(c) heat transfer through the slag-refractory wall.

Fig. 1 Gasification system model architecture
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The following subsections present the development
of an integrated model of an entrained-bed slagging
gasification system. Before proceeding to modelling
details, a concept of three time scales is presented.

3.1 Concept of three time scales

The gasification system incorporates three different
time scales in the mechanisms of (a) gas-path kinet-
ics, (b) heat transfer through the interface of slag-
refractory wall lining, and (c) evolution of damage in
the refractory wall, respectively. The gas-path dynam-
ics with its relatively fast response can be clearly
separated from the refractory thermal characteristics
that have a relatively sluggish response due to its large
thermal mass and capacitance. For a disturbance in
the operating conditions, whether intentional or unin-
tentional, the fast gas dynamics quickly respond to the
changes and attain a new steady state; this change in
the gas-path may appear only as new boundary con-
dition to the slag-refractory model. Even though the
heat balance involving feedback to the gas path deter-
mines the dynamic characteristics at each time step,
the gas dynamics is assumed to react infinitely fast. In
essence, the time scale in gas-path kinetics is several
orders of magnitude small relative to the time scale of
thermal response of the refractory wall. Therefore, the
gas temperatures are modelled as algebraic functions
of other process variables (e.g. refractory wall temper-
atures) and the associated boundary conditions based
on the principles of singular perturbation [19]. Finally,
the slowest time scale, in which anomalies (i.e. devi-
ations from the nominal condition due to incipient
damage) are expected to evolve, may stretch to days
of operation. This implies that refractory failures caus-
ing performance degradation occur on a time scale
that is several orders of magnitude smaller than the
gas-path kinetics and the thermal response of the
refractory wall.

From the perspectives of degradation monitoring
and slow-scale damage evolution, the following two
time scales of operation are relevant:

1. Heat transfer through the composite wall at the
fast time scale over which the time series data are
collected.

2. Refractory wall degradation at the slow time scale
over which maintenance decisions are made.

For example, assuming that the usual life span of
the refractory wall ranges approximately from 4 to 14
months, it would be worthwhile to schedule one mon-
itoring test every day or alternate days, and such a
test of stimulus injection may last less than 5 min (see
section 5.2 for a typical test example). In the sequel,
the algorithm of degradation monitoring in refractory

walls is validated on the computer simulation model
of a generic entrained-bed slagging gasifier.

3.2 Gas-path kinetics model

The gas-path kinetics in the simulation test bed are
built upon the steady-state model of Texaco Down-
flow Entrained-Bed Pilot Plant Gasifier, reported by
Wen and Chuang [2]. While the details of the exper-
imentally validated model equations are available in
open literature, a compact description is provided
in this section for the completeness of the paper.
The present model of the gasifier uses coal liquefac-
tion residues and coal–water slurries as feedstocks
and simulates the steady-state responses of the plant
under different operating conditions. The execution
time of the simulation model is significantly small
(e.g. in the order of seconds on a desktop computer)
as compared to a conventional CFD model, which
is essential from the perspectives of real-time degra-
dation monitoring and decision-making in gasifier
operations. Following Fig. 2, the entrained-bed gasifier
is conceptually divided into three zones.

1. Pyrolysis and volatile combustion zone. The input
slug (fuel + steam), when heated to high tempera-
tures, decomposes and produces volatile materials
that consist of a mixture of combustible gases (i.e.
CO, H2, and CH4), carbon dioxide (CO2), water
vapour (H2O), and tar. Since the pyrolysis zone
is rich in oxygen, burning of combustible gases is
assumed to be complete. A large amount of heat is
thus released in the gas phase, which heats the solid
fuel rapidly to the pyrolysis temperature.

2. Combustion and gasification zone. In this zone,
the de-volatilized char reacts with the remaining
oxygen to produce CO/CO2 (char-oxygen reaction)
and with steam (char-steam reaction) and CO2

Fig. 2 Gas-path model schematic
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(char-CO2 reaction) to produce CO and H2. The
combustible gases, CO and H2, in turn react in
the gas phase with O2 to further increase the heat
generation.

3. Gasification zone. The combustion gas flows into
this zone where heterogeneous reactions occur. In
addition to the char-H2O and char-CO2 reactions,
three very important reactions occur in this zone.
(a) Synthesis gas (CO + H2) is produced in a

reversible reaction, which is known as the
water-gas-shift reaction.

(b) Methane (CH4) is produced by hydro-gasification
of char.

(c) The methane-steam (CH4 + H2O) reforming
reaction reduces methane to produce synthesis
gas and hydrogen.

The final products leaving the gasifier are largely
synthesis gas (CO + H2) and CO2. Since volatile mate-
rials are burned in the O2-rich zones, no tar appears
in the product; minor species of the gas product
are H2S and CH4. Details of chemical kinetics in the
above reactions are available in reference [2]. The reac-
tion chamber, that is 3.44 m high, is divided into 119
compartments (of varying size and shape) from top
to bottom for model formulation. The heat balance
equation for a typical compartment is obtained as:

h
i
out − h

i
in = h

i
gen − qi

loss (1)

where hi
out is the total enthalpy output, hi

in the total
enthalpy input, hi

gen the generated enthalpy, and qi
loss

the total heat loss through the reactor wall in the ith
compartment.

The profiles of gas flow and solid-particle tempera-
tures and material concentration along the reactor are
obtained by solving the simultaneous algebraic equa-
tions of heat and mass balance for each compartment
and by taking gasification kinetics, transport rates, and
hydrodynamics of the gasifier into consideration. The
gas phase is assumed to be completely mixed at the
reactor entrance that is followed by a region approxi-
mating the plug flow. The solid phase is modelled as a
plug-flow process throughout the reactor.

Execution of the simulation model is designed to
be highly reliable over a wide range of operating con-
ditions for different types of coal (e.g. Illinois No. 6
and Wyodak) [2]. The results (see section 5) of numeri-
cal simulation from the present model were compared
with the experimental data for different input coal feed
rates (ranging from 56 to 180 g/s) and different O2–fuel
ratio. The results were in very close agreement with
the experimental data and the results reported by Wen
and Chuang [2] at different operating conditions and
different types of coal. Parametric sensitivity of the
model was tested and optimum operating conditions

were searched to provide a better understanding of the
performance at various operating points.

3.3 Slag heat transfer and flow model

The gas-path kinetics model, developed in refer-
ence [2], assumed a thin-wall boundary condition to
simulate the Texaco Down-flow Entrained-Bed Pilot
Plant Gasifier. Due to lack of sufficient experimental
data, the thermal condition for such a boundary wall
was assumed to have a uniformly varying temperature
distribution starting at 2100 K at the top of the gasifier
and decreasing at the rate of 600 K/m. Even though
this assumption succeeded in validating the exper-
imental results to a reasonable accuracy, additional
details, such as slag flow, and heat transfer through the
refractory, are required to be incorporated in the simu-
lation model for detection of incipient anomalies and
the associated damage in the refractory walls. A change
in the spatial-temporal characteristics of the compos-
ite wall temperature is considered to be an important
clue for detecting the health status of the refractory
lining (please refer section 2). The temperature varia-
tions across the cross-section of the gasifier lining at
different vertical levels provide useful information for
degradation monitoring.

The temperature characteristics in the refractory
wall can be generated using the integrated model of
heat transfer and slag flow. The refractory wall, illus-
trated in Fig. 3, is composed of three sections. The
innermost layer in contact with the slag or the hot gasi-
fier gases is made up of the heat-resistant refractory
bricks. The outermost layer is the insulating asbestos-
cement wall. A thin sheet of metal is sandwiched
between the inner and outer layers. The material prop-
erties and physical parameters of the refractory wall
are listed in Table 1.

The equations that describe the slag layer include
the conservation equations of momentum, energy,
and mass [20]. The heat transfer and mass-balance
equations within the slag layer have been derived
based on the studies conducted by Bockelie et al. [21]
and Cundick et al. [22] and a final heat-balance
has been performed between the gas-path and the
combustor wall. The resulting equations are briefly
presented below.

The major assumptions in modelling the transport
phenomena inside the slag layer are listed below.

(a) representation of the slag as a Newtonian fluid;
(b) negligible inertial forces and pressure gradient.

The resulting equation of motion [21] is given as

∂

∂r

(
μ

∂u
∂r

)
= ρg (2)
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Fig. 3 Composite model of slag layer and refractory wall

Table 1 Physical dimensions and material properties of composite wall

Inner radius Conductivity Specific heat Density
Wall part Material Ri (cm) W/(m K) J/(kg K) (kg/m3) Emissivity, ε

Insulation Asbestos-cement board 95 0.744 700 1050 0.96
Metal layer Steel 92.5 46 472 7870 –
Refractory Alumina-based 77.5 10 935 3000 –
Solid slag layer – Variable 24.3 − 0.0416(Tcv − 273) 1.382 × 103 2.5 × 103 –

+1.81 × 10−5(Tcv − 273)2

Liquid slag layer – Variable 24.3 − 0.0416(TLSS − 273) 1.382 × 103 2.5 × 103 –
+1.81 × 10−5(TLSS − 273)2

where μ is the slag viscosity, r is the distance in the
radial direction, ρ is the slag density, and u(r, z) is the
velocity of the slag in the z-direction at a certain radius
r from the gasifier axis.

The energy conservation equation has a more com-
plicated structure than the above equation of motion
because the conduction process carries the bulk of
thermal energy from the hot gases in the gasifier radi-
ally outward to the cool ambient, while the vertical
flow of heat is ascribed to slag movement. Solution
of this energy transport problem in its entirety calls
for a two-dimensional numerical model that would
be computation-intensive for real-time analysis on a
commercially available inexpensive platform (e.g. a
desktop computer). To circumvent this problem, heat
transfer through the refractory materials is assumed
to be entirely due to conduction, i.e. the effects of
convection and viscous dissipation are assumed to
be relatively insignificant. Consequently, heat trans-
fer through the slag has been modelled as a one-
dimensional problem [21, 22] and the convective term
only appears in the final heat balance. Based on this
assumption, the heat-flow equation is derived as

q = −k
∂T
∂r

(3)

where q(r, z) is the heat flux normal to the slag layer
due to conduction, T (r, z) the slag temperature, and k
the thermal conductivity of the slag.

The numerical solution of the above equations is
obtained by transforming the governing equations
with respect to the independent variables in the rz
coordinate system to the zT coordinate system [21].
The transformed equations are listed as follows

∂r
∂T

= − k
q(z, T )

(4)

∂u
∂T

= kτ

μq(z, T )
(5)

∂q
∂T

= 0 (6)

where τ = μ∂u/∂r is the shear force. The viscosity μ of
the liquid slag is given by the Weymann relation [20] as

μ(T ) = AT eB/T for T > Tcv (7)

where A and B are constants, and Tcv is the critical
value of temperature below which the fluid slag trans-
forms into a Bingham plastic state [21]. In other words,
Tcv is the highest temperature at which solid and liquid
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Table 2 Model parameter values

Parameter Value Parameter Value

A 8.5382 × 10−12 C 1800 K
B 3.6281 × 104 g 9.8 m/s2

ρ 2.5 × 103 kg/m3 U0 1.43 × 103 W/m2 K
Tcv 1400 K TAMB 298 K
K 10

slag can co-exist. The values of critical parameters
such as A, B, and Tcv are listed in Table 2.

Finally, the equation for conservation of mass is
given by

Ṁ i
s =

∫ ri
2

ri
1

ρui dr (8)

where the superscript i indicates the ith compart-
ment, Ṁ i

s the mass flux, ui(r, z) the slag velocity in
z-direction, and ri

1 and ri
2 indicate the inner and outer

radius of liquid slag, respectively.
Under a steady-state condition, the mass flux of slag

out of a compartment is equal to the fly-ash deposi-
tion rate in the same compartment, which depends
on several factors including the type of ash, the nature
of the refractory surface, the temperature of the hot
ash particles, and the velocity with which the particles
impinge upon the refractory surface. The amount of
entrained ash in the slag flow [23] is given by

Ṁ i
s = K Ashtothi

(
C − T i

S

T i
S

)
(9)

where K and C are correlation constants that are deter-
mined from experiments (Table 2), Ashtot the total ash
efflux at the gasifier exit, hi the height of the ith com-
partment, and TS the solid ash particle temperature in
the combustor chamber.

By combining equations (4) to (7), the velocity pro-
file at the liquid slag layer in the ith compartment is
derived as

ui(T ) = ρg
(

k
(qout

cond)i

)2 ∫T

T i
LS

T i
LSS − θ

μ(θ)
dθ (10)

where (qout
cond)i is the heat flux emanating normally out-

ward from the ith compartment through the slag layer
as shown in the inset in Fig. 3. The mass flux Ṁ i

s in
the ith compartment is obtained from equations (8)
and (4) as

Ṁ i
s = ρk

(qout
cond)i

∫T i
LSS

T i
LS

ui(θ)dθ (11)

A combination of equations (11) and (10) yields

Ṁ i
s = ρk

(qout
cond)

i

×
∫T i

LSS

T i
LS

[
ρg

(
k

(qout
cond)i

)2 ∫T

T i
LS

T i
LSS − θ

AθeB/θ
dθ

]
dT

(12)

where Ṁ i
s on the left-hand side of equation (12) is eval-

uated from equation (9). The preceding derivations
are based on the assumption of quasi-steady thermal
transport by neglecting the conjugate heat transfer
(i.e. heat conduction and convection in the transverse
direction). As shown in Fig. 3, heat balance in the slag
layer for the ith compartment yields the steady-state
energy equation in the following form

(qin
conv)i−1,i + (qin

conv)i + (qin
rad)i = (qout

conv)i,i+1 + (qout
cond)i

(13)

where (qin
conv)i−1,i ≡ Ṁ (i−1),i

s Cp(T (i−1),i
int )T (i−1),i

int is convec-
tive heat influx as a result of slag flow from upper
chamber; (qin

conv)i ≡ Ṁ i
s Cp(T i

S)T i
S is convective heat

influx as a result of deposition of flyash into the already
existing liquid slag layer; (qin

rad)i ≡ U0Ai(T i
G − T i

LSS) is
radiative heat flux from the hot gases in the combus-
tion chamber; (qout

conv)i,i+1 ≡ Ṁ i,(i+1)
s Cp(T i,(i+1)

int )T i,(i+1)

int is
convective heat outflux as a result of slag flow into the
lower chamber; and (qout

cond)i is conductive heat outflux
through the refractory wall.

The algorithm of the integrated model of the gasi-
fication system is presented in section 3.5 after the
description of refractory heat transfer model.

3.4 Refractory heat transfer model

The elements of the composite wall and the solid
and liquid phases of the slag are marked by numer-
ics 1, 2, . . . , 5 for ease of nomenclature starting from
the inside of the gasification chamber (Fig. 3). The
conductivity of the jth segment is denoted by kj , i.e.
k(r) = kj for rj � r � rj+1. The conductive heat outflux
(qout

cond)i through the refractory from the ith compart-
ment is used to calculate the temperature profile in
each section of the composite refractory wall as well
as the widths of solid and liquid slag deposits. The
steady-state heat conduction equation is given as

(qout
cond)i = −2πkj(T i(rj) − T i(rj+1))

ln(rj/rj+1)
(14)

where rj (for j = 1, . . . , 5) is the radial distance to
the beginning of the surface of the jth segment in the
slag-refractory wall (Fig. 3) and T i(r) denotes the tem-
perature in the ith compartment at a certain radius r.
The radiative heat transfer for the outer surface of the
insulator is given as

(qout
cond)i = εσhi(T i(r6)

4 − T 4
AMB) (15)

The calculation of temperatures at successive radii is
dependent on the fact that the liquid and solid slag
layer thicknesses are variable. The presence of solid
slag layer depends on whether the temperature TSS is
lower than the critical melting point temperature Tcv.
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3.5 Description of the algorithm

This section presents the algorithm that integrates the
individual models of gas-path kinetics, slag flow, and
heat transfer through the slag-refractory composite
structure. The algorithm is described below.

Initialization: Provide an initial guess for T i
LSS;1

Result: T i
LS, T i

SS, T i
REF, T i

METAL, T i
INS,

Li
LS, Li

SS, (qout
cond)i

while T i
LS has not converged do2

Assume T i
LS = Tcv ;3

Evaluate (qout
cond)i from Eqn. (12);4

Knowing TAMB, (qout
cond)i , and the refractory wall5

properties, calculate T i
SS, T i

REF, T i
METAL, T i

INS using the
steady-state heat conduction and radiation Eqs. (14)
and (15), respectively;
if T i

SS < Tcv then6
Solid slag layer exists;7
Calculate Li

SS and Li
LS using steady state heat8

conduction Eq. (14);
exit;9

else10
Assumption T i

LS = Tcv is wrong;11
Update T i

LS = (Tcv + T i
LSS)/2;12

if T i
LS = T i

SS then13
Calculate Li

LS and EXIT;14
else15

GO TO STEP 416
end17

end18
end19

Calculate T i−1,i
INT = (T i−1

LSS + T i−1
LS )/2 and20

T i,i+1
INT = (T i

LSS + T i
LS)/2;

Update T i
LSS from heat balance Eqn. (13);21

if T i
LSS does not match previous value within a threshold22

then
GO TO STEP 223

else24
EXIT25

end26
Pass T i

LSS to gas-path model and update T i
G by Wegstein27

root search method [2];
if T i

G matches previous value within a threshold then28
EXIT29

else30
GO TO 2131

end32

The algorithm involves multiple iterations to evalu-
ate all the interface temperatures at different segments
of the slag-refractory composite structure and also the
thicknesses of solid and liquid slag layers at different
cross-sections along the vertical axis of the gasification
system.

4 DEGRADATION MONITORING OF THE
REFRACTORY

The refractory damage monitoring procedure is envi-
sioned as a combination of data-driven and model-
based techniques. As described in the previous
section, the simulation model generates a steady-state

spatial distribution of temperature profile that should
be routinely calibrated with the observed readings
of the sensor array under the nominal (i.e. healthy)
conditions. In the event of anomalous (i.e. damage
evolution in the refractory) conditions, the refractory
temperature profile measured by sensor readings devi-
ates from the one derived from the simulation model
that operates at the nominal condition.

This refractory degradation monitoring system uti-
lizes both model-based and sensory information,
where the model generates the temperature profile
at the nominal (i.e. healthy) condition under (pos-
sibly) different operating points, and the sensors
provide measurements of temperature at different
locations under (possibly) different anomalous con-
ditions. Therefore, a comparison of model and sensor
responses provides an indication of anomalies, i.e.
departure of the gasification system from its nomi-
nal condition. However, upon progression of damage
in the refractory wall, the difference between the
steady-state temperature profiles generated from the
observed sensor data and the simulation model may
not necessarily provide a sufficient index of anomalies
due to a multitude of factors. For example, inac-
curate model predictions may result from inherent
uncertainties in the gasification plant and unavoidable
disturbances in the operating environment. A possible
consequence is perturbation in the steady-state profile
of the computed refractory wall temperature, which
may give rise to false alarms and missed detections
except possibly for very large faults. Furthermore, if
the gasification system is operated under steady-state
conditions, the time-series data of refractory wall tem-
perature TREF generated from the sensor array may not
be sufficiently rich in information, because variations
in the usual load demand may not be an appreciable
stimulus to the damage detection system due to the
presence of a large thermal mass and capacitance that
acts as a low-pass filter and smooths out the effects of
demand fluctuations.

In view of the above possible situations, a viable
alternative is to artificially inject stimuli into the
gasifier system in the form of small-amplitude fluctu-
ations in the coal-feed rate. Such induced fluctuations
in the coal-feed rate would be merely a maintenance
procedure to be carried out solely for the degradation
monitoring tests and last for at most a few minutes
only when these tests are conducted. The purpose of
this excitation is to monitor the response of the sys-
tem under an external stimulus that generates the
dynamic temperature response TREF. Such tests will
not have any bearing on the performance of the gas
production process. The decision for scheduling of the
proposed degradation monitoring procedure is largely
dependent on the time scales in which the gasifica-
tion plant operates. Therefore, rather than using the
steady-state profiles in conjunction with simple (e.g.
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threshold-based detection) techniques, this paper has
used the dynamic response of the system generated
by an external excitation of cyclically varying coal-feed
rate. The excitation must be sufficiently large enough
to amplify the effects of the anomalies while the effects
of environmental disturbances and other uncertain-
ties stay the same. This technique is similar to the one
adopted by a medical doctor who deliberately injects
a certain medication into the patient and observes the
response, which could be significantly different for a
healthy and a sick person, thereby enabling diagnosis
of the illness.

A slag-refractory heat transfer model is developed
to obtain the dynamic heat transfer characteristics
at different segments of the composite wall (Fig. 3).
The refractory heat transfer response is generated for
cyclic step changes in the input coal-feed rate from one
steady state to another. Following the nomenclature
described in section 3.4, T i(r, t) denotes the tempera-
ture in the ith compartment as a function of the radius
r at time t . The conductivity and diffusivity of the jth
segment in the finite-difference scheme are denoted
by kj and αj , respectively.

The governing equations for heat transfer through
the composite wall are

∂T i(r, t)
∂t

= 1
r

∂

∂r

(
αj

r
∂T i(r, t)

∂r

)
at ri

j < r < ri
j+1,

j = 1, . . . , 5 (16)

The associated boundary conditions at the ith com-
partment are:

− k1
∂T i(r, t)

∂r
= U0(T i

G − T i(r, t)) + Ṁ i
s CpTs

at r = ri
1

− k5
∂T i(r, t)

∂r
= εσ (T i(r, t)4 − T 4

AMB) at r = ri
6

T i(r)|(ri
j )

− = T i(r)|(ri
j )

+ for j = 2, . . . , 5

− kj
∂T i(r, t)

∂r

∣∣∣∣
(ri

j )
−

= −kj+1
∂T i(r, t)

∂r

∣∣∣∣
(ri

j )
+

for j = 2, . . . , 5
(17)

and the initial condition at the ith compartment is:

T i(r, t)|t=0 = T i
0(r) at ri

j < r < ri
j+1, j = 1, . . . , 5

(18)

The above system of equations is solved with an
explicit finite-difference scheme. For each compart-
ment, it is assumed that the gas temperature T i

G reacts
to any disturbances infinitely fast and immediately
attains a new steady-state value as a consequence of
singular perturbation analysis [19].

As described earlier in section 3.1, from the perspec-
tives of degradation monitoring and the associated
concept of fast-scale time-series data and slow-scale
damage evolution, the following time scales of opera-
tion are relevant.

1. Heat transfer through the composite wall at the
fast time scale over which the time-series data are
collected.

2. Refractory wall degradation at the slow time scale
over which maintenance decisions are made.

For example, assuming that the usual life span of
the refractory wall ranges approximately from 4 to 14
months, it would be worthwhile to schedule one mon-
itoring test every day or alternate days, and such a
test of stimulus injection may last for a few minutes.
In the present study, the stimulus to the gasification
plant is provided by cyclically fluctuating the coal-feed
rate using step changes from 60 to 100 g/s, and vice
versa, with one cycle lasting for 2.5 min. In this man-
ner, the time-series data of the dynamic response of
temperature TREF is generated.

Once the dynamic response of the system is gener-
ated in terms of time-series data, an analytical tool is
needed for anomaly detection using advanced signal
processing and pattern identification. This paper has
adopted a recently reported robust pattern identifica-
tion method, called SDF [4, 8, 24], that analyses (sta-
tistically stationary) time-series data generated from
the dynamic response of refractory temperature (TREF)
for real-time degradation monitoring of the refractory
wall. Recent literature has reported experimental vali-
dation and efficacy of SDF in terms of early detection
of anomalies and robustness to measurement noise in
several different applications, such as fatigue damage
monitoring in structural materials [9, 10, 25] and fault
detection in active electronic circuits [11, 12]. (Please
see Appendix 2 for details of SDF.)

The time-series data of the dynamic response of
temperature TREF is analysed using SDF to gener-
ate the statistical patterns of damage evolution (for
details please refer section 5.2). The time-series data,
generated by the sensor array, are statistically quasi-
stationary in the time scale of the heat-flow process
dynamics in the refractory wall. However, as damage
progresses on the slow scale, these statistical patterns
deviate from the nominal condition and provide an
indication of the evolving damage.

The next important consideration is placement of
the temperature sensors around the refractory wall
on its outer (cylindrical) surface. A sensor place-
ment configuration is illustrated in Fig. 4, where
all sensors are placed symmetrically around the cir-
cumference equidistant from each other both in the
axial and circumferential directions; however, opti-
mal placement of sensors is a topic of future research.
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Fig. 4 Schematic diagram of sensor placement on gasi-
fier wall

Sensor placement on the outer surface of the refractory
wall not only protects the sensors from tempera-
ture extremes and corrosion in the gasifier chamber,
but also makes sensor installation, maintenance, and
repair much easier. A properly designed hole drilled
through the insulation and metal wall should be able
to house thermocouples or any other temperature
sensor without any adverse effects on the gasifier
operation. The model employed in this paper is two-
dimensional, whereas the heat transfer, damage, and
slag flow involve three coordinates of r, θ , and z.
However, in the nominal condition, this is not con-
sidered to be a constraint because circumferential

symmetry of the gasification chamber ensures that
the two-dimensional model represents operations of
the three-dimensional plant. Once the refractory has
been damaged, this circumferential symmetry might
be lost. In that case, a comparison of the true sen-
sor readings and the readings predicted by the two-
dimensional nominal model would be an indication
of the anomaly in the gasification system.

5 SIMULATION RESULTS AND DISCUSSION

A brief description of the simulation model of an inte-
grated gasification system including the heat transfer
characteristics through the composite structure of the
refractory and the slag has been provided in section 3.
The steady-state response of the gasification system is
generated from this simulation model that describes
the gas-path kinetics, slag flow, and the slag-refractory
heat transfer phenomena. The dynamic character-
istics of the refractory wall temperature (TREF) are
generated for the purpose of degradation monitoring
and maintenance (see section 4) by providing an exter-
nal excitation of cyclically varying coal-feed rate. The
simulation model of the entrained-bed slagging gasi-
fication system, in its entirety, is capable of tracking
the performance of the gasification system under both
steady-state and dynamic operations, and provides
the steady-state and dynamic temperature profile at
all cross-sections in the refractory wall.

Fig. 5 Steady-state distribution of gas temperature, wall temperature, and heat flux
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5.1 Steady-state response of the gasification
system

This section presents the results pertaining to steady-
state response of the integrated simulation model
of the gasification system described in section 3.
Figure 5(a) shows the steady-state temperature profile
in the axial direction for combustor gases, solid coal
particles, and liquid slag surface. In the combustion
zone, due to exothermic reactions, the gas tempera-
ture rises quickly, and a part of this thermal energy
is transferred into the molten slag. In the later phase
of gasification, the reactions are mostly endothermic
and a part of the thermal energy carried by the molten
slag is released back into the gasification chamber.
Notably, there exists a point beyond which the gas
temperature drops below the slag surface temperature.
Consequently, the heat flux in and out of the gasifica-
tion chamber changes direction, as seen in Fig. 5(b).
The steady-state temperature profiles recorded at all
interfaces in the composite wall are shown in Fig. 5(c).
A large temperature difference occurs across the insu-
lator, and its outer surface approximately remains at a
uniform temperature from top to bottom of the gasi-
fier. Figure 5(d) shows the steady-state temperature
profile across the composite wall at a typical axial loca-
tion. The temperature sensors are installed at the outer
surface of the refractory at a radius of 0.925 m, depicted
as r4 in Fig. 5(d).

5.2 Dynamic response for degradation monitoring

This subsection presents the results pertaining to
dynamic response of the integrated simulation model
of the gasification system for degradation monitoring
(see section 4) of the refractory wall. The time-series
response of the refractory wall temperature (TREF)
is generated by providing an external excitation of
cyclically varying coal-feed rate.

5.2.1 Numerical simulation and data acquisition

To generate the dynamic response of refractory wall
temperature, the coal-feed rate is cyclically varied as
step changes between 60 and 100 g/s with each cycle
lasting for 2.5 min. Figure 6 exhibits the step response
of a typical temperature sensor for the above excita-
tion under the nominal condition. Time-series data
of the refractory wall temperature (TREF) is generated
from the simulation model under the above excitation
for the nominal (i.e. healthy) condition. Subsequently,
in order to generate the time-series data for different
anomalous conditions of the refractory wall, informa-
tion of the degraded wall geometry is injected into
the simulation model. It is assumed that the effects of
refractory damage lead to a reduction in the wall thick-
ness and, consequently, an increase in the inner radius

Fig. 6 Slag temperature dynamic response of the gasifier

of the wall at different locations. Therefore, reduction
in refractory wall thickness is taken as an independent
variable that can be mapped to the progression of time
in the slow time scale in a gasification system for the
purpose of damage monitoring; such a map would be
dependent on the operating conditions and type of
the gasifier. The refractory wall damage can be ran-
domly injected at any axial location of the gasification
system. In the present study, damage is incrementally
injected into the simulation model at a randomly cho-
sen gasifier compartment 60 (see section 3), which is
approximately located in the middle of the gasifier.
The refractory wall thickness is depleted by 1 mm each
time and simulation is run under above-mentioned
excitation to generate the time-series data of dynamic
response of refractory temperature (TREF). In the test
runs, time-series data are collected for each damaged
condition in increments of 1 mm until the refractory
wall thickness in the simulation model is reduced
by 10 mm, which typically corresponds to a single
spalling event [13].

5.2.2 Data analysis

Time-series data for both nominal and anoma-
lous conditions have been analysed using SDF (see
Appendix 2) for generation of statistical patterns of
evolving anomalies. For symbol sequence genera-
tion, wavelet-based maximum entropy partitioning
has been used with the gaus2 (i.e. Mexican Hat) basis
function; the symbol alphabet size for partitioning
is chosen to be |
| = 15 and the depth D = 1 for
construction of the finite-state machine. Hence, the
number of states in the finite-state machine is n =
|
|D = 15. Details of SDF are available in Appendix 2
and references cited therein.

Figure 7 shows the results of SDF-based analysis of
the time-series data sets. The top row of Fig. 7 shows
the time-series data sets of refractory temperature for
three different damage conditions of the refractory:
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Fig. 7 Evolution of statistical patterns with refractory wall degradation

(a) nominal (i.e. healthy) condition, (b) 5 mm refrac-
tory damage, and (c) 10 mm refractory damage that
corresponds to a typical spalling event. The time-
series data are recorded for a compartment in the
middle of the refractory (i.e. compartment 60), where
the damage is injected. Each plot in the top row of
Fig. 7 shows the time-series data of refractory tem-
perature generated from a single cycle of excitation in
the coal-feed rate. The set of test data comprises of a
sufficiently large number of excitation cycles to gener-
ate statistically rich data; sufficiency of data length is
governed by a stopping rule that has been presented
in earlier publications [8, 26]. The time-series data
sets have been injected with multiplicative noise to
closely represent real-time experimental data that are
commonly contaminated with measurement and pro-
cess noise. The noise-contaminated signal is obtained
by S̃ = S(1 + η), where S and S̃ are the uncontaminated
and the noise-contaminated signals, respectively, and
η is zero mean Gaussian noise with SD 0.002. This
noise generates fluctuations in temperature readings
with a SD of ≈ 2 K. The bottom row of Fig. 7 shows the
histograms of probability distribution that are gener-
ated from SDF analysis of corresponding time-series
data sets. The histograms represent the statistical pat-
terns of damage evolution at the above three different
damage conditions. As a consequence of maximum
entropy partitioning [7] (see also Appendix 2) at the
nominal condition, the probability distribution is uni-
form as seen in plot (a) of Fig. 7. As damage evolves, the
statistical patterns gradually deviate from the nominal
pattern of uniform distribution as seen in plots (a), (b),
and (c) of Fig. 7.

Figure 8 shows the profile of anomaly measure with
gradual evolution of damage in the refractory wall.
Anomaly measure is quantitatively expressed as a
(scalar) distance between the statistical patterns (i.e.
probability distributions) corresponding to an anoma-
lous condition and the nominal condition, which are
generated using SDF of time-series data. The distance
function is chosen to be the Euclidean norm of the dif-
ference between the two patterns (see equation (21)
in Appendix 2). A non-zero value of anomaly measure
indicates deviation from the nominal condition and
therefore provides a warning of incipient damage. It is
seen in Fig. 8 that the anomaly measure profile grows
as the damage progresses in the refractory wall. The
SDF algorithms in this paper are implemented on the

Fig. 8 Evolution of anomaly measure with refractory
damage
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MATLAB platform and are interfaced with the gasifica-
tion plant simulation model for real-time degradation
monitoring of the refractory wall.

Extensive numerical simulations have been con-
ducted to test the validity of refractory damage mon-
itoring algorithms. Time-series data sets were gen-
erated for several different compartments when the
damage was injected at a particular location. The
simulation results reveal the scenarios of damage
monitored by sensors that are placed away from the
location of fault (i.e. not in the immediate vicinity).
This investigation has demonstrated that all sensors
are able to capture the fault occurring at any loca-
tion in the refractory. This is evident due to strong
coupling inside the gasifier that rapidly adjusts to
damaged refractory geometries to obtain new equilib-
rium conditions. Another observation indicates that
sensors downstream are, in general, more or at least
equally sensitive to the refractory faults upstream. The
rationale for this observation is that the thermo-fluid
coupling between the gas dynamics and the refractory
surface due to prevalent downward flow of gas and slag
produces a greater effect further downstream [2, 22].
Evidently, this phenomenon makes fault localization
and estimation [9] a difficult task because of possi-
ble non-unique solutions. However, all sensors have
been successfully able to detect the growth of evolving
anomalies in the refractory wall. Fault localization and
estimation using information fusion from distributed
sensors is an area of active research and has not been
addressed in this paper. The above problems are also
closely related to optimal sensor placement that is a
topic of future research.

6 SUMMARY, CONCLUSIONS, AND FUTURE
RESEARCH

This section summarizes the paper with pertinent con-
clusions. Areas of future research are recommended
to overcome the limitations and shortcomings of the
current work.

6.1 Summary

This paper addresses degradation monitoring of the
refractory wall in coal gasification systems. The pro-
posed algorithm of degradation monitoring is both
model-based and data-driven and is built upon statis-
tical pattern identification from sensor information in
combination with an integrated simulation model of
the gasification system. The initial part of the paper
is a precursor to obtaining the dynamic response
of pertinent plant variables to step changes in the
coal feed rate, and involves modelling of individual
subcomponents of the gasifier in lieu of the actual
sensor information from an operating plant. To this

end, the gas-path kinetics and the slag-refractory
heat transfer characteristics have been modelled for
computer simulation. These submodels have been
integrated and the integrated model yields not only
the cross-sectional steady-state spatial temperature
profile, but also the dynamic response of the tem-
perature sensors installed at different axial points in
the composite wall of the gasifier wall under nom-
inal operating conditions. In the later part of the
paper, the dynamic response, rich in statistical infor-
mation, is analysed with a pattern analysis tool,
based on SDF [4], for real-time degradation mon-
itoring of the refractory wall. The SDF algorithms
have been implemented on a MATLAB platform and
are interfaced with the gasification plant simula-
tion model for emulation of real-time degradation
monitoring.

6.2 Pertinent conclusions

The modelling and analysis efforts, presented in this
paper, evince that SDF is a potentially viable tool
for real-time degradation monitoring of the refractory
wall in entrained-bed gasifiers. Specifically, the results
of numerical simulation show that degradation mon-
itoring and real-time prediction of evolving faults in
the refractory wall are feasible under different load
conditions of the gasification system by:

1. Installation of temperature sensors at appropriate
locations on the outer surface of the refractory wall.

2. Statistical pattern (i.e. SDF) analysis of sensor time-
series data in combination with the integrated
simulation model for damage detection and failure
prediction.

3. Incorporation of the ensemble of sensors, SDF
algorithm of pattern analysis, and the integrated
simulation model within the Instrumentation &
Control system software and hardware.

The results of numerical simulation indicate that it
might be possible to detect reduction in wall thickness
of the order of a few millimetres. However, localiza-
tion of wall degradation has not yet been addressed
in the proposed method of degradation monitoring.
It is envisioned that a combination of the tempera-
ture sensor array and a lumped-parameter model (that
is executable on inexpensive platforms in real time)
may serve as an instrumentation for localization of a
degradation site in the circumferential direction of the
gasifier wall; however, localization in the axial direc-
tion may not be straight-forward because of turbulent
mixing of gases, changes in the chemical reaction
types (e.g. exothermic and endothermic) in different
sections of the gasifier, and downward flow of the
molten slag. From this perspective, changes in the
spatial distribution of refractory wall temperature as
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outputs of the sensor array need to be investigated
for localizing wall degradation in the axial direction.
Further theoretical, computational, and experimen-
tal research is necessary before a combination of the
real-time simulation model, sensor array, and the SDF-
based degradation monitoring tool can be considered
for incorporation into the Instrumentation & Control
system of a commercial-scale gasification plant.

6.3 Recommendations for future research

Some of the topics of future research for life extension
of refractory wall in gasification systems are delineated
below.

1. Localization of wall degradation in both circumfer-
ential and axial directions by taking advantage of
spatial distribution of refractory wall temperature
as outputs of the sensor array.

2. Extension of the two-dimensional (i.e. r, z) heat-
flow model of the refractory wall to a three-
dimensional (i.e. r, θ , z) model to enhance the
capabilities of detection and localization of simul-
taneous degradation at multiple locations in the
refractory wall.

3. Quality assurance and automated calibration of
sensor time-series data to circumvent incorrect
estimates of damage and hence incorrect decisions
for plant operation and maintenance.

4. The inverse problem for prediction of the remain-
ing life of a gasifier through inspection of estimated
damage measures at different epochs in the slow
time scale for the refractory wall at hand.

5. Algorithm development for optimal placement of
sensors on the refractory wall of a gasifier.
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APPENDIX 1

Notation

A heat transfer area (m2)

A, B coefficients in the Weymann relation
Ash total ash efflux at gasifier exit (kg/m2s)
Cp specific heat capacity (J/kg K)
g acceleration due to gravity (m/s2)
h height of a compartment (m)
h enthalpy (J/kg)
k thermal conductivity (W/m K)
L width of wall cross-section segment (m)
Ṁ i

s slag mass deposition rate into the ith
compartment from the combustion
chamber (kg/m s)

Ṁ i,i+1
s slag mass influx rate from the ith

compartment into the (i + 1)th
compartment (kg/m s)

q heat flux (J/m2s)
r radius, coordinate in the radial

direction (m)

t time (s)
T temperature (K)
Tcv critical solidification temperature for

slag (K)
u slag velocity in x-direction (m/s)
U0 overall heat transfer coefficient (W/m2 K)
z coordinate in the axial direction (m)

α thermal diffusivity (m2/s)
ε emissivity of the insulator wall
μ viscosity (kg/ms)
ρ slag density (kg/m3)
σ Stefan–Boltzmann constant (W/m2 K4)
τ viscous shear stress for slag (kg/ms2)

Subscripts and superscripts

AMB ambient
cond conduction
conv convection
G gaseous phase in combustor
gen generation inside a compartment
i ith compartment from top
in energy/mass flow into a compartment
INS insulator
int edge between two successive

compartments
LS liquid slag
LSS liquid slag surface
METAL metal sheet
out energy/mass flow out of a compartment
rad radiation
REF refractory
S solid ash particles in combustor
SS solid slag
tot total efflux

APPENDIX 2

Review of symbolic dynamic filtering

This appendix briefly reviews the underlying concepts
and salient features of SDF for detection of anomaly
patterns (i.e deviations from the nominal condition) in
complex dynamical systems [4]. The concept of SDF is
built upon the principles borrowed from multiple dis-
ciplines including statistical mechanics [24, 27], sym-
bolic dynamics [28], statistical pattern recognition [5],
and information theory [29]. SDF-based pattern recog-
nition algorithms have been experimentally validated
for real-time execution in different applications, such
as electronic circuits [11, 12] and fatigue damage mon-
itoring in poly-crystalline alloys [9, 10, 25]. It has
been shown by laboratory experimentation that SDF
yields superior performance in terms of early detec-
tion of anomalies and robustness to measurement
noise in comparison with other existing techniques
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such as principal component analysis (PCA) and arti-
ficial neural networks (ANN) [10–12]. While the details
are reported as pieces of information in previous pub-
lications [4, 7, 25, 26], the essential concepts of space
partitioning, symbol generation, and construction of
a finite-state machine from the generated symbol
sequence are succinctly explained in this appendix for
the completeness of the paper.

Detection of anomaly patterns is formulated as a
two-time-scale problem. The fast time scale is related
to response time of the process dynamics. Over the
span of a given time-series data sequence, dynamic
behaviour of the system is assumed to remain invari-
ant, i.e. the process is quasi-stationary at the fast
time scale. In other words, the variations in the
behaviour of system dynamics is assumed to be neg-
ligible on the fast time scale. The slow time scale is
related to the time span over which parametric or
non-parametric changes may occur and exhibit non-
stationary dynamics. The concept of two time scales is
illustrated in Fig. 9.

An observable non-stationary behaviour of the sys-
tem dynamics can be associated with the anomalies
evolving at a slow time scale. In general, a long time
span in the fast time scale is a tiny (i.e. several order
of magnitude smaller) interval in the slow time scale.
For example, anomalies may evolve on the slow time
scale in the order of tens of hours of operation; in
contrast, the process dynamics may remain essen-
tially invariant on the fast time scale in the order of
minutes. Nevertheless, the notion of fast and slow
time scales is dependent on the specific application,
loading conditions, and operating environment. From
the perspective of anomaly pattern detection, time-
series data sets are collected on the fast time scale at
different slow time epochs separated by uniform or
non-uniform intervals.

Symbolic dynamics, encoding, and state machine

This section briefly describes the concepts of sym-
bolic dynamics, encoding non-linear system dynamics
from observed time-series data, and state machine
construction for generation of symbol sequences. It
also presents a procedure for online computation

Fig. 9 Pictorial view of the two time scales: (i) Slow time
scale of anomaly evolution and (ii) Fast time scale
for data acquisition and signal conditioning

Fig. 10 Concept of SDF

of the machine state probability vectors that are
representatives of the evolving patterns of the system’s
dynamical characteristics.

Let � ∈ R
n be a compact (i.e. closed and bounded)

region, within which the trajectory of the dynamical
system is circumscribed as illustrated in Fig. 10. The
region � is partitioned into a finite number of (mutu-
ally exclusive and exhaustive) cells, so as to obtain a
coordinate grid. Let the cell, visited by the trajectory at
a time instant, be denoted as a random variable taking
a symbol value from the alphabet 
. An orbit of the
dynamical system is described by the time-series data
as {x0, x1, . . . , xk , . . .} with xi ∈ �, which passes through
or touches one of the cells of the partition. Each initial
state x0 ∈ � generates a sequence of symbols defined
by a mapping from the phase space into the symbol
space as

x0 → s0s1s2 · · · sk · · · (19)

where each si (i = 0, 1, . . .) takes a symbol from the
alphabet 
. The mapping in equation (19) is called
symbolic dynamics as it attributes a legal (i.e. physi-
cally admissible) sequence of symbols to the system
dynamics starting from an initial state. Figure 10 pic-
torially elucidates the concepts of partitioning a finite
region of the phase space and the mapping from the
partitioned space into the symbol alphabet. This rep-
resents a spatial and temporal discretization of the
system dynamics defined by the trajectories. Figure 10
also shows conversion of the symbol sequence into
a finite-state machine as explained in the following
subsections.

Space partitioning

A crucial step in SDF is partitioning of the phase space
for symbol sequence generation [4]. Several partition-
ing techniques have been reported in literature for
symbol generation [30], primarily based on symbolic
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false nearest neighbours (SFNN), which may become
cumbersome and extremely computation-intensive if
the dimension of the phase space is large. Moreover, if
the time-series data is noise-corrupted, then the sym-
bolic false neighbours would rapidly grow in number
and require a large symbol alphabet to capture the per-
tinent information on the system dynamics. Therefore,
symbolic sequences as representations of the system
dynamics should be generated by alternative methods
because phase-space partitioning might prove to be
a difficult task in the case of high dimensions and
presence of noise. The wavelet transform [31] largely
alleviates these shortcomings and is particularly effec-
tive with noisy data from high-dimensional dynamical
systems. A comparison of wavelet partitioning and
other partitioning methods, such as SFNN, is reported
in recent literature, where wavelet space partition-
ing (WSP) [7] and analytic signal space partitioning
(ASSP) [32] have been shown to yield comparable per-
formance with several orders of magnitude smaller
execution time. In either case, maximum entropy par-
titioning ensures the symbols of the alphabet to be
uniformly distributed [7]. Once the partitioning of
the data set at the nominal condition is completed,
it is kept constant for all (slow time) epochs, i.e. the
partitioning structure generated at the nominal con-
dition serves as the reference frame for data analysis
at subsequent slow time epochs.

State machine construction

The partitioning (Fig. 10) is performed at the slow time
epoch t0 of the nominal condition that is chosen to
be the healthy state having zero anomaly measure.
A finite-state machine is then constructed, where the
states of the machine are defined corresponding to a
given alphabet set 
 and window length D. The alpha-
bet size |
| is the total number of partition segments
while the window length D is the length of consecu-
tive symbol words [4], which are chosen as all possible
words of length D from the symbol sequence. Each
state belongs to an equivalence class of symbol words
of length D or more, which is characterized by a word
of length D at the leading edge.

The choice of |
| and D depends on specific appli-
cations, noise level, and also on the available compu-
tation power. A large alphabet may be noise-sensitive
and a small alphabet could miss the details of signal
dynamics. Similarly, while a larger value of D is more
sensitive to signal distortion, it would create a much
larger number of states requiring more computation
power.

The states of the machine are marked with the cor-
responding symbolic word permutation and the edges
joining the states indicate the occurrence of a symbol

σi . The occurrence of a symbol at a state may keep the
machine in the same state or move it to a new state.
On a given symbol sequence · · · σi1σi2 · · · σil

· · · gener-
ated from the time-series data collected at a slow time
epoch, a window of length D is moved by keeping a
count of occurrences of word sequences σi1 · · · σiD σiD+1

and σi1 · · · σiD which are, respectively, denoted by
N (σi1 · · · σiD σiD+1) and N (σi1 · · · σiD ). Note that if
N (σi1 · · · σiD ) = 0, then the state q ≡ σi1 · · · σiD ∈ Q has
zero probability of occurrence. For N (σi1 · · · σiD ) �= 0,
the transitions probabilities are then obtained by these
frequency counts as follows

πjk ≡ P(qk|qj) = P(qk , qj)

P(qj)
= P(σi1 · · · σiD σ)

P(σi1 · · · σiD )

⇒ πjk ≈ N (σi1 · · · σiD σ)

N (σi1 · · · σiD )
(20)

where the corresponding states are denoted by qj ≡
σi1σi2 · · · σiD and qk ≡ σi2 · · · σiD σ . The state transition
matrix, � = [π ]jk , satisfies the properties of a stochas-
tic matrix, i.e. 
kπjk = 1, ∀j. The state probability
vector p is derived as the left eigenvector of � cor-
responding to the unity eigenvalue, which represents
the behaviour pattern of the dynamical system at a
given epoch.

Anomaly evolution and pattern identification

Behavioural pattern changes may take place in
dynamical systems due to an accumulation of faults
and progression of anomalies. The pattern changes
are quantified as deviations from the nominal pat-
tern (i.e. the state probability vector p0 at slow time
epoch t0). The resulting anomalies (i.e. deviations of
the evolving patterns, pk at epochs tk , k = 1, 2, . . . ,
from the nominal pattern p0) are characterized by a
scalar-valued function, called anomaly measure μ. The
anomaly measures are obtained as

μk ≡ d(pk , p0), k = 1, 2, . . . (21)

where the d(•, •) is an appropriately defined distance
function.

The major advantages of SDF for the detection of
small anomalies are listed below:

(a) robustness to measurement noise and spurious
signals [7];

(b) adaptability to low-resolution sensing due to the
coarse graining in space partitions [4];

(c) capability for early detection of anomalies because
of sensitivity to signal distortion and real-time
execution on commercially available inexpensive
platforms [25].
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