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Abstract: The first part of this two-part paper, which is a companion paper, has developed a novel
concept of fault detection and isolation (FDI) in aircraft gas turbine engines. The FDI algorithms
are built upon the statistical pattern recognition method of symbolic dynamic filtering (SDF) that
is especially suited for real-time detection and isolation of slowly evolving anomalies in engine
components, in addition to abrupt faults. The FDI methodology is based on the analysis of time
series data of available sensors and/or analytically derived variables in the gas path dynamics.

The current paper, which is the second of two parts, validates the algorithms of FDI, formulated
in the first part, on a simulation test bed.The test bed is built upon an integrated model of a generic
two-spool turbofan aircraft gas turbine engine including the engine control system.
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1 INTRODUCTION

Detection of incipient faults and isolation of failure
precursors are critical for safe and reliable operation
of human-engineered complex systems. Therefore, it
is necessary to develop fault detection and isolation
(FDI) algorithms for enhanced reliability and to imple-
ment them for process monitoring during the service
life of the system. With the advent of modern day tech-
nology, human-engineered systems have evolved as
complex entities whose overall performance depend
on several individual components that are intercon-
nected with each other through a complex input–
output structure and feedback paths. For example,
performance of aircraft gas turbine engines gradually
deteriorate due to degradation of different gas path
components such as fan, compressor, combustor, and
turbines [1].

Currently employed FDI tools for health monitor-
ing of aircraft gas turbine engines vary widely in their
complexity and applications and are primarily built
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upon both model-based [2, 3] and sensor-based anal-
ysis [4, 5]. However, it is often infeasible to develop
sufficiently accurate and computationally efficient
spatio-temporal models of thermo-fluid and struc-
tural system dynamics solely based on the fundamen-
tal principles of physics [6]. Similarly, sensor-based
information alone may not be adequate for FDI if the
available sensors are not consistently reliable (e.g. in
the hot-section components of gas turbine) or if they
are not sufficiently sensitive to small changes in the
engine system behaviour. Therefore, early detection of
small anomalies have to be inferred from a combina-
tion of time series analysis of the available sensor data
and model-based information. As aircraft gas turbine
engines consist of multiple interconnected compo-
nents, even a single fault in one component produces
an anomalous outputs that serve as input excita-
tion to other healthy components. Therefore, gradual
evolution of small anomalies (i.e. deviations from
the nominal behaviour) in individual components
may lead to cascaded faults because of strong input–
output and feedback interconnections between the
engine components and may eventually cause catas-
trophic failures and forced shutdown of the engine
system.

The objective of this two-part paper is to develop
and validate a novel methodology for FDI based on
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time series of pertinent sensor data and analytically
derived variables [7, 8]. The underlying concept of the
FDI algorithms, presented in the first part [8] of this
paper, are built upon the concept of symbolic dynamic
filtering (SDF) [4, 9, 10] that is recently reported in
literature as a pattern recognition tool. This paper,
which is the second part, validates the proposed FDI
concept on a simulation test bed of a generic two-
spool turbofan engine [11, 12]. The FDI algorithms
are executable on commercially available inexpensive
platforms in real-time and are implemented on the
simulation test-bed.

This paper is organized in five sections and an
appendix. Section 2 describes the simulation test bed
of a generic aircraft gas turbine two-spool turbo-
fan engine and the pertinent model equations are
listed in 5.3. Section 3 presents implementation pro-
cedure of the FDI methodology, formulated in the first
part [8]. Section 4 presents the pertinent results along
with discussion on detection and isolation of single-
component and multi-component faults. The two-
part paper is summarized and concluded in section
5 along with recommendations for future research.

2 AIRCRAFT ENGINE SIMULATION TEST BED

This section describes the simulation test bed, con-
sisting of an aircraft gas turbine engine model and its
control system. The governing equations of the two-
spool, low bypass turbofan engine model are derived
in Appendix 2. Further details are available in techni-
cal literature on similar engine models, for example,
Modular Aero Propulsion System Simulation (MAPSS)
model [12, 13] and the model of General Electric
XTE-46 engine reported by Diao and Passino [11].

Following Fig. 1, the gas turbine engine system
consists of compressor, combustor, and turbine

subsystems that form the core of the engine
model [13]. The core is also referred to as the gas gen-
erator because the output of the core is hot exhaust
gas. In the turbofan engine, the engine core is sur-
rounded by a fan in the front and an additional turbine
at the rear. The fan and turbine are connected by an
additional shaft. The fan shaft passes through the core
shaft and this type of arrangement is called a two spool
engine; one ‘spool’ for the fan, and another ‘spool’ for
the core. The incoming air is captured by the engine
inlet; a major part of the incoming air passes through
the fan and continues on into the core compressor
and then into the combustor, where it is mixed with
fuel and combustion occurs. The hot exhaust passes
through the core and fan turbines and then leaves out
from the nozzle. This airflow is called the core airflow
and the rest of the incoming air passes through the fan
and bypasses, or goes around the engine. Parts of the
thrust of the turbofan engine are generated by the core
and the fan.

2.1 Dynamic model of the turbofan engine

The schematic of the engine model is depicted in Fig. 1
and the sensors and actuators are listed in Tables 1
and 2, respectively. The components of the engine
model consist of a single stage high-pressure ratio fan
with variable inlet stator vanes, booster with indepen-
dent hub and tip stator vanes, high-pressure mixed
flow compressor, double-annular combustor, high-
and low-pressure turbines, afterburner, and nozzle
components [12, 13]. The components of the engine
model and station numbering is provided in Fig. 1.
The stations are numbered at the exit condition of
each component starting from the flight conditions
and inlet as the first station. The details are provided
in Appendix 1. The health of the engine is described by

Fig. 1 Schematic of the TESM with labelled actuators (italics) and sensors
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Table 1 Engine system sensors

Sensors Description Availability

P2 Fan inlet pressure CA
T2 Fan inlet temperature CA
NL Fan and LPT shaft speed CA
P21 Fan exit/HPC and booster inlet pressure OA
T21 Fan exit/HPC and booster inlet temperature OA
NH HPC and HPT shaft speed CA
P27d Booster exit pressure OA
T27d Booster exit temperature OA
P16 Bypass duct exit pressure OA
T16 Bypass duct exit temperature OA
P3 HPC exit/combustor inlet pressure CA
T3 HPC exit/combustor inlet temperature CA
P4 Combustor exit/HPT inlet pressure UA
T4 Combustor exit/HPT inlet temperature UA
P45 HPT exit/LPT inlet pressure OA
T45 HPT exit/LPT inlet temperature CA
P5 LPT exit/mixer inlet pressure OA
T5 LPT exit/mixer inlet temperature OA
P6 Mixer exit/afterburner inlet pressure OA
T6 Mixer exit/afterburner inlet temperature OA
P7 Afterburner exit/nozzle inlet pressure OA
T7 Afterburner exit/nozzle inlet temperature OA
P8 Nozzle exit pressure OA
T8 Nozzle exit temperature OA

CA ≡ Commercially available, OA ≡ Optionally available, UA ≡
Commercially unavailable

Table 2 Engine system actuators

Actuators Description

STP2 Fan variable inlet stator vane angle
A1 Forward blocker door area
STP27 High-pressure compressor stator vane angle
STP27d High-pressure booster hub stator vane angle
wf ,36 Combustor fuel flow
A16 Aft variable bypass area
wf ,6 Afterburner fuel flow
A8 Nozzle throat area
A9,up Upper nozzle exit area
A9,lo Lower nozzle exit area

the efficiency health parameter (ψ) and the flow health
parameter (ζ ) that are, in general, defined [14] as:

(a) ψ � The ratio of actual enthalpy change and ideal
enthalpy change;

(b) ζ � The ratio of tip rotor velocity and axial fluid
flow velocity.

For six major components: (a) fan (ψF, ζF), (b) booster
(ψB, ζB), (c) high pressure compressor (ψHPC, ζHPC),
(d) combustor (ψC), (e) high pressure turbine (ψHPT,
ζHPT), and (f) low pressure turbine (ψLPT, ζLPT) [14], the
eleven health parameters affect the efficiency and flow
of the respective components (see the engine model
equations in 5.3). Note that there is no flow health
parameter defined for combustor.

The engine model in this paper is similar to the
NASA MAPSS model [12] and the model reported
in [11]. The open-loop engine model has three
state variables, namely, low-pressure spool speed,

high-pressure spool speed, and average temperature
of the combustor wall structure. Together with ten
actuators (see Fig. 1 and Table 2), each of which
is modelled by a second order differential equation,
total number of state variables associated with the
augmented plant model is 23.

Given the inputs of throttle position, also known
as power lever angle (PLA), and ambient conditions
(e.g. altitude (a), Mach number (M ), ambient temper-
ature (Tamb)), the interactively controlled component
models at the simulation test bed compute non-linear
dynamics of real-time turbofan engine operation.
Both steady-state and transient operations are sim-
ulated in the continuous-time setting. Performance
maps are used to provide steady-state representations
of the engine’s rotating components. Fluid momen-
tum in the bypass duct and the augmentor, mass and
energy storage within control volumes, and rotor iner-
tias are also included to model transient operations.

2.2 Integration of the simulation model with the
FDI system

In the present experimentation procedure, the engine
simulation system (see details in section 2.1 and
Appendix 2) and the FDI system (see details in the
first part [8]) run on two computers connected via
a network. The engine simulation system, which is a
combination of the engine dynamic model and the
engine controller, is hosted on the first computer. The
engine model consists of non-linear differential and
difference equations and supporting algebraic equa-
tions, and is designed for both steady-state and tran-
sient operations of a generic jet engine [11, 12]. The
engine simulation system is a stand-alone program
with a gain-scheduled feedback controller. The simu-
lation system is capable of generating time series data
of all process variables of the gas turbine engine. Sen-
sors and actuators that carry pertinent information for
FDI are listed in Tables 1 and 2, and descriptions of the
process variables therein follow Appendix 1.

The FDI system, that is hosted on the second
computer, analyses the time series data of pertinent
variables collected from the first computer over the
communication channel. The data collected by the
C++ wrapper program, which is installed over the core
FORTRAN code of the engine simulation system, is
transferred to the FDI system through an application
protocol interface (API) that facilitates sending and
receiving of message packages over the computer net-
work through the standard transmission control pro-
tocol (TCP) and/or user datagram protocol (UDP) [15].
The data latency in this protocol interface is mainly
due to the network communications and the typical
value is found to be less than a fraction of millisecond.
Since engine simulations use integration step sizes in
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the order of 20 ms, the communication delays do not
have a significant bearing on performance of the FDI
algorithms that are implemented in the MATLAB 7.1
real-time environment.

3 VALIDATION OF FDI ALGORITHMS

This section describes planning and execution of
simulation experiments for validation of FDI algo-
rithms [8] on the test bed, described in section 2.

3.1 Implementation and validation of the FDI
methodology

This section defines major components of the engine
system as shown in Fig. 1. The inputs and outputs (see
Tables 1 and 2) of these components, as needed for FDI
analysis, are listed below.

1. Fan (F)
(a) inputs: P2, T2, NL, and STP2

(b) output: T21

2. Booster (B)
(a) inputs: P21, T21, and STP27d

(b) output: T27d

3. High pressure compressor (HPC)
(a) inputs: P21, T21, NH, and STP27

(b) output: T3

4. Combustor (C)
(a) inputs: P3, T3, and wf ,36

(b) output: T4

5. High pressure turbine (HPT)
(a) inputs: P4, T4, and NH

(b) output: T45

6. Low pressure turbine (LPT)
(a) inputs: P45, T45 and NL

(b) output: T5

The FDI methodology has been validated for the
above six components under the assumption that all
required sensors are available. However, due to the
high temperature environment, P4 and T4 sensors may
not be commercially available. In that case, a new
subsystem C-HPT consisting of combustor and high
pressure turbine could replace these two individual
components for FDI analysis. The rationale is that, if
P4 and T4 sensors are unavailable, the C-HPT subsys-
tem will have sufficient input (i.e. P3, T3, NH, and wf ,36)
and output (i.e. T45) information.

The source of faults in each of the six compo-
nents is represented in terms of efficiency loss due
to several factors related to malfunctioning (possibly
due to structural damage), which leads to degraded
performance and affects the gas-path sensor data. Sev-
eral single component and multiple component faults
are injected into the engine simulation system for
different case studies. Faulty conditions are simulated

by reducing the health parameters, ψ and ζ , for each
component under consideration. Imposition of these
health parameters affects the actual efficiency and
flow of the components in the simulation model of
the engine system [12]. Note that, due to strong input–
output and feedback interconnections between the
engine components, deviation in the health parame-
ters (from their nominal value) for a component not
only degrades the performance of that component,
but also may affect other components.

The nominal value of each health parameter is set
to 1.0 under the healthy condition. Time series data
of observed variables are analysed for detection of
change in the signal, which provides relevant infor-
mation for FDI. Faults were injected by reducing these
parameter values below the nominal value (i.e. 1.0) for
different components (see section 4 for details). For all
the FDI analysis, the engine system model is excited
with an input profile of the (PLA) having the mean
value of 35◦ and frequency of 0.05 Hz as shown in Fig. 2.
The ambient conditions are chosen to be at the sea-
level (i.e. altitude (a = 0.0), Mach number (M = 0)) for
the purpose of maintenance and fault monitoring by
engineering personnel.

Simulation experiments on the engine test bed (see
section 2) follow the concept of FDI laid out in the
first part [8]. Accordingly, the engine simulation was
executed for each of the six component models with
faults injected as per different case scenarios (see
section 4 for details) as well as for each of the six cor-
responding nominal component models (i.e. with no
injected faults). The inputs for each component were
kept the same for each component in the simulation
of both the nominal models and fault-injected models
as explained in the first part [8]. To include the effects
of measurement noise in the engine components, zero
mean additive Gaussian noise with standard deviation
equal to 1 percent of the respective nominal value, is
injected into the time series data for different sensors

Fig. 2 Input Excitation for the PLA (PLA) Position
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and analytically derived variables from the simulation
model. The noise is not included in the nominal
model. The critical issues in this procedure of simula-
tion experimentation, as applied to each component,
are delineated below.

1. Selection of an output (that may be either sen-
sor generated or analytically derived) for each
component and its nominal model.

2. Excitation of the nominal model of each compo-
nent, for generation of compatible reference data,
with the same inputs as the respective component.

3. Generation of anomaly measure, via the FDI algo-
rithms using the SDF of output data and the respec-
tive nominal model data for each component.

After detecting and isolating a faulty component,
the next task is to identify the range of the health
parameters for each component as an extension of
the current work reported in this paper. As explained
in the first part [8], the task of degradation moni-
toring is divided into two parts: (a) assimilation of
the fault information in the forward or analysis prob-
lem, and (b) fault range identification in the inverse
or synthesis problem. Solution of the forward prob-
lem generates the probability distributions of the fault
parameters off-line under an ensemble of physically
admissible input and output variables. The inverse
problem takes a statistical approach for online iden-
tification of the range of fault parameters at desired
confidence levels. This concept has been experimen-
tally validated for online estimation of fatigue life
in polycrystalline alloys [5] and faulty parameters in
active electronic circuits [16]. This work is under cur-
rent investigation for identification of engine fault
parameters and the results are expected to be reported
in future publications.

3.2 Specifications of the SDF

SDF [9] has been used to generate patterns of anoma-
lous behaviour (i.e. deviations from the nominal
condition) for detection and isolation of faults in indi-
vidual components of the engine system. Anomaly
measure is quantitatively expressed as a (scalar) dis-
tance (e.g. statistical diversity) between two behaviour
patterns generated by SDF as described in the first
part [8]. The distance function is chosen to be the
Euclidean norm of the difference between two pattern
vectors. For symbol sequence generation, wavelet-
based maximum entropy partitioning [10] has been
used with the ‘gaus2’ (i.e. Mexican Hat) basis func-
tion [17]; the alphabet size for partitioning is chosen
to be |�| = 8 and the depth, D = 1, for construc-
tion of the finite state machine. Hence, the number
of states in the finite state machine is n = |�|D = 8.
Based on the observed data sets, this choice of |�|

was made as a trade-off between anomaly detection
capability and robustness to measurement noise. The
SDF algorithms in this paper are implemented on the
MATLAB platform and are interfaced with the engine
simulation model for real-time operation.

The sampling frequency for data acquisition is cho-
sen to be 50 Hz to match the updating rate of the digital
controller, which is more than five times the highest
signal frequency in the simulation model of the gas
turbine engine. Hence, this sampling frequency sat-
isfies the Nyquist criterion for avoidance of aliasing
errors. The signal length rstop for time series analysis is
chosen from the stopping rule (see the first part [8])

rstop ≡ int
(

n
η

)

where int(•) is the integer part of the real number •, n
is the number of states in the finite sate machine, and η

is the allowed error tolerance (0 < η � 1). For n = 8 as
stated above and choosing η = 0.001, the data length
is selected to be 8000 points in the simulation runs,
which is a conservative value. In majority of the cases,
the convergence criterion for the stopping rule is sat-
isfied much earlier and hence shorter signal lengths
may be chosen.

4 RESULTS AND DISCUSSION

This section presents and discusses the results of
experiments on the engine simulation test bed (see
section 2) for validating the proposed detection and
isolation algorithms for single-component and multi-
component faults. Based on the procedure described
in the first part [8], time series of the pertinent sensor
data and analytically derived variables are gener-
ated from both (possibly anomalous) components and
their respective nominal models for FDI in: (a) single
components, and (b) multiple components.

4.1 Fault detection and isolation in single
components

To demonstrate single-component FDI , the six iden-
tified components of the engine system are injected
with a fault, one at a time, by reducing each of the
respective efficiency health parameter (ψ) and the
flow health parameter (ζ ) from the nominal value
of 1.0 to a degraded value of 0.99 that represents
a small fault in the corresponding component. For
this scenario, the six plates in Fig. 3 exhibit the exit
temperature responses of the six components in the
following order: (a) fan (F ), (b) booster (B), (c) HPC,
(d) combustor (C), (e) HPT, and (f) LPT, under the
PLA excitation shown in Fig. 2. For the six compo-
nents, the exit temperature responses of the nominal
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Fig. 3 Exit temperature response of the six engine components: (a) fan, (b) booster, (c) HP
compressor, (d) combustor, (e) HPT, and (f) LPT

Fig. 4 Detection and isolation of faults in single components: (a) faulty fan, (b) faulty booster, (c)
faulty HP compressor, (d) faulty combustor, (e) faulty HPT, and (f) faulty LPT

(i.e. ψ = 1.0 and ζ = 1.0) models are too close to the
respective responses in Fig. 3 to be distinguishable by
visual inspection; hence, the nominal responses are
not shown.

The vertical bars in each of the six plates in Fig. 4
represent the anomaly measure μ (refer to the first
part [8]) for each component generated by analysis
of the time series data of temperature response. It is

seen that the faulty component in each case has a
high anomaly measure as compared to the remain-
ing components that have relatively much smaller
anomaly measure; non-zero values of anomaly mea-
sure in healthy components are attributed to noise.
These bar plots demonstrate that it is possible to suc-
cessfully detect and isolate the small fault (i.e. early
detection) in a single component even if the data sets
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Fig. 5 Detection and isolation of identical faults in multiple components: (a) faulty fan, booster,
HPC, HPT; (b) faulty fan, HPT; (c) faulty combustor, HPT, LPT

Table 3 Multiple component fault detection and isolation results using temperature data

Anomaly measure vector, μ

Faulty components μfan μbooster μHPC μcombustor μHPT μLPT

All components healthy 0.0416 0.0471 0.0458 0.0384 0.0344 0.0364
Fan, booster and LPT 0.349 0.2387 0.0518 0.035 0.0347 0.3128
Fan and HPT 0.3484 0.0502 0.0492 0.0372 0.341 0.0358
HPT and LPT 0.0512 0.0528 0.0531 0.0344 0.3418 0.3135
Fan, booster, HPC, combustor and HPT 0.3495 0.254 0.3744 0.2987 0.3424 0.0339
Booster, HPC and combustor 0.0449 0.2351 0.3739 0.2985 0.0322 0.0484

are noise-corrupted. The anomaly measure in Fig. 4 is
a relative measure with respect to the reference con-
dition of the nominal model; it does not represent
anomalies at the absolute level.

4.2 Fault detection and isolation in multiple
components

Figure 5 presents the results of detection and isola-
tion of simultaneous faults in several components of a
multi-component aircraft engine system. Faults were
injected into multiple components of the engine sys-
tem in the simulation test bed as a representation
of the following scenario: components, detected with
incipient faults, are not immediately repaired and such
faulty components are allowed to accumulate.

4.2.1 Identical level of faults in multiple components

To construct this scenario, faults are simultaneously
injected into multiple components by reducing the
respective efficiency and flow health parameters, ψ

and ζ from 1.0 to 0.99. The results were generated
by analysing exit temperature data from the six com-
ponents. Three plates in Fig. 5 exhibit three cases of
randomly chosen faulty components:

(a) fan (F), booster (B), HPC, and HPT;
(b) fan and HPT;
(c) combustor (C), HPT and LPT.

The procedure for detection and isolation of
multiple component faults is similar to that of the

single component faults. The effects of fault in one
component could be pervasive throughout the engine
system because of physical couplings among the com-
ponents and also due to feedback and feed-forward
control interactions. It is observed from the simulation
results on the test bed that the SDF-based FDI algo-
rithms successfully detect the small anomalies and
correctly isolate the affected component(s) for both
single-component and multiple-component faults.

Analytically derived variables can be used for FDI
if appropriate sensor data are not available. In this
context, several different scenarios with arbitrarily
chosen multiple faulty components were investigated
and compared. Tables 3 and 4 summarize the results
for detection and isolation for these scenarios, with
1 percent reduction of the health parameters for each
faulty component, based on the time series analy-
sis of one sensor variable, namely, temperature and
one analytically derived variable, namely enthalpy,
respectively. The anomaly measure vector μ (see
section 3 in the first part [8]) was obtained by analysing
the time series data of individual components. The
results in Tables 3 and 4 are presented in a matrix
format, where a horizontal row demonstrates the
anomaly measure μ for all components for a partic-
ular multiple-component fault scenario and a vertical
column provides the value μi for a particular compo-
nent in different multiple-component fault scenarios.

It is seen that the faulty components exhibit sig-
nificantly higher values of anomaly measure, which
are indicated by bold scripts in Tables 3 and Table 4.
For example, the second row in Table 3 indicates that

JAERO312 © IMechE 2008 Proc. IMechE Vol. 222 Part G: J. Aerospace Engineering



326 S Sarkar, M Yasar, S Gupta, A Ray, and K Mukherjee

Table 4 Multiple component fault detection and isolation results using enthalpy data

Anomaly measure vector, μ

Faulty components μfan μbooster μHPC μcombustor μHPT μLPT

All components healthy 0.0362 0.0506 0.0409 0.0339 0.0456 0.0332
Fan, booster and LPT 0.3485 0.2384 0.0451 0.0491 0.0378 0.315
Fan and HPT 0.3495 0.0473 0.0548 0.0408 0.3452 0.0454
HPT and LPT 0.031 0.0462 0.0484 0.0339 0.346 0.3158
Fan, booster, HPC, combustor and HPT 0.3496 0.2652 0.3758 0.2905 0.3458 0.0387
Booster, HPC and combustor 0.0457 0.2444 0.3759 0.2901 0.0353 0.0404

Fig. 6 Detection and isolation of non-identical faults in multiple components: (a) faulty HPC, HPT;
(b) faulty booster, HPT, LPT; (c) faulty fan, HPC, LPT

fan, booster and LPT are simultaneously faulty, and
the anomaly measure for each of these components
shows a significant deviation from the nominal value
and hence they are isolated as faulty.

It follows from the results presented in Tables 3 and
Table 4 that analysis of either the temperature sen-
sor data or the analytically derived enthalpy data can
be successfully used for early detection and isolation
of faults in multiple components. The rationale for
having similar results is that enthalpy is a very strong
function of temperature for gases at high temperature.

4.2.2 Non-identical level of faults in multiple
components

To construct this scenario, non-identical faults are
simultaneously injected into multiple components by
either 1 percent or 2 percent reduction of the health
parameters, ψ and ζ , for each faulty component. The
results were generated by analysing exit temperature
data from the six components. The three plates in
Fig. 6 exhibit three cases of randomly chosen faulty
components:

(a) HPC (ψ = 0.98 and ζ = 0.98) and HPT (ψ = 0.99
and ζ = 0.99);

(b) booster (ψ = 0.99 and ζ = 0.99), HPT (ψ = 0.99
and ζ = 0.99), and LPT (ψ = 0.98 and ζ = 0.98);

(c) fan (ψ = 0.99 and ζ = 0.99), HPC (ψ = 0.98 and
ζ = 0.98), and LPT (ψ = 0.98 and ζ = 0.98).

The bar charts in Fig. 6 show that larger faults do not
mask the smaller faults while there is no false indi-
cation of faults in the healthy components. It is to
be noted that the anomaly measure shown in the bar
charts in each of Figs 4 to 6 is a relative measure with
respect to the corresponding component’s reference
condition and it does not represent anomalies at the
absolute level. Therefore, the fault parameters cannot
be directly estimated from these bar charts because
of strong interactions among different components.
This is an area of current investigation and would be
reported in future publications.

5 SUMMARY, CONCLUSIONS, AND FUTURE
WORK

This section summarizes both parts of the two-part
paper with pertinent conclusions on efficacy of the
proposed method for FDI in aircraft gas turbine
engines. Areas of future research are also recom-
mended to overcome the limitations of the proposed
FDI method.

5.1 Summary of the two-part paper

This two-part paper addresses the issues of FDI for
degradation monitoring of gas turbine engines in
aircraft propulsion systems. It formulates a novel
methodology for early detection of slowly evolving
anomalies (i.e. deviations from the nominal behaviour)
as well as abrupt faults in individual components. The
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FDI algorithms are based on analysis of time series
data observed from the instrumentation in engine
components. The underlying concept is built upon
SDF that has been recently reported in references [9]
and [10] and is based on the principles of symbolic
dynamics, statistical pattern recognition, and infor-
mation theory. The FDI algorithms have been coded
and validated for detection and isolation of incipient
faults on a simulation test bed that incorporates a real-
time model of a generic two-spool turbofan engine.

5.2 Pertinent conclusions

Experiments on the simulation test bed indicate that
the proposed FDI method is capable of detecting and
isolating incipient faults in one or more components
of a gas turbine engine; in essence, the FDI method
meets the challenge of identifying, at a very early stage,
small anomalies that may eventually affect the perfor-
mance of individual component(s) and (possibly) the
entire engine. The existing instrumentation in a gas
turbine engine are adequate for execution of the pro-
posed FDI method except for a few cases which have
been described earlier (e.g. possible unavailability of
the sensors P4 and T4).

The software code of the FDI algorithm is executable
in real time on commercially available computational
platforms (e.g. PCs and laptops). Therefore, it is con-
cluded that the FDI algorithm has the potential for
assessment of individual component health status in
an engine system, based on the filtered information
derived from time series data of available sensors and
analytically derived variables in the engine compo-
nents. However, the FDI method must be validated
on a commercial-scale engine before its incorporation
within the testing and maintenance system software
of gas turbine engines.

5.3 Recommendations for future research

Although the theory of the proposed FDI method
is built upon rigorous principles, its software imple-
mentation requires application-specific relationships
such as selection of the partitioning alphabet size [9]
and wavelet basis functions and scale range [10].
A critical assumption, (that is trivially valid) in the
simulation test runs, is availability of the engine com-
ponent models under different input excitation. Such
models may not be available for the necessary input
conditions in an operating engine. To address the
unresolved issues, future research is recommended in
the following areas.

1. Theoretical research for enhancement of SDF,
especially, on space partitioning: Fusion of multi-
ple heterogeneous information from sensors and

analytically derived variables into a single sym-
bol sequence will facilitate real-time detection,
isolation and estimation of pervasive faults.

2. System identification of engine component models
under both normal and off-normal input exci-
tations: This research involves development of
new FDI tools that are not strongly dependent
on the information of physics-based model(s) of
engine gas path operations. For example, the ref-
erence behaviour of nominal engine components
could be identified based on time series data of
appropriate sensors and actuators [18]. As such
data-driven nominal models of engine components
could be obtained using black-box system identifi-
cation such as statistical pattern recognition [19]
and/or artificial neural networks techniques
[20, 21].

3. Fault estimation: Quantitative evaluation of incip-
ient faults in gas turbine engine components will
facilitate health monitoring and preventive main-
tenance of the aircraft propulsion system.

4. Validation of the FDI algorithm on the test bed of
an operating engine: This experimental research is
an extension of what have been done on the engine
simulation test bed. The results of this research will
provide a proof of concept for detection and isola-
tion of faults in gas turbine engines as needed for
integrated vehicle health management (IVHM) and
integrated resilient aircraft control (IRAC).

ACKNOWLEDGEMENTS

This work has been supported in part by NASA under
Cooperative Agreement no. NNX07AK49A and by the
US Army Research Laboratory and the US Army
Research Office under grant no. W911NF-07-1-0376.

REFERENCES

1 Razak, A. M. Y. and Carlyle, J. S. An advanced model
based health monitoring system to reduce gas tur-
bine ownership cost. ASME Turbo Expo 2000, Munich,
Germany, 2000, paper no. ASME-2000-GT-627.

2 Volponi, A. J., DePold, H., Ganguli, R., and Chen, D. The
use of Kalman filter and neural network methodologies
in gas turbine performance diagnostics: a comparative
study. ASME Turbo Expo 2000, Munich, Germany, 2000,
paper no. ASME-2000-GT-547.

3 Moller, J. C., Litt, J. S., and Guo, T. H. Neural network-
based sensor validation for turboshaft engines. In 34th
Joint Propulsion Conference cosponsored by AIAA,
ASME, SAE, and ASEE, Cleveland, OH, USA, 1998, paper
no. AIAA-98-3547.

4 Gupta, S., Ray, A., and Keller, E. Symbolic time series
analysis of ultrasonic data for early detection of fatigue
damage. Mech. Syst. Signal Process., 2007, 21(2), 866–884.

JAERO312 © IMechE 2008 Proc. IMechE Vol. 222 Part G: J. Aerospace Engineering



328 S Sarkar, M Yasar, S Gupta, A Ray, and K Mukherjee

5 Gupta, S. and Ray, A. Real-time fatigue life estimation
in mechanical systems. Meas. Sci. Technol., 2007, 18(7),
1947–1957.

6 Badii, R. and Politi, A. Complexity, hierarchical structures
and scaling in physics, 1997 (Cambridge University Press,
Cambridge, UK).

7 Simani, S., Fantuzzi, C., and Patton, R. Model-based
fault diagnosis in dynamical systems using identification
techniques, 2003 (Springer-Verlag, London, UK).

8 Gupta, S., Ray, A., Sarkar, S., and Yasar, M. Fault detec-
tion and isolation in aircraft gas turbine engines. Part 1.
Underlying concept. Proc. IMechE, Part G: J. Aerospace
Engineering, 2008, 222(G3), 307–318 (this issue).

9 Ray, A. Symbolic dynamic analysis of complex sys-
tems for anomaly detection. Signal Process., 2004, 84(7),
1115–1130.

10 Rajagopalan, V. and Ray, A. Symbolic time series analy-
sis via wavelet-based partitioning. Signal Process., 2006,
86(11), 3309–3320.

11 Diao,Y. and Passino, K. M. Stable fault-tolerant adaptive
fuzzy/neural control of a turbofan engine. IEEE Trans.
Control Syst. Technol., 2001, 9(3), 494–509.

12 Parker, K. I. and Guo, T. H. Development of a turbo-
fan engine simulation in a graphical simulation envi-
ronment. In JANNAF Aero-Propulsion Subcommittee
Meeting, Destin, FL, USA, 2002.

13 Adibhatla, S. and Johnson, K. L. Evaluation of nonlinear
PSC algorithm on a variable cycle engine. In Proceed-
ings of the AIAA 29th Joint Propulsion Conference and
Exhibit, Monterey, CA, USA, 1993.

14 Kobayashi, T. and Simon, D. L. A hybrid neural
network-genetic algorithm technique for aircraft engine
performance diagnostics. In 37th Joint Propulsion Con-
ference and Exhibit cosponsored by the AIAA, ASME,
SAE, and ASEE, Salt Lake City, Utah, 2001, paper no. AIAA
2001-3763.

15 Tanenbaum, A. S. Computer networks, 4th edition, 2003
(Prentice Hall PTR, Upper Saddle River, NJ, USA).

16 Rajagopalan, V., Chakraborty, S. and Ray, A. Estimation
of slowly-varying parameters in nonlinear systems via
symbolic dynamic filtering. Signal Process., 2008, 88(2),
339–348.

17 Mallat, S. A wavelet tour of signal processing, 2nd edition,
1998 (Academic Press, Boston, MA, USA).

18 Mushini, R. and Simon, D. On optimization of sensor
selection for aircraft gas turbine engines. In Proceed-
ings of the 18th International Conference on Systems
Engineering (ICSENG ’05), Las Vegas, ND, USA, 2005.

19 Duda, R. O., Hart, P. E., and Stork, D. G. Pattern
classification, 2001 (John Wiley, New York, USA).

20 Bishop, C. M. Neural networks for pattern recognition,
1995 (Oxford University Press, New York, NY, USA).

21 Hagan, M. T., Demuth, H. B., and Beale, M. H.
Neural network design, 1996 (PWS Publishing, Boston,
MA, USA).

APPENDIX 1

Notation

a altitude
A cross-sectional area

cp specific heat at constant pressure
cv specific heat at constant volume
CPR compressor pressure ratio
f /a fuel–air ratio
F thrust
h specific enthalpy
J mechanical equivalent of heat
k stall constant
M Mach number
N rotational spool speed
NPR nozzle pressure ratio
P total pressure
PW power
Q fuel heating value
R gas constant
SM stall margin
STP stator vane angle
T absolute temperature
TPR turbine pressure ratio
V velocity
w mass flow rate
W work

γ ratio of specific heats
ζ flow health parameter
η efficiency of a component
θ normalized ambient (absolute)

temperature
μ anomaly measure
ψ efficiency health parameter

Subscripts
a air
amb ambient
B booster
C combustor
f fuel
F fan
G gross
H high-pressure spool
L low-pressure spool
N net
ram ram
s static
1 engine inlet
2 fan inlet
3 high-pressure compressor exit
4 combustor exit
5 low-pressure turbine exit
7 afterburner exit
8 nozzle exit
16 bypass duct exit
21 fan exit
27d booster exit
45 high-pressure turbine exit
56 mixer exit
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APPENDIX 2

Governing equations of the engine model

This appendix succinctly derives the governing equa-
tions of the simulation model of a generic two-
spool, low-bypass turbofan engine [12] as described in
section 2. Performance maps have been used exten-
sively in the simulator to provide steady-state repre-
sentations of the engine’s rotating components. Fluid
momentum in the bypass duct and the augmentor,
mass and energy storage within control volumes, and
rotor inertias are also included to provide transient
capability. For completeness of the paper, the perti-
nent model equations of the major components of the
engine system are provided below in simplified forms.

Flight and conditions inlet

Gas turbine engines have an inlet for free stream
air flowing into the engine. The following equations
define the flight conditions and inlet model

Pamb = f1(a)

Tamb = f2(a)

where f1 and f2 are curve-fitted functions that are
generated from atmospheric data. The equations for
pressure, temperature, and enthalpy at the fan inlet
are given by

P2 = Pambφ(M )

[
1.0 + (γ1 − 1)M 2

2

]γ1/(γ1−1)

T2 = Tamb

[
1.0 + (γ1 − 1)M 2

2

]
h2 = cpT2

where

φ = 1.0 if M � 1.0

= 1.0 − 0.075(M − 1.0)1.35 if M > 1.0

γ1 = 1.4

Fan

Fan performance is represented by a set of perfor-
mance maps. Separate maps are used for the tip and
hub sections of the fan. These maps are assumed
to represent fan performance with variable geometry
at nominal and scheduled positions. Map-generated,
fan-corrected airflow is adjusted to account for off-
schedule geometry effects. The following equations

describe the fan model

P21 = P2 f3

(
P2

Pamb
,
√

θ2, NL

)
h21 = h2 + 5.858 × 10−5 T2 f4(ψF, ζF)

T21 = f5(h21)

ηF = h21 − h2

h21

w21 = f6

(√
θ2,

P21

Pamb
, NL

)
PWF = (h21 − h2)w21

SMF =
(

k2
w21

P21/Pamb
− 1

)
× 100

where f3, f4, f5, and f6 are the performance maps of
the fan, which are provided in tabular formats in the
engine simulation program; and k2 is the fan stall line
parameter due to distortion.

Booster and high-pressure compressor

Modern large turbofan engines usually have axial
compressors. Performance maps are used for the com-
pressor with a shift in the corrected airflow based on
off-schedule values of variable-geometry position. The
following equations describe the booster model and
the high pressure compressor model

h27d = 5.858 × 10−5 · f7(ψB, ζB)

ηB = h27d − h21

h27d

w27d = f8

(√
θ27d ,

P27d

Pamb
, NH

)
PWB = (h27d − h21)w27d

SMB =
(

k27d
w27d

(P27d/Pamb)
− 1

)
× 100

where f7 and f8 are performance maps of the booster,
which are provided in tabular formats in the engine
simulation program; and k27d is the booster stall line
parameter due to distortion.

h3 = 5.858 × 10−5f9(ψHPC, ζHPC)

CPR =
(

h3

0.23995
+ 1

)γ21/(γ21−1)

P3 = P21CPR

T3

T21
=

(
P3

P21

)(γ21−1)/γ21

ηHPC = h3 − h21

h3
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w3 = f10

(√
θ3,

P3

Pamb
, NH

)
PWHPC = (h3 − h21)w3

WHPC = cpT21

η3

[
CPR(γ21−1)/γ21 − 1

]
SMHPC =

(
k3

w3

(P3/Pamb)
− 1

)
× 100

where f9 and f10 are performance maps of the high
pressure compressor, which are provided in tabular
formats in the engine simulation program; and k3 is
the compressor stall line parameter due to distortion.

Combustor

Total pressure losses are included in the models of
main combustor, bypass duct, mixer entrance, and
augmentor. Heat generation associated with the burn-
ing of fuel in the main combustor is assumed to take
place at a constant combustor volume

P4 = P3 − 7.57 × 10−4w2
3

T3

P3

h4 = h3 + ( f /a)4ηCQ[
1 + ( f /a)4

]
T4 = h4

cp

The combustor health parameter (ψC) is a scaling
factor for combustor efficiency ηC.

Power turbines

In the two-spool turbofan engine, high-pressure and
low-pressure turbines produce engine thrust and also
drive the compressor and the fan, respectively. Perfor-
mance of the high-pressure and low-pressure turbines
is represented by performance maps. Cooling bleed
for each turbine is assumed to re-enter the cycle at the
turbine discharge although a portion of each bleed is
assumed to contributed to the power generated by the
turbines

TPRHPT = P45

P4

T45

T4
=

(
P45

P4

)(γ4−1)/γ4

h45 = cpT45

ηHPT = f11(h45, h4, ψHPT)

w45 = f12

(
NH,

√
T45

P4
, ζHPT

)
WHPT = h45 − h4 = cp(T45 − T4)

PWHPT = (h45 − h4)w45

where f11 and f12 are performance maps of the high
pressure turbine, which are provided in tabular for-
mats in the engine simulation program

TPRLPT = P5

P45

T5

T45
=

(
P5

P45

)(γ45−1)/γ45

h5 = cpT5

ηLPT = f13(h5, h45, ψLPT)

w5 = f14

(
NL,

√
T5

P45
, ζLPT

)
WLPT = h5 − h45 = cp(T5 − T45)

PWLPT = (h5 − h45)w5

where f13 and f14 are performance maps of the low pres-
sure turbine, which are provided in tabular formats in
the engine simulation program.

Nozzle

The nozzle is located downstream of the power
turbines and does no work on the flow. A convergent–
divergent nozzle configuration is assumed. The follow-
ing equations describe the nozzle model

NPR = P8

Pamb

T8

Tamb
=

(
P8

Pamb

)(γ8−1)/γ8

h8 = h8s + V 2
8

2η8

V8 =
√√√√2η8cpT8

[
1 −

(
1

NPR

)(γ8−1)/γ8
]

FG = w8(1.0244 − 0.6067(f /a)6)V8

32.17

Fram = w2M 1.5238
√

Tamb

FN = FG − Fram
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