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Abstract: Degradation monitoring is of paramount importance to safety and reliability of air-
craft operations and also for timely maintenance of its critical components. This two-part paper
formulates and validates a novel methodology of degradation monitoring of aircraft gas tur-
bine engines with emphasis on detection and isolation of incipient faults. In a complex system
with multiple interconnected components (e.g. an aircraft engine), fault isolation becomes a
crucial task because of possible input–output and feedback interactions among the individual
components.

This paper, which is the first of two parts, presents the underlying concepts of fault detection
and isolation (FDI) in complex dynamical systems. The FDI algorithms are formulated in the
setting of symbolic dynamic filtering (SDF) that has been recently reported in literature. The
underlying concept of SDF is built upon the principles of symbolic dynamics, statistical pattern
recognition, and information theory. In addition to abrupt large faults, the SDF-based algorithms
are capable of detecting slowly evolving anomalies (i.e. deviations from the nominal behaviour)
based on analysis of time series data of critical process variables of different engine components.
The second part, which is a companion paper, validates the concept, laid out in the first part, on
the simulation test bed of a generic two-spool turbofan aircraft engine model for detection and
isolation of incipient faults.

Keywords: aircraft propulsion, gas turbine engines, fault detection and isolation, statistical
pattern recognition

1 INTRODUCTION

Performance and reliability of aircraft gas turbine
engines gradually deteriorate over the service life due
to degradation of the gas path components such
as fan, compressor, combustor, and turbines. Com-
mon causes of degradation of the gas path com-
ponents include compressor fouling, increase of
the blade-tip clearance in the turbine, labyrinth
seal leakage, wear and erosion, and corrosion in the
hot sections [1]. These physical faults gradually evolve
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over a prolonged period of operation and lead to
degradation of the performance parameters, such
as thermodynamic efficiency and flow capacity of
individual gas-path components. Performance degra-
dation, in turn, causes changes in the macroscopic
observable parameters, such as temperature, pressure,
rotational speed, and fuel flow rate. Thus, small faults
in the engine system can be detected by measuring
the changes in these observable parameters through
appropriate usage of signal processing and pattern
recognition tools [2, 3]. Along this line, time series data
analysis [4] of gradually evolving changes in perti-
nent gas path parameters provides one of the most
powerful tools for degradation monitoring of engine
components.

Current state-of-the-art degradation monitoring
of aircraft gas turbine engines provides several fault
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detection and isolation (FDI) tools that vary widely in
their complexity and applications and are primarily
built upon both model-based and sensor-based
analyses. A linear model-based method, called gas
path analysis (GPA), was introduced in 1967 by
Urban [5] and subsequently different modifications
of this method were proposed including usage of
Kalman filters, extended Kalman filters, and opti-
mal estimate-based methods [6–9]. To incorporate the
non-linearities involved in aircraft engine dynamics, a
non-linear model-based method combined with con-
ventional optimization methods was first introduced
in early 1990s by Stamatis et al. [10]. However, con-
ventional optimization methods have a possibility of
convergence to a local minimum; and this shortcom-
ing was addressed in genetic algorithms, first proposed
by Zedda and Singh [11]. Earlier Dietz et al. [12]
introduced the concept of neural networks for gas
turbine diagnostics, which has been widely used sub-
sequently [13]. Applications of expert systems for gas
turbine engine fault detection go back to 1980s and
include rule-based fuzzy systems by Fuster et al. [14]
and Siu et al. [15].

In a complex system consisting of multiple inter-
connected components (e.g. an aircraft gas turbine
engine), a single fault in one component may pro-
duce an anomalous output that might serve as the
input excitation to other healthy components, and
degrade their performance. Therefore, an anoma-
lous response of an engine component could be
due to two possible causes: (a) fault in the compo-
nent, and/or (b) faulty excitation from some other
component. In an extreme adverse scenario, grad-
ual evolution of small anomalies (i.e. deviations from
the nominal behaviour) in individual components
may lead to cascaded faults because of strong input–
output and feedback interconnections between the
engine components and may eventually cause catas-
trophic failures and forced shutdown of the entire
system.

The above discussion evinces the need for analytical
tools, based on time series analysis, to generate suffi-
ciently advanced warnings of emerging faults, which
is essential for degradation monitoring and prevention
of catastrophic failures in aircraft gas turbine engines.
Data-driven tools of statistical pattern recognition has
been reported for fault detection and estimation in
mechanical systems [16–18], which are potentially
capable of degradation monitoring in aircraft gas tur-
bine engines. Recently, anomaly detection algorithms
have been constructed in the setting of symbolic
dynamic filtering (SDF) [3, 19, 20] that belongs to the
class of data-driven statistical pattern recognition and
enables compression of information into pattern vec-
tors of low dimension. The concept of SDF is built
upon the principles of multiple disciplines including
Statistical Mechanics [21, 22], symbolic dynamics [23],

statistical pattern recognition [2], and information
theory [24].

SDF includes preprocessing of time series data
using the wavelet analysis [25], which is well suited
for time–frequency analysis of non-stationary sig-
nals and enables noise attenuation and reduction
of spurious disturbances from the raw time series
data without any significant loss of pertinent informa-
tion [19]. The wavelet-transformed data is partitioned
using the maximum entropy principle [19] to generate
the symbol sequences. Subsequently, statistical pat-
terns of evolving anomalies are identified from these
symbolic sequences through construction of a (prob-
abilistic) finite-state machine [3] that captures the
system behaviour by means of information compres-
sion. The state probability vectors, which are derived
from the respective state transition probability matri-
ces of the finite state machine under the nominal and
anomalous conditions, yield the statistical patterns of
the evolving anomalies.

SDF-based pattern recognition algorithms have
been experimentally validated for real-time execution
in different applications, such as electronic circuits [26]
and fatigue damage monitoring in polycrystalline
alloys [27, 17, 18]. It has been shown that SDF yields
superior performance in terms of early detection
of anomalies and robustness to measurement noise
by comparison with other existing techniques such
as principal component analysis (PCA) and artificial
neural networks (ANN) [26, 27].

The objective of this two-part paper is to develop
and validate a methodology for robust FDI in air-
craft gas turbine engines. The FDI algorithms are
based on analysis of time series data that can be
generated from pertinent sensors and/or analytically
derived model variables [28]. This paper, which is the
first of two parts, presents the underlying concept
of SDF for early detection and isolation of incipient
faults in multi-component gas turbine engines via
comparison of the current pattern and the nominal
pattern. The second part, which is a companion paper,
validates the above concept, on the simulation test
bed of a generic two-spool turbofan aircraft engine
model [29–31] for detection and isolation of incipient
faults.

The first part is organized in four sections includ-
ing the present one. Section 2 provides a brief review
of SDF. Section 3 presents the concept of FDI in
both single-component and multi-component sys-
tems. The first part is summarized in section 4.

2 REVIEW OF SDF

This section presents the underlying concepts and
salient features of SDF for anomaly detection in
complex dynamical systems. While the details are
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reported in previous publications [3, 19, 20] in a scat-
tered fashion, the essential concepts of space par-
titioning, symbol sequence generation, construction
of a finite-state machine from the generated symbol
sequence and pattern recognition are consolidated
here and succinctly described for self-sufficiency and
completeness of the paper.

2.1 Notion of two time scales for anomaly
detection

Degradation monitoring of complex systems (e.g. an
aircraft gas turbine engine) is formulated as a two-
time-scale problem. The fast time scale is related to
the response time of engine gas path dynamics. Over
the span of a given time series data sequence gener-
ated on a fast time scale, the dynamic behaviour of
the engine system is assumed to remain invariant,
i.e. the process is quasi-stationary on the fast time
scale. In other words, the variations in the behaviour
of engine gas path dynamics are assumed to be neg-
ligible over the span of a time series data sequence.
The slow time scale is related to the time span over
which the critical parameters of the engine operation
(e.g. thermodynamic efficiency of the compressor and
turbine blade-tip clearance) may change and exhibit
non-stationary dynamics. That is, the observable non-
stationary behaviour of engine gas path dynamics is
associated with anomalies evolving at the slow time
scale.

The concept of two time scales is illustrated in Fig. 1.
In general, a long time span in the fast time scale is
a tiny (i.e. several order of magnitude smaller) inter-
val in the slow time scale. For example, evolution of
anomalies in an engine, causing a detectable change
in the gas path dynamics, occurs on the slow time
scale in the order of hundreds of hours of operation;
in contrast, the gas path dynamics remain essentially
invariant on the fast time scale in the order of tens
of seconds. Nevertheless, the notion of fast and slow
time scales is dependent on the specific application,
loading conditions, and operating environment. From
the perspective of degradation monitoring, time series
data sets (e.g. compressor outlet gas temperature and
pressure, and electronic signals to the actuators) are
collected on the fast time scale at different slow time

Fig. 1 Pictorial view of the two time scales: (a) slow time
scale of anomaly evolution and (b) fast time scale
for data acquisition and signal conditioning

epochs separated by uniform or non-uniform intervals
on the slow time scale.

The following section presents the concept of sym-
bolic dynamics and encoding of time series data in the
fast scale.

2.2 Symbolic dynamics and encoding

This section briefly describes the concepts of symbolic
dynamics for:

(a) encoding nonlinear system dynamics from
observed time series data for generation of symbol
sequences;

(b) construction of a probabilistic finite state machine
(PFSM) from the symbol sequence for generation
of pattern vectors as representation of the engine’s
dynamical characteristics.

The continuously varying finite-dimensional model
of a dynamical system, such as an aircraft engine, is
usually formulated in the setting of an initial value
problem as

dx(t)
dt

= f (x(t), θ(ts)); x(0) = x0 (1)

where t ∈ [0, ∞) denotes the (fast-scale) time; x ∈ R
n

is the state vector in the phase space; and θ ∈ R
�

is the (possibly anomalous) parameter vector vary-
ing in (slow-scale) time ts. The gradual change in the
parameter vector θ ∈ R

� due to possible evolution of
anomalies on the slow time scale can alter the system
dynamics and hence change the state trajectory.

Let � ⊂ R
n be a compact (i.e. closed and bounded)

region, within which the trajectory of the dynamical
system, governed by equation (1), is circumscribed
as illustrated in Fig. 2. The region � is partitioned
as {�0, . . . , �|�|} consisting of |�| mutually exclu-
sive (i.e. �j ∩ �k = ∅ ∀j 	= k), and exhaustive (i.e.⋃|�|

j=0 �j = �) cells, where � is the symbol alphabet that

Fig. 2 Concept of symbolic dynamic filtering
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labels the partition cells. A trajectory of the dynamical
system is described by the discrete time series data as:
{x0, x1, x2, . . .}, where each xi ∈ �. The trajectory passes
through or touches one of the cells of the partition;
accordingly the corresponding symbol is assigned to
each point xi of the trajectory as defined by the map-
ping M : � → �. Therefore, a sequence of symbols is
generated from the trajectory starting from an initial
state x0 ∈ �, such that

x0 −→ s0s1s2 . . . sj . . . (2)

where sk � M(xk) is the symbol generated at the
(fast scale) instant k. The symbols sk , k = 0, 1, . . . are
identified by an index set I : Z → {0, 1, 2, . . . |�| − 1},
i.e. I(k) = ik and sk = σik

where σik
∈ �. Equivalently,

equation (2) is expressed as

x0 −→ σi0σi1σi2 . . . σij . . . (3)

The mapping in equations (2) and (3) is called sym-
bolic dynamics as it attributes a legal (i.e. physically
admissible) symbol sequence to the system dynam-
ics starting from an initial state. The partition is called
a generating partition of the phase space � if every
legal (i.e. physically admissible) symbol sequence
uniquely determines a specific initial condition x0. In
other words, every (semi-infinite) symbol sequence
uniquely identifies one continuous space orbit [32].

Symbolic dynamics may also be viewed as coarse
graining of the phase space, which is subjected to
(possible) loss of information resulting from granu-
lar imprecision of partitioning boxes. However, the
essential robust features (e.g. periodicity and chaotic
behaviour of an orbit) are expected to be preserved
in the symbol sequences through an appropriate
partitioning of the phase space [33].

Figure 2 pictorially elucidates the concepts of par-
titioning a finite region of the phase space and the
mapping from the partitioned space into the symbol
alphabet, where the symbols are indicated by Greek
letters (e.g. α, β, γ , δ, . . .). This represents a spatial
and temporal discretizations of the system dynam-
ics defined by the trajectories. Figure 2 also shows
conversion of the symbol sequence into a finite-state
machine and generation of the state probability vec-
tors at the current and the reference conditions. The
states of the finite state machine and the histograms in
Fig. 2 are indicated by numerics (i.e. 0, 1, 2, and 3); the
necessary details are provided in section 2.4. Although
the theory of phase-space partitioning is well devel-
oped for one-dimensional mappings [32], very few
results are known for two and higher dimensional sys-
tems. Furthermore, the state trajectory of the system
variables may be unknown in case of systems for which
a model as in equation (1) is not known or is difficult
to obtain. As such, as an alternative, the time series

data set of selected observable outputs can be used for
symbolic dynamic encoding (see following section 2.3
for further details). In general, the time series data can
be generated from the available sensors and/or from
analytically derived model variables [28].

2.3 Wavelet space partitioning

As described earlier, a crucial step in SDF is partition-
ing of the phase space for symbol sequence genera-
tion [34]. Several partitioning techniques have been
reported in literature for symbol generation [4, 35],
primarily based on symbolic false nearest neigh-
bours (SFNN). These techniques rely on partitioning
the phase space and may become cumbersome and
extremely computation-intensive if the dimension of
the phase space is large. Moreover, if the time series
data is noise-corrupted, then the symbolic false neigh-
bours would rapidly grow in number and require a
large symbol alphabet to capture the pertinent infor-
mation on the system dynamics. Therefore, symbolic
sequences as representations of the system dynamics
should be generated by alternative methods because
phase-space partitioning might prove to be a diffi-
cult task in the case of high dimensions and presence
of noise. The wavelet transform [25] largely allevi-
ates these shortcomings and is particularly effective
with noisy data from high-dimensional dynamical
systems [19]. As such, this paper has used a wavelet-
based partitioning approach [3,19] for construction of
symbol sequences from time series data.

In wavelet-based partitioning approach, time series
data are first converted to wavelet domain, where
wavelet coefficients are generated at different time
shifts. The choice of the wavelet basis function and
wavelet scales depends on the time–frequency char-
acteristics of individual signals. Guidelines for selec-
tion of basis functions and scales are reported in
literature [19].

The wavelet space is partitioned with alphabet size
|�| into segments of coefficients on the ordinate sepa-
rated by horizontal lines. The choice of |�| depends on
specific experiments, noise level and also the available
computation power. A large alphabet may be noise-
sensitive while a small alphabet could miss the details
of signal dynamics [19]. The partitioning is done such
that the regions with more information are partitioned
finer and those with sparse information are parti-
tioned coarser. This is achieved by maximizing the
Shannon entropy [24], which is defined as

S = −
|�|−1∑

i=0

pi log(pi) (4)

where pi is the probability of a data point to be
in the ith partition segment. Uniform probability
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Fig. 3 An example of maximum entropy partitioning

distribution, i.e. pi = 1/|�| for i = 1, 2, . . . , |�|, is a
consequence of maximum entropy partitioning [19].
In the illustrative example of Fig. 3, the partitioning
contains 10 cells (i.e. line intervals in this case), where
the size of the cells is smaller for regions with higher
density of data points to ensure an unbiased partition
such that each cell is allocated equal number of visits
at the nominal condition.

Each partition segment is labelled by a symbol
from the alphabet � and accordingly the symbol
sequence is generated from the wavelet coefficients.
The structure of the partition is fixed at the nomi-
nal condition, which serves as the reference frame for
symbol sequence generation from time series data at
anomalous condition(s).

2.4 PFSM and pattern recognition

Once the symbol sequence is obtained, the next step
is the construction of a PFSM and calculation of the
respective state probability vector as depicted in the
lower part of Fig. 2 by the histograms. The partitioning
(see Fig. 3) is performed at the slow time epoch t0, i.e.
the nominal condition that is chosen to be the healthy
state having no anomalies.

A PFSM is then constructed at the nominal con-
dition, where the states of the machine are defined
corresponding to a given alphabet set � and window
length D. The alphabet size |�| is the total number of
partition segments while the window length D is the
length of consecutive symbol words [3], which are cho-
sen as all possible words of length D from the symbol
sequence. Each state belongs to an equivalence class
of symbol words of length D, which is characterized
by a word of length D at the leading edge. Therefore,
the number n of such equivalence classes (i.e. states)
is less than or equal to the total permutations of the
alphabet symbols within words of length D. That is,
n � |�|D; some of the states may be forbidden, i.e.
these states have zero probability of occurrence. For
example, if � = {α, β}, i.e. |�| = 2 and if D = 2, then

Fig. 4 Example of finite state machine with D = 2 and
� = {α, β}

the number of states is n � |�|D = 4; and the possible
states are words of length D = 2, i.e. αα, αβ, βα, and
ββ, as shown in Fig. 4.

The choice of |�| and D depends on specific appli-
cations and the noise level in the time series data
as well as on the available computation power and
memory availability. As stated earlier, a large alpha-
bet may be noise-sensitive and a small alphabet could
miss the details of signal dynamics. Similarly, while a
larger value of D is more sensitive to signal distortion,
it would create a much larger number of states requir-
ing more computation power and increased length of
the data sets. In the second part [36] of this two-part
paper, the analysis of time series data sets is done using
the window length equal to D = 1; consequently, the
set of states Q is equivalent to the symbol alphabet
�. With the selection of the parameters D = 1 and
|�| = 8, the PFSM has n = 8 states. With this choice
of parameters, the SDF algorithm is shown to be capa-
ble of early detection of anomalies and incipient faults
in the gas turbine engine simulation [36]. However,
other applications such as two-dimensional image
processing, may require larger values of the param-
eter D and hence possibly larger number of states in
the PFSM.

Using the symbol sequence generated from the time
series data, the state machine is constructed on the
principle of sliding block codes [23]. The window of
length D on a symbol sequence is shifted to the right
by one symbol, such that it retains the most recent
(D − 1) symbols of the previous state and appends it
with the new symbol at the extreme right. The sym-
bolic permutation in the current window gives rise
to a new state. The PFSM constructed in this fash-
ion is called the D-Markov machine [3], because of
its Markov properties.

Definition 1

A symbolic stationary process is called D-Markov if the
probability of the next symbol depends only on the
previous D symbols, i.e. P

(
sj|sj−1 . . . sj−Dsj−D−1 . . .

) =
P

(
sj|sj−1 . . . sj−D

)
.

The finite state machine constructed above has
D-Markov properties because the probability of
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occurrence of symbol σ ∈ � on a particular state
depends only on the configuration of that state, i.e.
the previous D symbols. The states of the machine are
marked with the corresponding symbolic word per-
mutation and the edges joining the states indicate the
occurrence of a symbol σ . The occurrence of a symbol
at a state may keep the machine in the same state or
move it to a new state.

Definition 2

Let � be the set of all states of the finite state machine.
Then, the probability of occurrence of symbols that
cause a transition from state ξj to state ξk under the
mapping δ: � × � → � is defined as

πjk = P
(
σ ∈ � | δ(ξj , σ) → ξk

)
;

∑
k

πjk = 1 (5)

Thus, for a D-Markov machine, the irreducible
stochastic matrix � ≡ [

πij

]
describes all transition

probabilities between states such that it has at most
|�|D+1 nonzero entries. The definition above is equiv-
alent to an alternative representation such that

πjk ≡ P(ξk|ξj) = P(ξj , ξk)

P(ξj)
= P(σi0 · · · σiD−1σiD )

P(σi0 · · · σiD−1)
(6)

where the corresponding states are denoted by ξj ≡
σi0 · · · σiD−1 and ξk ≡ σi1 · · · σiD . This phenomenon is
a consequence of the PFSM construction based on
the principle of sliding block codes described above,
where the occurrence of a new symbol causes a
transition to another state or possibly the same
state.

For computation of the state transition probabil-
ities from a given symbol sequence at a particular
slow time epoch, a window of length D is moved by
counting occurrences of symbol blocks σi0 · · · σiD−1σiD

and σi0 · · · σiD−1 , which are respectively denoted by
N (σi0 · · · σiD−1σiD ) and N (σi0 · · · σiD−1). Note that if
N (σi0 · · · σiD−1) = 0, then the state σi0 · · · σiD−1 ∈ � has
zero probability of occurrence. For N (σi0 · · · σiD−1) 	= 0,
the estimates of the transitions probabilities are then
obtained by these frequency counts as follows

πjk ≈
N (σi0 · · · σiD−1σiD )

N (σi0 · · · σiD−1)
(7)

where the criterion for convergence of the estimated
πjk , is given in the following section 2.5 as a stopping
rule for frequency counting.

The symbol sequence generated from the time series
data at the reference condition, set as a benchmark, is
used to compute the state transition matrix � using
equation (7). The left eigenvector q corresponding to
the unique unit eigenvalue of the irreducible stochas-
tic matrix � is the probability vector whose elements

are the stationary probabilities of the states belong-
ing to � [3]. Similarly, the state probability vector p is
obtained from time series data at a (possibly) faulty
condition. The partitioning of time series data and the
state machine structure should be the same in both
cases but the respective state transition matrices could
be different. The probability vectors p and q are esti-
mates of the respective true probability vectors and
are treated as statistical patterns. The terms probabil-
ity vector and pattern vector are used interchangeably
in the sequel.

Pattern changes may take place in dynamical
systems due to accumulation of faults and progres-
sion of anomalies. The pattern changes are quan-
tified as deviations from the reference pattern (i.e.
the probability distribution at the reference con-
dition). The resulting anomalies (i.e. deviations of
the evolving patterns from the reference pattern)
are characterized by a scalar-valued function, called
anomaly measure μ. The anomaly measures are
obtained as

μ ≡ d
(
p, q

)
(8)

where the d(•, •) is an appropriately defined distance
function.

2.5 Stopping rule for symbol sequence generation

This section presents a stopping rule that is neces-
sary to find a lower bound on the length of symbol
sequence required for parameter identification of the
stochastic matrix �. The stopping rule [20, 37, 38]
is based on the properties of irreducible stochastic
matrices [39]. The state transition matrix, constructed
at the rth iteration (i.e. from a symbol sequence
of length r), is denoted as �(r) that is an n × n
irreducible stochastic matrix under stationary con-
ditions. Similarly, the state probability vector p(r) ≡
[p1(r) p2(r) · · · pn(r)] is obtained as

pi(r) = ri∑n
j=1 rj

(9)

where ri is the number of symbols in the ith state
such that

∑n
j=1 ri=r . The stopping rule makes use of the

Perron–Frobenius Theorem [39] to establish a relation
between the vector p(r) and the matrix �(r). Since the
matrix �(r) is stochastic and irreducible, there exists
a unique eigenvalue λ = 1 and the corresponding left
eigenvector p(r) (normalized to unity in the sense of
absolute sum). The left eigenvector p(r) represents
the state probability vector, provided that the matrix
parameters have converged after a sufficiently large
number of iterations. That is, under the hypothetical
arbitrarily long sequences, the following condition is
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assumed to hold

p(r + 1) = p(r)�(r) ⇒ p(r) = p(r)�(r) as r → ∞
(10)

Following equation (9), the absolute error between
successive iterations is obtained such that

‖(p(r) − p(r + 1))‖∞ = ‖p(r)(I − �(r))‖∞ � 1
r

(11)

where ‖ • ‖∞ is the maximum norm of the finite-
dimensional vector •.

To calculate the stopping point rstop, a tolerance of η,
(0 < η � 1) is specified for the relative error such that:

‖(p(r) − p(r + 1))‖∞
‖(p(r))‖∞

� η ∀ r � rstop (12)

The objective is to obtain the least conservative esti-
mate for rstop such that the dominant elements of the
probability vector have smaller relative errors than
the remaining elements. Since the minimum possi-
ble value of ‖(p(r))‖∞ for all r is 1/n, where n is the
dimension of p(r), the least of most conservative val-
ues of the stopping point is obtained from equations.
(11) and (12) as

rstop ≡ int
(

n
η

)
(13)

where int(•) is the integer part of the real number •.

2.6 Summary of SDF-based pattern recognition

The SDF method of statistical pattern recognition for
anomaly detection is summarized below.

1. Acquisition of time series data from appropriate
sensor(s) and/or analytically derived model vari-
ables at a reference condition, when the system is
assumed to be in the healthy state (i.e. zero anomaly
measure).

2. Generation of the wavelet transform coefficients,
obtained with an appropriate choice of the wavelet
basis and scale [19].

3. Maximum entropy partitioning in the wavelet
domain at the nominal condition (see section 2.3)
and generation of the corresponding symbol
sequence.

4. Construction of the D-Markov machine and com-
putation of the state probability vector q at the
reference condition.

5. Generation of a time series data sequence at
another (possibly) faulty condition and conversion
to the wavelet domain to generate the respec-
tive symbolic sequence based on the partitioning
constructed at the reference condition.

6. Computation of the corresponding state prob-
ability vector p using the finite state machine
constructed at the reference condition.

7. Computation of scalar anomaly measure μ (see
equation (8)).

Capability of SDF has been demonstrated for
anomaly detection at early stages of gradually evolving
faults by real-time experimental validation. Applica-
tion examples include active electronic circuits [26]
and fatigue damage monitoring in polycrystalline
alloys [17, 18, 27]. It has been shown that SDF yields
superior performance in terms of early detection of
anomalies and robustness to measurement noise by
comparison with other existing techniques such as
PCA and ANN [26, 27]. In this regard, major advan-
tages of SDF for small anomaly detection are listed
below:

(a) robustness to measurement noise and spurious
signals [19];

(b) adaptability to low-resolution sensing due to the
coarse graining in space partitions [3];

(c) capability for early detection of anomalies because
of sensitivity to signal distortion [27];

(d) real-time execution on commercially available
inexpensive platforms [26, 27].

3 FAULT DETECTION AND ISOLATION (FDI)

This section presents the details of SDF-based FDI for
degradation monitoring in multiple-component com-
plex systems with various input–output and feedback
interconnections. The aircraft gas turbine engine is
one such system, as defined above, that is composed of
different interconnected components (e.g. fan, com-
pressor, combustor, high-pressure and low-pressure
turbines, nozzle, and afterburner) and the engine con-
trol system. The interconnections among different
components of an engine system include many ther-
modynamic, mechanical and electronic links that are
arranged in the form of a complex input–output and
feedback structure [36]. As described earlier, a single
fault in one component may produce an anomalous
output that might serve as the input excitation to
some other healthy component(s), leading to possi-
ble loss of performance and other detrimental effects.
For example, a healthy component (e.g. high pressure
turbine) may function poorly and yield anomalous
outputs if it receives incorrect inputs from its prede-
cessor (e.g. the combustor). On the other hand, the
combustor might be receiving faulty inputs from the
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compressor and consequently the other components
of the engine system may also malfunction. Similarly,
electronic hardware and software faults in the con-
trol and instrumentation system could lead to engine
malfunction. In essence, an anomalous response of an
engine component could be due to one or both of the
following causes:

(a) faulty component;
(b) anomalous excitation(s) from some other compo-

nent(s).

Therefore, in an extreme adverse scenario, gradual
evolution of faults in individual components may lead
to cascaded failure(s) because of strong interconnec-
tions between the engine components, which could
eventually cause forced shutdown of the entire system.

In addition to major component faults that may lead
to catastrophic failures in aircraft engines, a syner-
gistic combination of a number of small faults may
become highly detrimental due to amplification of
anomalous responses and because of strong intercon-
nections among the critical components of the engine.
From the perspective of degradation monitoring of
the engine system, it is important to analyse the local
behaviour of its components with the capability of
detection and isolation of incipient faults. Accordingly,
degradation monitoring of all pertinent components
must be conducted simultaneously to arrive at mean-
ingful conclusions on the health status of the engine
system.

The procedure for FDI in aircraft gas turbine engines
includes integrated dynamic process models of engine
components [30] and is constructed in the setting
of SDF for pattern recognition and anomaly detec-
tion (see section 2). The engine component models
are augmented with SDF-based FDI algorithms for
real-time execution on inexpensive and commercially
available computational platforms. Time series data,
generated from available sensors and/or analytically
derived model variables for each component, are fed
to the FDI algorithms for extraction of the relevant
information on the nature and location of faults.
Details of implementation on an engine simulation
test bed are reported in the second part [36] of this
paper.

Detection and isolation of both abrupt and gradually
evolving faults are crucial for safe and reliable opera-
tion of complex systems with multiple interconnected
components. Fault detection algorithms involve iden-
tification of off-nominal behavioural patterns that are
different from the nominal pattern (i.e. the pattern
under healthy conditions). Furthermore, it is neces-
sary to reduce the probability of false alarms due to
noise and disturbances as well as possible operational
errors. Fault detection normally requires analysis of
the data from available sensors and/or analytically

derived model variables of the system, which are sen-
sitive to small changes. Fault detection algorithms
include signal processing tools for noise reduction and
improved performance, and are also supported by the
information generated from regular inspection and
maintenance scheduling.

Fault isolation is the next critical issue in multi-
component complex systems, which involves iden-
tification of the malfunctioning component(s). It is
essential to identify the sources of the faults by detect-
ing and isolating the genuinely malfunctioning com-
ponents. This requires analysis of time series data
of local sensors and/or analytically derived model
variables of individual components.

The FDI algorithms are constructed in the setting
of SDF as presented in Figs 5 and 6. Time series data
from the relevant outputs of a component are anal-
ysed using the SDF-based algorithms for generation
of pattern vectors as explained in section 2. For each
component, a nominal model is constructed such that
the model outputs z are statistically similar to the
healthy component’s actual outputs y under identical
input excitation u as illustrated in Fig. 5. Typically, the
outputs y are obtained as either sensor data or, if such
sensors are unavailable, analytically derived infor-
mation as functions of other available sensor data.
Similarly, the input excitation u consists of sensor data
and/or analytically derived information and, in addi-
tion, command inputs to the component’s actuators,

Fig. 5 Fault detection and isolation by comparison with
the reference pattern at the nominal condition

Fig. 6 Fault monitoring in an aircraft gas turbine engine

Proc. IMechE Vol. 222 Part G: J. Aerospace Engineering JAERO311 © IMechE 2008



FDI in aircraft gas turbine engines. Part 1 315

if any, which are available in real time as electronic
signals from the control computer. For example, if the
high-pressure compressor is chosen as a component,
its outputs may include the outlet air temperature
and air pressure; and the inputs would consist of
inlet air temperature, air pressure, and shaft speed
of the high-pressure turbine together with the com-
mand input to the guide vane actuator. Nevertheless,
the choice of components and their input and output
is often problem-specific and depends on the user’s
judgement to some extent.

Remark 1

Aircraft gas turbine engines are usually provided with
interconnected feedback control to maintain the spec-
ified performance [29, 30] because, in the absence of
such control actions, the output variables of a compo-
nent would deviate from those at the desired operating
condition as a result of internal faults or exogenous
disturbances. To compensate for these events, the
feedback controller modifies the actuator inputs to
maintain the specified outputs of the faulty compo-
nent, if possible, close to the those of the nominal
model. Therefore, input excitation to the nominal
model should include input command signals of the
actuators, if any, which are manipulated by the con-
troller. If the actuator command inputs are modified
to compensate for faults and disturbances, then the
output of nominal model would deviate from the com-
ponent output and the resulting anomaly measure
would lead to FDI. This issue is discussed in more
details in the second part [36] of this paper.

Some of the engine variables, which are not mea-
surable through direct deployment of sensors, may
contain sufficient information for FDI. Often these
variables can be analytically derived from other
available sensor data via physics-based or empirical
models [28]. For example, temperature and pres-
sure sensors may not be commercially available for
placement at the high pressure turbine inlet although
sensors are available for measurement of pressure and
temperature at the combustor inlet (i.e. high-pressure
compressor exit). For the purpose of FDI, it is possible
to obtain an estimate of enthalpy at the high-pressure
turbine inlet from the information on other analyt-
ically derived and sensor variables. A summary of
model equations for the major components of a gas
turbine engine is provided in Appendix of the second
part of this paper [36].

Let C = {Ci: 1 � i � m} be the set of all critical com-
ponents in a multi-component system. Let the input
excitation to the ith component Ci be denoted by
a vector ui and let the corresponding actual output
response and the nominal model output response of
Ci be given by vectors y i and z i, respectively. For the

component Ci at each slow time epoch tk , the pattern
vectors pk

i and qk
i are generated from the respective

time series data sets {yk
i } and {zk

i }. As seen in Fig. 5, the
pattern vector pk

i characterizes the health status of Ci

with reference to the pattern vector qk
i that represents

the nominal healthy status of Ci under the input excita-
tion uk

i . Following equation (8), the anomaly measure
for Ci at a time epoch tk is obtained as

μk
i ≡ d

(
pk

i , qk
i

)
(14)

where d(•, •) is an appropriately chosen distance
function (Euclidean norm in this case [3]).

The anomaly measure μk
i would detect a fault if

the component Ci genuinely malfunctions relative to
the nominal condition; otherwise, even if the input to
the component Ci is anomalous due to a fault in some
other component, μk

i should be insignificantly small
provided that the nominal model is a good (statistical)
representation of the component Ci. In this context,
the following issues are noteworthy.

1. Point-by-point comparison of data points in time
series sets yk

i and zk
i is not physically meaning-

ful because of the possible phase differences and
noise in the signals, thereby necessitating the use
of statistical comparison of pattern vectors.

2. Time series data zk
i generated from the nominal

model of Ci, could be different at different time
epochs because the input excitation uk

i to the Ci

may have different profiles because of occurrence
of a fault in some other component.

3. Since the input excitation to both the nominal
model and the actual component is identical, an
observation of detectable anomaly measure μk

i for
a component Ci at time epoch tk (see Fig. 5) would
indicate a fault in that component. This procedure
facilitates both fault detection and isolation in each
component of the system.

Having computed the anomaly measure of indi-
vidual components, a global picture of the system
health could be obtained from the ensemble of gener-
ated information. As an illustration, the engine system
in Fig. 6 is divided into several components such
that each component Ci yields the anomaly mea-
sure μk

i at (slow) time epochs tk . For m identified
components in the engine system, the ensemble of
information generated from SDF of individual com-
ponents is expressed as an m-dimensional anomaly
measure vector μk = [μk

1 μk
2 · · · μk

m]T. The evolu-
tion of anomaly measure vector μk at the slow time
scale determines the behavioural changes occurring
in the individual components and their effects on the
health of the engine system. With an appropriate deci-
sion algorithm (that is problem-specific and depends
on the user’s needs), this ensemble of information
would be capable of isolating both single-component
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and multiple-component faults; results of case studies
are presented in the second part [36] of this paper.

Once a component is detected and isolated as faulty,
the next task is to identify the range of the fault param-
eters for prognosis of potential failures as an extension
of the work reported in this paper. From this perspec-
tive, the task of degradation monitoring is posed as the
following two inter-related problems.

1. The forward (or analysis) problem generates
behavioural patterns of system evolution due
to progression of faults through analysis of the
observed time series data at different slow time
epochs. Based on this information, the objective
here is online identification of the changes in pat-
terns of the engine dynamics due to evolving faults.

2. The inverse (or synthesis) problem identifies the
range of component fault parameters to assess
the system health based on online observations.
The objective here is to infer the anomalies and to
estimate the range of the fault parameters on-line
from time series data during the engine opera-
tion or based on simulation runs in the engine test
bed [36] as time evolves. Generation of the anomaly
measure information in the forward problem is a
predecessor to the inverse problem [18, 40].

The above concept of identifying the fault parameter
range has been experimentally validated for fatigue
life estimation in polycrystalline alloys [18] and faulty
parameter estimation in active electronic circuits [40].
The work is in progress for identification of engine fault
parameters and the results are expected to be reported
in future publications.

4 SUMMARY

This paper, which is the first of two parts, presents
the underlying concepts of FDI in complex systems,
specifically for aircraft gas turbine engines, that con-
sist of multiple interconnected components. The FDI
methodology has been validated on the simulation
test bed of a generic two-spool turbofan engine, as
reported in the second part [36] of this paper.

The FDI algorithms are formulated in the setting of
SDF that has been recently reported in literature [3, 19]
and experimentally validated for various applica-
tions [26, 27]. The salient features of the proposed FDI
methodology are summarized below.

1. Usage of SDF for computation of pattern vectors
from the output time series data sets of individual
components and their respective nominal models.

2. Comparison of the pattern vector of a compo-
nent with that of its respective nominal model to
generate the anomaly measure which is an indica-
tive of evolving fault(s) in that specific component.

3. Decisions on detection and isolation of evolving
fault(s) in individual components.

4. Identification of the fault range in the isolated
components via inverse mapping of the respective
anomaly measure [18, 40].
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APPENDIX

Notation

C set of all critical components of a
system

D window length on a symbolic
sequence

m number of components of a system
M mapping from the phase space to

the symbol space
n number of states of the finite state

machine
p state probability vector
pi probability of the ith state
P(•) probability of the event •
q reference state probability vector
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s random variable taking values in �

S Shannon entropy of the symbol
sequence

t fast time
ts slow time
u component input vector
x state vector in the phase space
x j state vector at (fast) time

instant j
x0 initial state vector
y component output vector
z nominal component model output

vector

α, β symbols belonging to �

δ(•, �) state transition mapping
η tolerance for the stopping rule

θ parameter vector varying in the
slow time scale

λ eigenvalue of the state transition
matrix

μ anomaly measure
ξj jth state of the finite state machine
� set of all states of the finite state

machine
πjk probability of the transition from

states ξj to ξk

� state transition matrix
σ symbol on a symbolic sequence
� alphabet (i.e. set of symbols)
|�| alphabet size of the partition
τ slow time
�i partition cell of the phase space
� compact region in the phase space
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