
Scalable Human-in-the-Loop Decision Support

Ramona Georgescu, Kishore Reddy, Nikola Trčka, Mei Chen, Paul Quimby, Paul O’Neill, Taimoor Khawaja,
Luca Bertuccelli, Dan Hestand, Soumik Sarkar, Ozgur Erdinc and Michael Giering

Systems Department
United Technologies Research Center

{georgera, reddykk, trckan, chenm4, quimbypw, oneillpc, khawajts, bertuclf, hestanpd, sarkars, erdinco, gierinmj}@utrc.utc.com

Abstract—In this work, a scalable human-in-the-loop decision
support system has been built around an active learning algorithm
operating on time series data. Anchored in big data analytics,
the system integrates an architecture component, hierarchical
clustering, a random data access module, active learning, a
communication and user interaction modules.

I. INTRODUCTION

With the advent of ubiquitous sensing and advanced com-
putation capabilities, today’s industry is the generator of and
exposed to high volume of data. Regular and otherwise non-
intuitive actionable intelligence can be extracted from “Big
Data” that can immensely help industry to optimize operations
and decision-making in various domains [1].

Until now, non-engineering problems such as business
analytics, social media, healthcare solutions and financial
forecasting have been primary applications of the “Big Data”
revolution. However, the wave has already reached the realm of
core engineering applications and highly convincing use cases
are emerging from various fields. For example, in the energy
sector, applications such as optimizing supply-demand trade-
off in smart grids, automated health monitoring and supervi-
sory control in large-scale complex energy generation/storage
systems can leverage data-driven technologies to achieve low-
cost and scalable solutions. Similarly, various data-intensive
applications are emerging in the manufacturing sector, e.g.,
discovering sources of manufacturing flaws, quality control
and reducing process inefficiencies and material characteris-
tics analysis. Other than these, general engineering service
sector decision support systems (e.g., predicting failures and
prescribing maintenance actions in large equipment fleets,
recommendation for optimal operation step) are also beginning
to leverage big data analytics techniques [2].

Along the line of such development, the issue of cyber-
physical security is drawing more and more attention for safety
and verifiability. Apart from the general ability to utilize the
high volume of data generated by the engineering systems, it
turns out that data-driven techniques are actually better suited
for many of the complex cyber-physical systems mentioned
above as developing reliable physics based models for analysis
can be extremely difficult and expensive.

While advanced data-mining and machine learning tools
(i.e., indexing/retrieval, clustering, recommending) are becom-
ing highly sophisticated, in most of the applications, automated
decision support systems using them can still be sub-optimal
due to lack of efficient domain knowledge elicitation and
contextual adaptation [3]. Therefore, passive decision support

systems that depend solely on pre-defined strategies and mod-
els can achieve significant gain in performance with even
minimal human inputs. However, such active learning schemes
need to be optimal in order to keep the user engaged but
not overwhelm at the same time. From a technical point of
view, this task may become non-trivial as traditional Big Data
ecosystems may suffer from latency issues that can defeat user
interaction and visualization purposes [4].

Apart from processing and communication latency issues,
an active decision support system also needs to optimize the
human interaction modality. As opposed to machine data,
human generated information can become rather unstructured
in general. However, constraining the interaction modality and
scheme can limit the possibility to extract implicit human
intent that can prove to be extremely valuable for analytics and
decision-making. Extracting implicit intent does not only help
make better decisions, it can also help the system understand
user preference so that it can further adapt to facilitate a
seamless interaction.

In the following, this extended abstract discusses the indi-
vidual building blocks of a practical use-case for a human-in-
the loop decision support system designed for semi-automatic
characterization of field service data; the focus is on the
analytical tools.

II. HIERARCHICAL CLUSTERING

Clustering has widely been used for exploratory/statistical
data analysis and machine learning. With the advent of large
datasets in the order of tera bytes, performing clustering on
such data became a challenge.

Hierarchical clustering uncovers a hierarchical structure in
the data which is more informative than the results generated
by unstructured clustering algorithms like k-means and spectral
clustering which produce flat results. For this reason, hierar-
chical clustering is preferred for data analysis and also for
performing visual analysis by drawing up the tree.

Another benefit of employing hierarchical clustering lies
in this being an unsupervised technique only requiring a
designated similarity measure; the algorithm does not need ini-
tialization parameters to be set up or knowledge of number of
clusters. The work relies on PARABLE, a parallel implementa-
tion of hierarchical clustering within a MapReduce framework
that successfully addresses large datasets and was proposed
by Wang and Dutta [5]. Here, PARABLE was implemented
using Apache Spark [6] resilient distributed datasets (RDDs)
as shown in Figure 1.

1



Fig. 1. PARABLE Hierarchical Clustering Implemented with Apache Spark
RDDs.

Fig. 2. Random Data Access with Apache Spark MapReduce Engine.

III. RANDOM DATA ACCESS

The data access module is organized as in Figure 2.
Satisfying the requirements of the active learning component,
the user of the data access module can request a random
(not already labeled) point from a node in the clustering tree
(getRandomUnLabeledPoint(node)), or to get the total number
of data points in a node (function getNodeCount()).

All operations are performed as Apache Spark MapReduce
jobs, using the Python API. The data counting process is
a simple application of a map to a single key followed by
the reduceByKey operation. The data retrieval process is a
combination of a MapReduce-based search and the random
sampling operation provided by Spark.

All points labeled in a single session are stored in local
memory, which is justified by the fact that the size of this data
must be bounded by the total number of iterations between
the system and the human user. While the (labeled) data
points reside in HDFS, the clustering tree is assumed to be
of manageable size and is thus stored in memory, for fast
access and small query times. The ”tree utilities” component
handles various operations on the tree that are called by the
main modules.

IV. ACTIVE LEARNING

Active learning has been studied and applied in general
learning schema for a long time with significantly lower label
complexity [7], [8]. In this work, we followed the idea of
querying the user for labels – especially the ones lying on
boundaries– with the goal of high confidence data distribution
learning.

Active learning was conducted on a hierarchical clustering
tree which is constructed so that a pruning of it is weakly
informative of the class labels. The algorithm identifies pure
nodes with proper labels and selects best combinations of
leaves/nodes at different tree levels so that a pruning which
covers all data points is generated. This pruning contains nodes
and labels indicative of the true data distribution which can be
used for regular supervised learning.

The cluster-adaptive active learning implemented here it-
erates through the following 6 steps. Figure 3 shows the
associated pseudocode. The details of the algorithm are left
to the original paper [8].

1) Pick node v in the hierarchical clustering-generated
tree for querying. Node v is selected by an active
learning rule which discourages sampling nodes that
are currently fairly pure in their labels. The backup
sampling option is random sampling.

Select an unlabeled data point z that belongs to node
v and query user for its label.

The query results will contain the label and
confidence level of an imperfect expert (will not be
covered in this paper). In future work, dynamically
updating the labels will be considered.

2) Update nu, pu,l, i.e. the number of points sampled
from node u and the fraction of label l in node u,
for all nodes u on path from z to the root of the
subtree Tv rooted at v.

3) Calculate pLB
v,l and pUB

v,l , where these are the lower
and upper bounds of the confidence in node v having
label l.

Update the admissibility set A consisting of (node,
label) pairs based on the majority label criterion.

Compute ε̃v,l, i.e. the error induced by a proposed
labeling and the score s(v), i.e. the error of the best
admissable pruning anf labeling of Tv .

4) In a bottom up pass, calculate all possible prunings
for the entire tree.

5) Update admissible prunings of the entire tree from
the calculated all possible prunings.

6) Select the best pruning and label of entire tree, i.e.
the pair achieving the best score.

Finish by calculating the confidence matrix CM
describing the worst case error in labeling.

2



Fig. 3. Active Learning Pseudocode.

A. Number of labels

This work extended the original algorithm to the case of
three label types β = 3. In this case, the criterion for determin-
ing the majority of Av,l needed an update (see step 3 above).
Originally, pLB

v,l > 2pUB
v,l′ − 1,∀l′ 6= l, for l = 1, . . . ,K with

β = 2, where the algorithm is designed to incur at most β times
as much error with the labeling it recommends than with any
other label. For any given v, t, several different labels l might
satisfy this criterion, for instance if pLB

v,l (t) = pUB
v,l (t) = 1

K

for all labels l [8]. Then, pUB
v,l = 1−

∑
k 6=l p

LB
v,k . The detailed

calculation is given by:

pLB
v,l > 2(1−

∑
k 6=l′

pLB
v,k )− 1;

pLB
v,l > 2− 2pLB

v,l − 2
∑
k 6=l,l′

pLB
v,k − 1;

3pLB
v,l > 1− 2

K − 2

K
. (1)

In the case of two labels K = 2, pLB
v,l >

1
3 . When K = 3,

then pLB
v,l >

1
9 . Now, the calculation of pLB

v,l will be:

pLB
v,l > 1− β(1−

∑
k 6=l′

pUB
v,k );

pLB
v,l > 1− β + β

∑
k 6=l′

pUB
v,k ;

pLB
v,l > 1− β + β(1−

∑
k 6=l′

pLB
v,k );

pLB
v,l > 1− β + β − βpLB

v,l − β
∑
k 6=l,l′

pLB
v,k ;

(1 + β)pLB
v,l > 1− βK − 2

K
. (2)

When the number of labels K gets large, the r.h.s of the
above equation suggests that if we still allow the majority label
to incur at most twice as much error as the other labels, then
any label would fit this criterion. Therefore, we need to use
a smaller β in equation (2) to determine the node purity. We
choose β = 1 + 1

K so that β being slightly larger than 1 is
still a strong enough assumption to allow the majority label to
have a little more error than any other labels.

Fig. 4. User Interaction is Achieved Through the Communication and
Visualization Modules.

B. User Interaction

The user interaction was set up in two stages: a commu-
nication module and a visualization one as shown in Figure
4. The communication consists of a data web server Python
implementation that takes in as input the request from the
active learning algorithm for a data point z to be labeled by
the user. The RESTful interface protocol development provides
multi-threaded handling od queries with coherent query and
response cache as it serves the file (which resides on Hadoop
HDFS) corresponding to the data point over the IP network to
the visualization module.

The browser client takes the file and relies on the D3
JavaScript library to display the necessary information to the
user. The user is then able to label the data point to be sent
back to the active learning algorithm. Note that the back and
forth information exchange is done asynchronously both on
the sending and the receiving ends.

V. RESULTS

An overview of the integrated system is displayed in Figure
5. On the left, data storage in Hadoop’s HDFS file system
supports the raw csv files. The interactions with the algorithmic
side on the right are given in terms of inputs and outputs.
Note that both the hierarchical clustering and active learning
algorithms run in distributed fashion by calling Apache Spark
within Python code while the user interface is designed to be
currently generic yet customizable for multi-user capability.

Figure 6 shows results on a real fleet monitoring dataset
where hierarchical clustering created a tree with 9 nodes and
the active learning algorithm works on 2 labels (here, red
and black). The label probabilities for the 5 leaf nodes are
given after 99 queries to the user1. As expected, the confidence
bounds become tight in the case of the nodes that have many
data points labeled, e.g. after 41 queries, node 2 has 22 data
points with label 1 and 2 data points with label 2 while after 99
queries, node 2 has 37 data points with label 1 and 3 data points
with label 2 resulting in probability (node 2 majority label =
label 1)=0.925 and probability(node 2 majority label =label 2)
= 0.075 with confidence interval [0.85, 0.99]. Additionally, the

1The algorithm was initialized with a batch set of labels from the user for
speedup purposes only.

3



Fig. 5. Integration.

Fig. 6. Active Learning Results.

total confidence for the tree labeling has improved between 41
user queries (78.94) and 99 user queries (82.19). This metric
rapidly grows with the first queries and then tends to level off.

A. Scalability

We define scalability as the ability of the system to achieve
equivalent computational efficiency when the data quantity
and the distribution of the system increases. The results of
this simulation study are subject to the limits of the use of
the data, e.g. visualization or caching versus disk storage and
are bounded from below by the algorithmic computational
complexity. By ”equivalent computational efficiency” we mean
that the latency, throughput and accuracy are affected only by
an additive constant characteristic of the system architecture.

The primary architectural driver is to maintain scalability as
the system architectural complexity grows. As Figure 7 shows,
the goal has been met as both the random data access and
hierarchical clustering respond linearly in latency to the linear
increase in data points.

Fig. 7. Scalability Study Results.

VI. CONCLUSION

Active learning is an attractive algorithm due to its flexi-
bility. It can incorporate any clustering algorithm, runs in a
completely unsupervised setting, does not require balanced
datasets (of high importance when working on field collected
data) and pleasantly, its query strategy can be modified to
accomodate mode realistic scenarios.

In this work, a scalable human-in-the loop decision support
system was built to support fleet monitoring in fielded systems.
At its core, experts supplement a dataset with domain knowl-
edge / semantic knowledge via labeling. The active learning
algorithm chooses as few samples as possible to ask the expert
to label. At any given time, algorithm can ”label” all remaining
instances, and able to provide ”confidence” metrics for each
automatically assigned label.

Future extensions (both short and long term) in-
clude: streaming data clustering, incorporating feature-salience
queries and/or feature weighing and multiple experts / imper-
fect experts.

REFERENCES

[1] http://www.kdnuggets.com/
[2] Z. Zheng, J. Zhu and M.R. Lyu. Service-Generated Big Data and Big

Data-as-a-Service: An Overview. IEEE Intl. Congress on Big Data, 2013.
[3] D. R.Holmes. Keynote address: Clinical Decision Support: The challenge

of big data and big computation. IEEE Intl. Symposium on Workload
Characterization (IISWC), 2012.

[4] C. Hansen. Keynote speaker: Big data: A scientific visualization perspec-
tive. IEEE Pacific Visualization Symposium, 2013.

[5] S. Wang and H. Dutta. PARABLE: A PArallel RAndom-partition Based
HierarchicaL ClustEring Algorithm for the MapReduce Framework.
Technical Report CCLS-11-04, 2011.

[6] http://spark.apache.org/documentation.html
[7] D. Cohn, L. Atlas and R. Ladner, Improving generalization with active

learning. Machine learning, Vol. 15, No. 2, pp.201-221, 1994.
[8] S. Dasgupta and D. Hsu. Hierarchical sampling for active learning. Intl.

Conf. on Machine learning (ICML), 2008.

4


