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Abstract— This paper addresses the issues of data analysis
and sensor fusion that are critical for information management
leading to (real-time) fault detection and classification in dis-
tributed physical processes (e.g., shipboard auxiliary systems).
The proposed technique utilizes a semantic framework for
multi-sensor data modeling, where the complexity is reduced by
pruning the sensor network through an information-theoretic
(e.g., mutual information-based) approach. The underlying
algorithms are developed to achieve high reliability and compu-
tational efficiency while retaining the essential spatiotemporal
characteristics of the physical system. The concept is validated
on a simulation test bed of shipboard auxiliary systems.

I. INTRODUCTION

Sensor fusion has been one of the focused topics in data

analysis and their applications. Individual sensory informa-

tion is often used to reveal the underlying process dynamics

and to identify potential changes therein. These systems are

usually equipped with multiple sensors having (possibly)

different modalities. These issues evince the need for the dis-

tributed and heterogeneous information to be fused to achieve

accurate inferences about the states of critical systems in real

time. To this end, this paper develops and validates a fault

detection and classification method in distributed physical

processes (e.g., shipboard auxiliary systems).

Several sensor fusion approaches have been proposed to

address fault detection problems in the literature, including

linear and nonlinear filters, adaptive model reference method-

ologies and neural network based estimation schemes. How-

ever, to the best of the authors’ knowledge, these techniques

have not been applied to shipboard systems due to several

inherent difficulties that include: (possibly) non-stationary

behavior of signals, underlying nonlinearities of the process

dynamics, input-output and feedback interactions, scaling

and alignment of multi-modal data, and multiplicative pro-

cess noise.

Some of the above issues can be simplified to a certain

extent or approximated by simpler solutions. Examples are

linear and linearized modeling and Bayesian estimation

techniques (e.g., extended Kalman filtering and particle fil-

tering) [1][2]. Researchers have also used soft computing
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techniques; especially neural networks have been employed

for sensor and actuator failure detection, identification and

accommodation [3]. In the class of neural networks, multi-

layer perceptron [4] and radial basis function [5] configu-

rations have been widely used for detection of anomalous

patterns. Similarly, principal component analysis [6] and

kernel regression [7] have been proposed for data-driven

pattern classification. These approaches address nonlinear

dynamics as well as scaling and data alignment issues.

However, the effectiveness of data-driven techniques degrade

rapidly in the case of multiplicative noise and extrapolating

for non-stationary data. Robust filtering techniques have been

developed and used to generate reliable estimations from

sensors since most sensory data has some amount of noise in

the measurement of the quantity [8], [9]. Recent literature has

also reported Monte Carlo Markov chain techniques, such

as particle filtering [10] and sigma point techniques [11]

that yield numerical solutions to Bayesian state estimation

problems and have been applied for nonlinear dynamical

systems [12]. The estimation performance depends on the

model accuracy which is the central problem with the

filtering approach. Either the dynamics must be linear, or

the data must be strictly periodic or stationary for the linear

models to be good estimators. With increasing model fidelity

and using nonlinear filters, the estimation error decreases

considerably, however, these require numerical solutions that

are computationally expensive and not suitable for real-time

estimation. To address the problem of achieving reliable state

estimation, many techniques have now appeared in literature,

these include multiple model schemes [13], techniques based

on analytical redundancy and residuals [14] and nonlinear

observer theory [15].

For a general solution to be tractable for distributed

systems (e.g., shipboard auxiliary systems), sensor fusion

requires processing of non-stationary and nonlinear sensor

data to detect parametric or nonparametric changes in the

system. This paper presents the development of a sensor

data fusion method for fault detection and classification in

shipboard auxiliary systems. The proposed technique is built

upon the algorithmic structure of symbolic dynamic filtering

(SDF) [16], where a spatiotemporal pattern network is con-

structed from disparate sensors. The fully connected network

is then pruned by applying an information-theoretic (e.g.,
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mutual information-based) approach to reduce computational

complexity. The developed algorithms are demonstrated on a

notional electrical system coupled with a notional hydraulic

system and a thermal load. A benchmark problem was

created and the results under different performance metrics

are presented.

The paper is organized in five sections including the

present one. Section II explains the semantic framework

for multi-sensor data modeling and the proposed technique

to prune the heterogenous sensor network for information

fusion. Section III describes the notional MATLAB/Simulink

model to simulate Shipboard Auxiliary System. Section IV

presents a fault injection scheme for the simulation and

fault detection accuracy for different scenarios to validate

the proposed method of information fusion. Finally, the

paper is summarized and concluded in Section V with

recommendations of future work.

II. SEMANTIC FRAMEWORK FOR MULTI-SENSOR DATA

MODELING AND FUSION

The semantic information fusion framework aims to cap-

ture temporal characteristics of individual sensor observa-

tions along with co-dependence among spatially distributed

sensors. This paper presents a novel concept of Spatiotem-

poral pattern networks (STPNs) where temporal dynamics

of each sensor as well as their relational dependencies are

modeled as Probabilistic Finite State Automata (PFSA).

Patterns emerging from individual sensors and relational

dependencies are called atomic patterns (AP) and relational

patterns (RP) respectively. In the STPN framework, sensors,

APs and RPs can be thought of as nodes, self-loop links and

link between two nodes respectively.

A. Temporal Dynamics Modeling of Individual Sensor Data

This section briefly describes the concepts of Symbolic

Dynamic Filtering (SDF) for extracting atomic patterns from

single-sensor data. The authors have explored the concepts

of symbolic dynamics and time series data partitioning

to develop this computationally efficient tool, for anomaly

detection in complex dynamical systems [16].

Symbolic feature extraction from time series data is posed

as a two-time-scale problem. The fast scale is related to the

response time of the process dynamics. Over the span of data

acquisition, dynamic behavior of the system is assumed to

remain invariant, i.e., the process is quasi-stationary at the

fast scale. On the other hand, the slow scale is related to the

time span over which non-stationary evolution of the system

dynamics may occur. It is expected that the features ex-

tracted from the fast-scale data will depict statistical changes

between two different slow-scale epochs if the underlying

system has undergone a change. The method of extracting

features from stationary time series data is comprised of the

following steps.

• Sensor time series data, generated from a physical

system or its dynamical model, are collected at a slow-

scale epoch and let it be denoted as q. A compact (i.e.,

closed and bounded) region Ω ∈ R
n, where n ∈ N,

within which the stationary time series is circumscribed,

is identified. Let the space of time series data sets be

represented as χ ⊆ R
n×T , where T ∈ N is sufficiently

large for convergence of statistical properties within a

specified threshold. While n represents the dimension-

ality of the time-series, T is the number of data points

in the time series. Then, {s} ∈ χ denotes a time series

at the slow-scale epoch of data collection.

• Encoding of Ω is accomplished by introducing a parti-

tion B , {B0, ..., B(|Σ|−1)} consisting of |Σ| mutually

exclusive (i.e., Bj ∩ Bk = ∅ ∀j 6= k), and exhaustive

(i.e., ∪
|Σ|−1
j=0 Bj = Ω) cells, where each cell is labeled

by symbols σj ∈ Σ and Σ = {σ0, ..., σ|Σ|−1} is

called the alphabet. This process of coarse graining

can be executed by uniform, maximum entropy, or any

other scheme of partitioning. Then, the time series data

points that visit the cell Bj are denoted as σj ∀j =
0, 1, ..., |Σ| − 1. This step enables transformation of

the time series data {s} to a symbol sequence {s},

consisting of the symbols σj in the alphabet Σ.

• A probabilistic finite state automata (PFSA), is then

constructed. The PFSA considered in this framework

is known as D-Markov machine [16]. Formally, a state

in a D-Markov machine is a symbol sequence of length

D. States represent all possible words of length D,

using the symbol alphabet. With this setup, Π̃ denotes

the symbol generation matrix elements of which are

the probabilities of obtaining a symbol conditioned on

current state of the system. Similarly, Π denotes the

state transition matrix that captures the state transition

probabilities. Note, Π and Π̃ are same for D = 1.

Let the state of a sensor A at the kth instant be denoted

as qAk . With this notation, the ijth matrix element πA
ij of

the state transition matrix is defined as the probability that

(n+ 1)th state is i given that the nth state was j, i.e.,

πA
ij , P

(

qAn+1 = i | qAn = j
)

(1)

B. Spatiotemporal Pattern Analysis from Multi-sensor Data

To construct STPN, we need relational patterns which

are essentially extracted from the relational probabilistic

finite state automata (PFSA). These are discovered us-

ing xD-Markov machine construction to determine cross-

dependence; the algorithm is described in Section II-B.1.

1) Construction of relational PFSA: xD-Markov machine:

This section describes the construction of xD-Markov ma-

chines from two symbol sequences {s1} and {s2} obtained

from two different sensors (possibly of different modalities)

to capture the symbol level cross-dependence. A formal

definition is as follows:

Definition II.1 (xD-Markov) Let M1 and M2 be the PF-

SAs corresponding to symbol streams {s1} and {s2} respec-

tively. Then a xD-Markov machine is defined as a 5-tuple

M1→2 , (Q1,Σ1,Σ2, δ1, Π̃12) such that:

• Σ1 = {σ0, ..., σ|Σ1|−1} is the alphabet set of symbol

sequence {s1}
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• Q1 = {q1, q2, . . . , q|Σ|
D1

1

} is the state set corresponding

to symbol sequence {s1}, where D1 is the depth for {s1}
• Σ2 = {σ0, ..., σ|Σ2|−1} is the alphabet set of symbol

sequence {s2}
• δ1 : Q1×Σ1 → Q1 is the state transition mapping that

maps the transition in symbol sequence {s1} from one

state to another upon arrival of a symbol in {s1}
• Π̃12 is the symbol generation matrix of size |Q1|×|Σ2|;

the ijth element of Π̃12 denotes the probability of

finding jth symbol in {s2} while making a transition

from ith state in the symbol sequence {s1}

In practice, Π̃12 is reshaped into a vector of length

|Q1| × |Σ2| and is treated as the extracted feature vector

that is a low-dimensional representation of the relational

dependence between {s1} and {s2}. This feature vector is

called a Relational Pattern (RP). Note, when both symbol

sequences are same, the relational patterns are essentially

the atomic pattern corresponding to the symbol sequence;

i.e., xD-Markov machine reduces to a simple D-Markov

machine. Also, a Relational Pattern between two symbol

sequences is not necessarily symmetric; therefore, RPs need

to be identified for both directions. In this analysis we

need state transition matrices which captures the state level

cross-dependence between sensors. As illustrated in Fig. 1,

elements of the state transition matrices ΠAB and ΠBA

corresponding to the cross machines can be expressed as,

πAB
il , P

(

qBn+1 = l | qAn = i
)

(2)

πBA
kj , P

(

qAn+1 = j | qBn = k
)

(3)

where, i, j ∈ QA and k, l ∈ QB . For depth D = 1 state

and symbol of a D-Markov machine carry same meaning.

This study limited the depth to 1, which allowed us to

use relational pattern Π̃12 and state transition matrix Π12

interchangeably as feature. One of the important future

scopes of this methodology includes the construction of state

transition matrix from xD-Markov machine for depth D > 1.

Fig. 1: Illustration of Spatiotemporal Pattern Network (STPN)

2) Pruning of STPN: From a system perspective, all the

atomic and relational patterns need to be considered in

order to model the nominal behaviors or detect anomalies.

However, it is obvious that there is scalability issue asso-

ciated with systems with significant number of sensors as

the number of relational patterns increases quadratically with

number of sensors (number of RPs will be S(S−1) where, S

is the total number of sensors; thus, total number of patterns

will be S2). This pattern space explosion may prohibit use of

a complete STPN approach for monitoring of large systems

under computational and memory constraints. Moreover, it

is understood that for many real systems, a large fraction of

relational patterns may have a very low information content

due to the lack of their physical (electro-mechanical or via

control loop) dependencies. Therefore, a pruning process

needs to be established to identify a sufficient STPN for a

system. This paper adopts an Information-theoretic measure

involving Mutual Information to identify the importance of

an atomic or a relational pattern. Mutual information based

criteria have been very popular and useful in general graph

pruning strategies [17], [18] including structure learning

of Bayesian Networks [19]. In the present context, mutual

information essentially provides the information content of

an atomic or a relational pattern. The network pruning

strategy is described below:

Mutual information for the Spatiotemporal pattern of sen-

sor X and Y is expressed as,

IXY = I(qYn+1; q
X
n ) = H(qYn+1)−H(qYn+1|q

X
n ) (4)

where,

H(qYn+1) = −

QY
∑

i=1

P (qYn+1 = i) log2 P (qYn+1 = i) (5)

H(qYn+1|q
X
n ) = −

QX
∑

i=1

P (qXn = i)H(qYn+1|q
X
n = i) (6)

H(qYn+1|q
X
n = i) = −

QY
∑

i=1

P (qYn+1 = l|qXn = i)·

log2 P (qYn+1 = l|qXn = i) (7)

When X = Y = A, IXY is the Mutual information for

atomic pattern for the sensor A. The quantity IAA essentially

captures the temporal self-prediction capability (self-loop) of

sensor A. As an extreme example, the atomic pattern for a

random sensor data is not very informative and its self mutual

information will also be zero (under ideal estimation).

When X = A and Y = B, IXY is the Mutual information

for the relational pattern RAB .The quantity IAB essentially

captures sensor A’s capability of predicting sensor B. Similar

to atomic patterns, an extreme example would be the scenario

where sensor A and B are not co-dependent (i.e., sensor A

completely fails to predict temporal evolution of sensor B).

In this case, RAB is not very informative and IAB will also

be zero (under ideal estimation).
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The next step is to select a fraction of patterns from

the entire pool based on some threshold on a measure of

information gain due to atomic and relational patterns. Let S
is set of all sensors. Now, the goal is to accept some patterns

from the set of S×S. Let set of accepted patterns be denoted

as Paccept ⊂ S ×S and the corresponding information gain

be denoted as I
accept
G . The accept pattern set is chosen such

that, for a η ∈ [0, 1]

I
accept
G

∑

(A,B)∈S×S IAB
≥ η (8)

η is chosen as 0.9 for the validation experiments. Note, in this

pruning strategy all patterns related to a certain sensor may

get rejected. Therefore, the user may choose to put additional

constraint of keeping at least one (atomic or relational)

pattern for each sensor in the accepted set of patterns.

Remark II.1 In order to use the STPN for fault detection,

a network of PFSA can be identified following the above

process under the nominal condition. Faulty conditions can

then be detected by identifying the changes in parameters

related to the accepted patterns. However, under some severe

faults, the causal dependency characteristics (i.e., the struc-

ture itself) among nodes may not remain invariant. In such

cases, new structures of the STPN can signify the severely

faulty conditions.

III. DESCRIPTION OF SIMULATION TEST BED

For testing the proposed algorithm of sensor fusion in a

coupled, distributed environment, a simulation of a notional

hydraulic system coupled with a notional electrical system

and a thermal load is developed. The simulation model is

implemented in MATLAB/Simulink as seen in Fig. 2.

This distributed notional system is driven by the external

speed command, ωref , that is used as a set point for the

speed, ωe, of the permanent magnet synchronous motor

(PMSM). A mechanical shaft coupling connects the fixed

displacement pump (FDP) to the PMSM. The torque load

of the PMSM, Tm, is obtained from the shaft model of the

hydraulic system. In turn, the speed of the PMSM, ωe, is

an input to determine the speed of the shaft, ωs, that drives

the FDP and the cooling fan in the thermal system. In turn,

the FDP drives the hydraulic motor (HM) with a dynamic

load, which consists of the thermal load, Tt, and a time-

varying mechanical torque load. The PMSM of the electrical

Fig. 2: Notional coupled electrical, hydraulic and thermal systems.

system is powered by a voltage source that drives the IGBT

using the Hall Effect sensors of the PMSM. The PI controller

regulates the motors electrical frequency under dynamic

loading conditions that arise due to hydraulic fluctuations and

thermal effects. A mechanical coupling connects the PMSM

to the FDP of the hydraulic system. This is modeled by a

rotational spring-damper system applied to an inertial load.

The mechanical system outputs the shaft velocity that drives

the FDP and the cooling fan of the thermal system. The

pump, in turn, powers the HM through the pipeline. The HM

is subjected to a time-varying load with a profile defined by

the user as well as the thermal load that varies with the fan

efficiency of the cooling mechanism. The systems are further

coupled with a feedback loop since the torque requirement

of the HM is input to the PMSM of the electrical system.

The model has multiple parameters that can simulate various

fault conditions. There are multiple sensors in each system

with different modalities such as Hall Effect sensors, torque,

speed, current, temperature and hydraulic pressure sensors

which will be explained further in section IV.

IV. VALIDATION EXPERIMENTS AND RESULTS

This section validates the pruning technique of STPN

based on mutual information and fuse useful patterns from

heterogenous sensors to identify the faults in the distributed

system described in section III.

A. Fault Injection, Sensors, Data Partitioning

This system has Electrical, Hydraulic and Thermal sub-

systems. Each sub-system has a set of sensors as given in

Table I to observe the system behavior. Also, each sub-

system has parameters which can be changed to induce faults

as given in Table II. The applicability of the proposed tech-

nique has been justified in this paper under the assumptions

mentioned below.

• At any point of time, the system can have only one of

the faults mentioned in Table II because the occurrence

of two faults simultaneously is very unlikely in real

scenarios.

• Mechanical efficiency of Hydraulic Motors and Pumps

is assumed to stay constant as the degradation of ma-

chines due to wear and tear is at a much slower rate

with respect to the drop in volumetric efficiency.

• The model is equipped with commercially available

sensors. Exploration of other feasible sensors to help

improve fault detection is not the focus of this study.

Fig. 3 depicts a typical electromagnetic torque output for

nominal and PMSM fault cases. As it can be seen that the

data itself is very noisy and due to the controller actions

there is not much observable difference in these two cases.

To enhance the fault identification accuracy in these types of

critical fault scenarios, information integration from disparate

sensors is performed. For all the fault scenarios 100 samples

from every sensor are divided into two equal halves for

training and testing. For data partitioning, maximum entropy

partitioning is used with alphabet size, |Σ| = 6 for seven

sensors (although |Σ| does not need to be same for different

sensors). The depth for constructing PFSA states is taken

to be, D = 1 for both atomic pattern and relational pattern

construction. A reduced set of these patterns are aggregated
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TABLE I: Sensors of the system

System Sensor Physical Quantity Symbol

Electrical Torque sensor Torque output of PMSM Te

Rotational Motion Sensor Rotor speed of PMSM we

Hydraulic Rotational Motion Sensor Angular Velocity of Hydraulic Pump whp

Pressure Sensor Pressure across Hydraulic Motor (HM) Phm

Torque sensor Torque output of HM Thm

Rotational Motion Sensor Angular Velocity of output shaft of Hydraulic Motor whm

Thermal Temperature Sensor Temperature Tf

TABLE II: Fault parameters of the system

System Fault parameter Symbol Range

Electrical Flux linkage of PMSM Wb Nominal:0.05 ± 0.005,Fault:0.03 ± 0.005

Hydraulic Volumetric Efficiency of HM νvm Nominal:0.9 ± 0.02,Fault:0.8 ± 0.02

Total Efficiency of HM νtm Nominal:0.8 ± 0.02,Fault:0.65 ± 0.02

Thermal Thermal efficiency νth Nominal:0.9 ± 0.02,Fault:0.8 ± 0.02
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Fig. 3: Electromagnetic torque under nominal and PMSM fault conditions

to form the composite pattern, which serves as the feature

classified by a k-NN classifier (with k = 5) using the

Euclidean distance metric for fault detection.

B. Fusion with Complete STPN

One sensor from each of the subsystems, i.e., Tf from

thermal subsystem, Te from electrical subsystem and Thm

from hydraulic subsystem are selected to perform fusion

to identify component faults in the system. The Composite

Pattern (CP) consists of all possible Atomic Patterns (AP)

and Relational Patterns (RP) of Tf , Te and Thm. Composite
TABLE III: Fault identification accuracy by exhaustive fusion

class Tf Te Thm CP

Nominal 32% 42% 32% 68%

PMSM fault 30% 100% 40% 84%

HM fault 40% 100% 100% 100%

Thermal fault 100% 58% 44% 100%

pattern (CP) performs better in nominal condition detection

than individual sensors as shown in Table III, but the false

alarm rate is still high. Composite patterns are formed

by concatenating atomic and relational patterns. Therefore,

while patterns with high information content (based on

the formulation above) help distinguishing between classes,

patterns with low information content dilutes the ability

of separating classes. Therefore, removing non-informative

patterns may lead to reduction of both false alarm, missed

detection rates and computational complexity.

C. Pruning of STPN

Pruning of the larger sensor network of the given system

is attempted here to reduce the complexity of fusion and

improve the detection accuracy by capturing the essential

spatiotemporal dynamics of the system. Left half of the

Fig. 4 shows a fully connected graph of seven sensors of

the system where each node is a sensor; bi-directional arcs

among them depict the RPs in both directions and self-loops

are the APs corresponding to sensors. The right half of the

Te 
Phm 

Whp 

Whm 

Thm 
We 

Tf 

Te Phm 

Whp Whm 

Thm We 

Tf 

Atomic pattern 

Relational pattern 

Fig. 4: Pruning of STPN

Fig. 4 demonstrates the pruned STPN where the thickness

of arcs represents the intensity of mutual information of the

RPs among sensors. Both directions of arrows are preserved

as the mutual information of the two oppositely directed RPs

for a pair of sensors are comparable. In this example all the

self loops are kept intact and arcs with negligible mutual

information are omitted from the graph. it is observed in

this study, that the structure of the reduced STPN remains

stable across all the fault classes. The reduction in complexity

of network graph is more significant in larger STPN.Two

scenarios are as follows to justify the credibility of the pruned

STPN in the light of fault detection accuracy.

1) Reduction of false alarms: Same set of sensors, i.e.,

Tf , Te and Thm are selected as the STPN and it is sub-

jected to the proposed pruning technique, which results in a

composite pattern of AP of Te (ΠTe) and two RPs (ΠThmTe ,

ΠThmTf shown by two thick arcs in Fig. 4) reducing the

false alarm rate significantly (Table. IV). APs of Tf and

Thm are dropped from the CP as these patterns don’t add

to better detection. Also PMSM fault detection accuracy
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TABLE IV: Comparison of false alarm rate generated by exhaustive sensor fusion and

pruned STPN

Fusion type False alarm rate

complete STPN 32%

Pruned STPN 8%

doesn’t degrade from 100% unlike fusion with complete

STPN. Hence this pruning technique reduces a CP containing

9 patterns (3 APs, 6 RPs)to a CP of three APs and two RPs

along with providing more class separability.

2) Adaptability to malfunctioning sensors: In a distributed

system, such as shipboard auxiliary system, malfunctioning

of primary sensors in a subsystem is a plausible event. One

of the current challenges in fault detection area is to identify

any fault in the subsystem with malfunctioning sensors from

the sensor responses of the subsystems electromechanically

connected to that. To simulate that situation three prime

heterogenous sensors from the hydraulic subsystem, i.e.,

whp, Phm and Thm are selected whereas fault is injected to

the thermal subsystem by degrading the thermal efficiency

according to Table. II. Tf sensor of thermal subsystem is

not incorporated in the detection process of thermal fault as

it considered to be the malfunctioning sensor.

TABLE V: Thermal fault identification by sensors of hydraulic subsystem

whp Phm Thm CP

Detection accuracy 58% 18% 18% 70%

As the individual sensors of hydraulic subsystem perform

poorly in detecting thermal fault (Table. V) information from

sensors of this subsystem are fused by the proposed pruning

technique. The pruned STPN yields a composite pattern

consisting of AP of whp (Πwhp ) and two RPs (ΠPhmwhp ,

ΠThmwhp ) depicted by two thin arcs in Fig. 4; it results in

a decent detection accuracy of 70% (Table V).

V. CONCLUSIONS AND FUTURE WORK

This paper deals with the issue of feature level fusion

of multiple sensor data for data-driven fault detection tech-

niques. The underlying algorithms are built upon the con-

cepts of symbolic dynamic filtering (SDF) to construct a

spatiotemporal pattern network from disparate sensors. The

fully-connected network is pruned by applying an informa-

tion theoretic approach to reduce computational complexity.

In the proposed method, the abstract semantic fusion frame-

work captures the temporal characteristics of individual sen-

sor observations (Atomic Patterns) along with co-dependence

among spatially distributed sensors (Relational Patterns) and

constructs a fully connected graph of the sensor network.

The pruning strategy preserves the patterns containing higher

mutual Information to construct the composite pattern that

serves as the primary feature for fault detection in real

time. The validation of the proposed method on a test bed

representing shipboard auxiliary systems shows that fusion

with network pruning identifies component faults with better

accuracy than fusion with fully-connected sensor network.

Confidence assessment of the pruned network in repre-

senting the distributed fully-connected sensor network is the

topic of the present work. In addition, the following research

areas are currently being pursued.

• Optimization of the threshold of ratio of mutual in-

formation η (Section II-B.2) subjected to better fault

detection and lesser complexity.

• Rigorous testing of robustness of the pruning strategies

over different fault classes.

• Validation of the fusion algorithm on larger sensor

network of real distributed system.

• Comparison between developed method and other state-

of-the-art network pruning and fusion algorithm (both

model-driven and data-driven) for fault detection.
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