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Abstract— Data-driven fault diagnosis of a complex system
such as an aircraft gas turbine engine requires interpretation
of multi-sensor information to assure enhanced performance.
This paper proposes feature-level sensor information fusion in
the framework of symbolic dynamic filtering. This hierarchical
approach involves construction of composite patterns consisting
of: (i) atomic patterns extracted from single sensor data and (ii)
relational patterns that represent the cross-dependencies among
different sensor data. The underlying theories are presented
along with necessary assumptions and the proposed method is
validated on the NASA C-MAPSS simulation model of aircraft
gas turbine engines.

1. INTRODUCTION

Data-driven fault diagnosis in human-engineered complex

systems is extremely crucial from the perspective of safety

and reliability. However, in complex engineering system such

as an aircraft gas turbine engine, the patterns generated

from a single sensor observation may not carry sufficient

information to correctly diagnose a fault in the system.

Moreover, simultaneously occurring different faults in the

same or different subsystems may generate similar signatures

in a particular sensor observation. Hence, a data-driven fault

detection tool for an aircraft engine system should have the

capability to characterize, quantify and interpret multiple

sensor outputs. However, sensor information fusion for a

complex system like an aircraft is extremely challenging.

First of all, an aircraft system has sensors with a large

variation in modality (e.g., pressure, temperature, speed, and

acceleration). Hence, a data-level information fusion is ex-

tremely difficult due to the inherent scaling problem of sensor

data of different modality. On the other hand, decision level

fusion generally requires an in depth understanding of the

physical system and its failure signatures in different sensor
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observations. In literature, Dempster-Shafer evidence theory

has been applied for engine fault diagnosis [1]; similarly, the

concept of Bayesian Belief Networks has been used for fault

diagnosis in turbofan engines [2]. Both techniques belong to

the class of decision fusion at an upper level.

Recently, in a two-part paper [3][4], an SDF-based al-

gorithm for detection and isolation of engine subsystem

faults (specifically, faults that cause efficiency degradation

in engine components) has been reported and an extension

of that work to estimate simultaneously occurring multiple

component-level faults has been presented in [5]. One of

the main aspects of SDF-based method is semantic repre-

sentation of sensor data, irrespective of modality and other

sensor specific characteristics. This would facilitates feature-

level fusion of non-homogeneous sensors. They are derived

based on a semantic framework for pattern extraction and

classification. To handle a large volume of data in real time,

a hierarchical framework for information fusion is proposed

that progressively leads from machine representations of

observed data to fault classification. One of novelties of

the proposed approach is identifying the cross-dependence

among difference sensor observations to reduce loss of

information.

2. DATA-DRIVEN FAULT DIAGNOSIS POSED AS A

MULTI-CLASS PATTERN CLASSIFICATION PROBLEM

This section formulates the problem based on the C-

MAPSS test-bed [6] presented in the sequel.

A. Description of the C-MAPSS Test-bed

The C-MAPSS simulation test-bed is the model of a

commercial-scale two-spool turbofan engine and its control

system. The engine under consideration produces a thrust

of approximately 400,000 N and is designed for operation

at altitude (A) from sea level (i.e., 0 m) up to 12,200 m,

Mach number (M ) from 0 to 0.90, and sea-level temperatures

from approximately −50◦C to 50◦C. The throttle resolving

angle (TRA) can be set to any value in the range between



Fig. 1. Schematic diagram of the HPC-HPT subsystem

0◦ at the minimum power level and 100◦ at the maximum

power level. The gas turbine engine system consists of five

major rotating components, namely, fan (F), low pressure

compressor (LPC), high pressure compressor (HPC), high

pressure turbine (HPT), and low pressure turbine (LPT). In

the current configuration of the C-MAPSS simulation test-

bed, ten component level health parameter inputs, namely,

efficiency parameters (ψ), flow parameters (ζ) are used

to inject faults. For the engine’s five rotating components

F, LPC, HPC, LPT, and HPT, such parameters are: (ψF ,

ζF ), (ψLPC , ζLPC), (ψHPC , ζHPC ), ((ψHPT , ζHPT ), and

(ψLPT , ζLPT ). An engine component C is considered to

be in nominal condition if both ψC and ζC are equal to 1
and fault can be injected in the component C by reducing

the values of ψC and/or ζC . For example, ψHPC = 0.98
signifies a 2% relative loss in efficiency of HPC.

B. Problem Formulation

Component-level fault diagnosis in an aircraft gas turbine

engine involves identification of the fault type, and loca-

tion & quantification of the fault level. In the C-MAPSS

test-bed setting, the physical fault scenarios (e.g., fouling,

increased tip clearance, and seal wear) are assumed to

manifest themselves in affecting the efficiency and flow

of the associated engine component(s). In the present case

study, a simultaneous fault scenario has been considered

involving two major rotating components of the engine,

namely, HPC and HPT. Choice of these components has

important significance from the perspective of diagnosis of

simultaneously occurring faults. Both HPC and HPT are

mounted on the core shaft of the engine. Hence, they have

strong mechanical interconnection between them. Besides,

they also have electrical interconnection via control loop.

Such strong electro-mechanical interconnection increases

difficulty of the fault diagnosis problem. On the other hand,

information from an HPC sensor will possibly have strong

cross-dependency with an HPT sensor and it may not be

reasonable to ignore that for the purpose of fault diagnosis.

In the present study, three heterogeneous, non-collocated and

commonly used sensors are selected that are placed in the

HPC-HPT subsystem as shown in Figure 1. The three sensors

are as follows:

Sensor noise standard deviation values are provided as

percent of operating point trim values [7]. The three chosen

sensors are of different modalities (pressure, temperature,

speed) and while the pressure sensor is located at HPC exit,

TABLE I

SENSORS FOR FAULT DIAGNOSIS IN THE HPC-HPT SUBSYSTEM

Sensors Description Noise Std. (%)

Ps30 HPC exit static pressure 0.50
T48 HPT exit temperature 0.75
Nc Core spool speed 0.25

the temperature sensor is located at HPT exit and the speed

sensor is measuring the rotational speed of the core shaft on

which both HPC and HPT are mounted. The challenge here

is to identify the relational dependencies among these sensor

data to enhance the fault diagnosis performance. Diagnosis

involves both fault localization and fault level identification.

The health parameters that defines the health status of HPC

and HPT, are the efficiency and flow health parameters

(ψHPC , ζHPC and ψHPT , ζHPT ). Assuming that both

efficiency and flow parameters change simultaneously by the

same amount, three fault levels are considered similarly for

both HPC and HPT. Table II shows the approximate ranges

of health parameters under different fault levels. Here, the

low fault level indicate very minimal loss in efficiency and

flow and hence also includes the absolute nominal health

condition (ψHPC = ζHPC = 1 or ψHPT = ζHPT = 1).

TABLE II

FAULT LEVELS IN HPC/HPT

Fault Level Efficiency/Flow Range

Low Fault 1.0000 to 0.9867
Medium Fault 0.9867 to 0.9733

High Fault 0.9733 to 0.9600

In this study, classes are defined as Cartesian products

of the ranges of HPC and HPT health parameters. Thus,

there are 9 (i.e., 3 × 3) classes of data that can be obtained

when a class is uniquely defined by an HPC fault level (a

range of HPC health parameters) and an HPT fault level

(a range of HPT health parameters). 100 simulation runs of

the engine system have been conducted for each class to

generate data set for analysis among which 50 samples are

chosen as the training set and the remaining 50 samples are

kept as testing set. HPC/HPT health parameters are chosen

randomly from independent Uniform distributions for health

parameters within the prescribed ranges given in above table.

Figure 2 plots the samples generated using the above logic

in the two dimensional parameter space. Different classes of

samples are shown in different colors and as well as marked

with the class numbers in the figure.

Remark 2.1: The health parameter distribution is artifi-

cially chosen here as uniform to cover the whole space in

order to validate the proposed technique. However, extensive

experimentation involving real faults (or realistic damage

models) may result in a different distribution of health

parameters, e.g., Gaussian distribution.

For each data sample, a time series was collected for all

three sensors (given in Table I) under persistent excitation of
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Fig. 3. Representative time series observations from different Sensors
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Fig. 2. Fault classes for data collection and classification

TRA inputs that have truncated triangular profiles with the

mean value of 40◦, fluctuations within ±8◦ and frequency

of 0.056 Hz. The ambient conditions are chosen to be at

the sea level when the engine is on the ground (i.e. altitude

A = 0.0, Mach number M = 0.0) for fault monitoring and

maintenance by the engineering personnel. For each experi-

ment, the engine simulation is conducted at a frequency of

66.67 Hz (i.e., inter-sample time of 15ms) and the length of

the simulation time window is 150 seconds, which generate

10, 000 data points. Figure 3 shows representative examples

of time series data from each of the three sensors.

3. SEMANTIC FRAMEWORK FOR MULTI-SENSOR DATA

INTERPRETATION AND FUSION

A hierarchical (three-layered) semantic framework is pro-

posed in this paper for the purpose of multi-sensor data

interpretation and fusion. The basic structure of this archi-

tecture is inspired by the information fusion model proposed

by the Data Fusion Information Group (DGIF) [8]. The

lowest level of this hierarchy deals with signal conditioning,

transformation and finally feature extraction for unimodal

sensor data streams. In the present framework, patterns

discovered from individual sensors are called atomic patterns

and SDF is used to extract them. A brief review of SDF is

provided in Section 3-A for the completeness of the paper.

Let L = {L1,L2, . . . ,LN} be the universal set of atomic

patterns. The atomic pattern library L is set of modal

footprints identified from individual sensing modalities for

various fault classes. Given the atomic pattern library, a

popular framework for addressing information fusion is what

is called the set-theoretic approach. In this framework, higher

level patterns or contexts are modeled as subsets of L. Thus

a composite pattern, resulting from fusion of atomic patterns,

is a collection of elements from L and the composite pattern

library L
∗ ⊂ 2L. The disadvantage of this approach is that it

considers only modal footprints for constructing composite

patterns as a bag of atomic patterns; relational dependencies,

if any, between patterns are disregarded. However, the rela-

tional dependencies should not be ignored for many problems

in practice, e.g., in the present problem of fault diagnosis

of simultaneously degrading electro-mechanically connected

aircraft engine components. Therefore, a hierarchical seman-

tic framework for multi-sensor data interpretation and fusion

is proposed that involves a common approach to information

fusion going from one level to another and to include

relational dependencies for composite pattern representation.

Thus, the middle layer deals with the relational dependencies

among atomic patterns, where relationships are modeled

as the cross-dependencies among sensor data streams from

different sensors. The cross-dependencies are discovered via

relational PFSA that essentially capture the dynamics of

state transition in one symbol sequence (obtained from one

sensor) corresponding to a symbol appearance in the second

symbol sequence (obtained from another sensor). Loose

time-synchronization between sensor observations will be

enough for this purpose. Symbol-level cross-dependencies

between modalities are exploited to reduce information loss.

Finally, the top layer consists of higher level composite

patterns that will be represented as digraphs where the

atomic patterns (AP) are modeled as nodes and dependencies

between nodes are modeled as relational patterns (RP). A

formal definition is as follows:

Definition 3.1 (Composite pattern representation): Let

L = {L1,L2, . . . ,LN} be the atomic pattern library. Let

L
∗ ⊂ 2L be the set of allowable primitives for a class.



Fig. 4. Composite Pattern Digraph

Then a composite pattern library H
r = {Hr

1,H
r
2, . . . ,H

r
M}

where a composite pattern Hr
i is digraph Hr

i = (LVi
, EVi

);
LVi

⊂ L with the index set Vi ⊂ {1, 2, . . . , N} and

Ei = {Rjk|j, k ∈ Vi ×Vi} is a set of relational PFSAs. The

digraph representation is illustrated in Figure 4.

The relational probabilistic finite state automata (PFSA)

are discovered using xD-Markov machine construction to

determine cross-dependence; the algorithm is described in

Section 3-B.

A. Symbolic Dynamic Filtering for Feature Extraction

This section briefly describes the concepts of Symbolic

Dynamic Filtering (SDF) for extracting atomic patterns from

single sensor data. Symbolic feature extraction from time

series data is posed as a two-time-scale problem. The fast

scale is related to the response time of the process dynamics.

Over the span of data acquisition, dynamic behavior of the

system is assumed to remain invariant, i.e., the process is

quasi-stationary at the fast scale. On the other hand, the slow

scale is related to the time span over which non-stationary

evolution of the system dynamics may occur. It is expected

that the features extracted from the fast-scale data will depict

statistical changes between two different slow-scale epochs if

the underlying system has undergone a change. The method

of extracting features from stationary time series data is

comprised of the following steps.

• Sensor time series data, generated from a physical

system or its dynamical model, are collected at a slow-

scale epoch and let it be denoted as q. A compact (i.e.,

closed and bounded) region Ω ∈ R
n, where n ∈ N,

within which the stationary time series is circumscribed,

is identified. Let the space of time series data sets be

represented as Q ⊆ R
n×N , where N ∈ N is sufficiently

large for convergence of statistical properties within a

specified threshold. While n represents the dimension-

ality of the time-series, N is the number of data points

in the time series. Then, {q} ∈ Q denotes a time series

at the slow-scale epoch of data collection.

• Encoding of Ω is accomplished by introducing a parti-

tion B , {B0, ..., B(|Σ|−1)} consisting of |Σ| mutually

exclusive (i.e., Bj ∩ Bk = ∅ ∀j 6= k), and exhaustive

(i.e., ∪
|Σ|−1
j=0 Bj = Ω) cells, where each cell is labeled

by symbols σj ∈ Σ and Σ = {σ0, ..., σ|Σ|−1} is

called the alphabet. This process of coarse graining

can be executed by uniform, maximum entropy, or any

other scheme of partitioning. Then, the time series data

points that visit the cell Bj are denoted as σj ∀j =
0, 1, ..., |Σ| − 1. This step enables transformation of

the time series data {q} to a symbol sequence {s},

consisting of the symbols σj in the alphabet Σ.

• A probabilistic finite state machine (PFSA), is then

constructed and the symbol sequence {s} is run through

the PFSA. The PFSA considered in this framework

is known as D-Markov machine [9]. A formal definition

is as follows:

Definition 3.2 (D-Markov): A D-Markov machine of

depth D is defined as a 4-tuple M , (Q,Σ, δ, Π̃) such

that:

– Σ = {σ0, ..., σ|Σ|−1} is the alphabet set of symbol

sequence {s}
– Q = {q1, q2, . . . , q|Σ|D} is the state set corre-

sponding to symbol sequence {s}. States represent

all possible words of length D, using the symbol

alphabet

– δ : Q×Σ → Q is the state transition mapping that

maps the transition in a symbol sequence from one

state to another upon arrival of a symbol

– Π̃ is the symbol generation matrix of size |Q|×|Σ|;
an element Π̃ij denotes the probability of finding

jth symbol from ith state in the symbol sequence

{s}
In practice, Π̃ is reshaped into a vector of length |Q|×
|Σ| and is treated as the extracted feature vector that is a

low-dimensional representation of the dynamical system

at the slow-scale epoch. This feature vector obtained

from a single symbol sequence (sensor data) is called

an Atomic Pattern (AP).

For pattern classification applications, a time-series from

the reference class is partitioned using a partitioning scheme

(e.g., Uniform Partitioning (UP) or Maximum Entropy parti-

tioning (MEP)) [9][10][11]. Then, using the steps described

before, a low dimensional feature is constructed for the

reference class. Similar features can be extracted from time-

series data of all classes using the same partitioning. Finally

a classifier is trained using features of different classes

extracted from training data and can be used to classify the

features from test data set. In the present context, a non-

parametric classifier, such as the k-NN classifier may a better

candidate for this study [12][13]; however, any other suitable

classifier, such as the Support Vector Machines (SVM) or the

Gaussian Mixture Models (GMM), may also be used.



B. Construction of Relational PFSA: xD-Markov machine

This section describes the construction of xD-Markov ma-

chines from two symbol sequences {s1} and {s2} obtained

from two different sensors (possibly of different modalities)

to capture the symbol level cross-dependence. A formal

definition is as follows:

Definition 3.3 (xD-Markov): Let M1 and M2 be the

PFSAs corresponding to symbol streams {s1} and {s2}
respectively. Then a xD-Markov machine is defined as a 5-

tuple M1→2 , (Q1,Σ1,Σ2, δ1, Π̃12) such that:

• Σ1 = {σ0, ..., σ|Σ1|−1} is the alphabet set of symbol

sequence {s1}
• Q1 = {q1, q2, . . . , q|Σ|

D1

1

} is the state set corresponding

to symbol sequence {s1}, where D1 is the depth for

{s1}
• Σ2 = {σ0, ..., σ|Σ2|−1} is the alphabet set of symbol

sequence {s2}
• δ1 : Q1 ×Σ1 → Q1 is the state transition mapping that

maps the transition in symbol sequence {s1} from one

state to another upon arrival of a symbol in {s1}
• Π̃12 is the symbol generation matrix of size |Q1| ×

|Σ2|; the ijth element of Π̃12 denotes the probability

of finding jth symbol in {s2} while making a transition

from ith state in the symbol sequence {s1}

In practice, Π̃12 is reshaped into a vector of length |Q1|×
|Σ2| and is treated as the extracted feature vector that is a

low-dimensional representation of the relational dependence

between {s1} and {s2}. This feature vector is called a

Relational Pattern (RP). Figure 4 schematically describes the

basic concept of the xD-Markov machine. Note, a Relational

Pattern between two symbol sequences is not symmetric;

therefore, RPs need to be identified for both directions.

Also, when both symbol sequences are same, the relational

patterns are essentially the atomic pattern corresponding to

the symbol sequence; i.e., xD-Markov machine reduces to a

simple D-Markov machine.

In the set-theoretic approach all relationships are excluded

and any fusion is solely done in the decision-theoretic sense

where the presence (or absence) of one or more footprints

can be used to estimate the probability of the fault class under

consideration. The other end of the spectrum is to fuse data

at the lowest level and construct machines (PFSAs) working

in the product space of all sensors. This approach would

be able extract modal dependencies before they are lost

when constructing separate machines for individual sensor or

modalities. But working in the product space has the danger

of state space explosion especially when the sensors and

sensing modalities can be numerous, as in a case of a modern

aircraft engine equipped with high number of sensors. The

proposed approach is a trade-off between the two ends of

the spectrum and attempts to include relational dependencies

between sensing modalities, while keeping it tractable for a

practical application.

4. RESULTS AND DISCUSSION

This section presents pertinent fault diagnosis results for

the HPC-HPT subsystem. For data partitioning, maximum

entropy partitioning is used with alphabet size, |Σ| = 6 for

all three sensors (although alphabet size does not need to

be same for different sensors). The depth for constructing

PFSA states is taken to be, D = 1 for both atomic and

relational pattern construction and features are classified by

a k-NN classifier (with k = 5) using the Euclidean distance

metric. For a particular health parametric condition. three

atomic patterns are generated from three sensor observations

and six relational patterns are generated by extracting pair-

wise directed cross-dependencies. Finally all the patterns are

concatenated to construct the overall composite pattern. The

classification error on the test data set using the composite

pattern is found to be 11.56% and Table III provides the clas-

sification errors corresponding to all atomic and relational

patterns. The cross-dependence direction is from Sensor 1

to Sensor 2 in the table. Hence, the diagonal elements

represent the classification error percentages corresponding

to the atomic patterns, where as the off-diagonal elements

represent the classification error percentages corresponding

to the relational patterns.

TABLE III

COMPARISON OF CLASSIFICATION ERROR PERCENTAGES USING

ATOMIC AND RELATIONAL PATTERNS ON TEST DATA SET (50 × 9

SAMPLES); CROSS-DEPENDENCE DIRECTION: Sensor1 → Sensor2

Sensor 2
Ps30 T48 Nc

Sensor 1
Ps30 56.44 15.11 41.56
T48 12.89 56.89 16.00
Nc 25.11 11.78 52.22

It is observed from the above table that the relational

patterns are able to extract useful information from the

perspective of fault diagnosis. The problem in the present

study has been posed in such a way that the sensor informa-

tion from different sensors actually have cross-dependencies

due to strong electro-mechanical interconnections between

HPC and HPT. Therefore, ignoring these cross-dependencies

should affect the fault diagnosis results. This result confirms

the conjecture and shows that the xD-Markov machine

construction can extract those cross-dependencies. It should

be noted that the fault diagnosis algorithm is completely

data-driven and has no model information. Therefore, the

result is significantly encouraging. Representative classifi-

cation confusion matrices corresponding to atomic patterns

from Sensors T48, Nc and their relational patterns of both

directions are provided below. In a confusion matrix C,

element Cij denotes the frequency of classifying test sample

from class i as a sample from class j.
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A close observation reveals similarity of fault signatures

on single sensor data for two completely different fault

conditions, e.g., fault signatures of Class 4 (HPC medium

fault, HPT low fault) has been confused with Class 1 (HPC

low fault, HPT low fault) for both sensors T48 and Nc

individually. However, this ambiguity can be removed by

using relational pattern directed from T48 to Nc.

5. SUMMARY, CONCLUSIONS AND FUTURE WORK

This article presents a SDF-based methodology for data-

driven diagnosis of component level faults in aircraft gas

turbine engines via multi-sensor data interpretation and fu-

sion. The abstract semantic representation of sensor data

in the proposed method, enables feature level fusion of

heterogeneous, disparate sensors. Besides, it is shown that

identification of cross-dependencies among different sensor

prevents loss of significant information compared to set-

theoretic information fusion methods. Also, the hierarchical

architecture of this method reduces computational complex-

ity, allowing real-time operability.

Although the method presented in the paper can perform

in real time, various operating conditions need to be investi-

gated for its on-board (in-flight) application. Apart from this

important aspect, the following research areas are currently

being pursued as well before testing the methodology on a

real-life engine test bed.

• Development of algorithms to extract relational depen-

dencies among three or more symbol sequences.

• Identifying the effects of lack of synchronization among

sensor observations on xD-Markov machine construc-

tion.

• Comparative evaluation of semantic information fusion

framework with other information fusion techniques,

e.g., Dempster-Shafer or Bayesian network approaches.
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