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Abstract

Phase-space discretization is a necessary step

for study of continuous dynamical systems using a

language-theoretic approach. It is also critical for

many machine learning techniques, e.g., probabilistic

graphical models (Bayesian Networks, Markov mod-

els). This paper proposes a novel discretization method

– Maximally Bijective Discretization, that finds a dis-

cretization on the dependent variables given a dis-

cretization on the independent variables such that the

correspondence between input and output variables in

the continuous domain is preserved in discrete domain

for the given dynamical system.

1. Introduction

Discretization - the process of coarse-graining of

the data-space under some notion of similarity, trans-

forms continuous valued variables to a discrete sym-

bolic space. This is an important pre-processing step for

several applications such as symbolic time-series anal-

ysis of dynamical systems, data-mining and machine

learning. Given a continuous data-space, a compact re-

gion of interest is partitioned into a finite number of mu-

tually exclusive and exhaustive cells or partitions and

each partition is associated with a symbol. The time

evolution of a dynamical system can now be studied in

the symbolic space using a language-theoretic approach

with tools such as shift-maps and sliding block codes

in both deterministic and probabilistic setting. On the

other hand, for many applications in data-mining and

machine learning, discretization is necessitated by the

choice of tools that work only or are computationally

more efficient with discrete data.

Despite the necessity and importance of discretiza-

tion, there is no standard way to approach it. This is

because several factors such as the nature of the dy-

namical system or data set in question, choice of the

similarity metric, and desired model simplicity affect

the nature of a discretization scheme that is appropriate.

Moreover, even if one can define the optimality criteria

for discretization, the process will be NP-complete [1].

As pointed out by [2], while discretization is desirable

pre-processing step, practical discretization schemes

are necessarily heuristic in nature and a large number

of such schemes have been proposed in the literature.

The simplest methods include equal interval width (uni-

form) and equal interval frequency (maximum entropy)

discretization or partitioning. Symbolic false nearest

neighbor partitioning (SFNNP) [3] optimizes a generat-

ing partition by avoiding topological degeneracy. How-

ever, SFNNP may become extremely computation and

memory intensive if the dimension of the phase space

of the underlying dynamical system is large and the

noise content of the data is high. The wavelet transform

largely alleviates the above shortcoming and is partic-

ularly effective with noisy data for large-dimensional

dynamical systems [4]. Subbu, Ray [5] and Sarkar et.

al [6] introduced a Hilbert-transform-based analytic sig-

nal space partitioning (ASSP) as an alternative to the

wavelet space partitioning (WSP).

This paper proposes a supervised discretization
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scheme for symbolic modeling of dynamical sys-

tems [7]. The goal is to find a discretization of the

output space given some partition on the input space of

a dynamical system such that the input-output dynam-

ics of the system is preserved in the symbolic domain.

For this purpose, we propose a Maximally Bijective

Discretization scheme that aims to maximize the input-

output symbol correspondence for a given dynamical

system supervised by reward function.

2. Background and Motivation

Some complex system behaviors of interest can be

faithfully represented by a dynamical system in the con-

tinuous time and in continuous state space. However, it

is often difficult to obtain explicit functional relation-

ships from data in the continuous domain for many real

complex systems. Discrete symbolic modeling is pre-

ferred in such situations where the primary goal is to

preserve the functional relationships of the underlying

continuous domain system.

2.1. Representation of Dynamical Systems

In the context of symbolic system identification,

the underlying structure of a dynamical system is repre-

sented by a Generalized Dynamical System (GDS) [8].

A simplified definition is as follows:

Definition 2.1 A Generalized Dynamical System

(GDS) can be defined as an 6-tuple automaton.

D = (T,U,W,Q, f ,g) (1)

where

• T is a time set (e.g. T = [0,∞)),

• U and W are input and output sets respectively,

• Q are internal states,

• f denotes the global state transition

f : T ×Q×U→ Q for time-varying systems

(2)

f : Q×U →Q for time-invariant systems (3)

• g denotes the output function

g : T ×Q→W for time-varying systems (4)

g : Q→W for time-invariant systems (5)

For data-driven symbolic system identification of

a complex system, input and output variables are dis-

cretized temporally and spatially to generate blocks of

symbols, also called words. A grammar is the math-

ematical structure that constrains the inter-relationship

among these words. Let the quantized abstraction of the

GDS is called a Qualitative Dynamical System (QDS).

Definition 2.2 A Qualitative Dynamical System (QDS)

can be represented as a 5-tuple

G = {Q,Λ,Σ,δ ,γ} (6)

where

• Q , {q1,q2, ...,q f } is the finite set of qualitative

states of the automaton.

• Λ , {λ1,λ2, ...,λm} is the set of qualitative input

events.

• Σ , {σ1,σ2, ...,σn} is the set of output alphabets.

• δ : Q×Λ→Q is the state transition function that

maps the current state into the next state upon re-

ceiving the input λ . The state transition function

can be stochastic; in that case,

δ : Q×Λ→ Pr{Q} (7)

where, Pr{Q} is a probability distribution over Q.

• γ : Q → Σ is the output generation function that

determines the output symbol from the current

state. γ can be stochastic as well, i.e., (with similar

notation as before)

γ : Q→ Pr{Σ} (8)

2.2. Abstraction of GDS

Abstraction is the process of transforming a general

dynamical system into its qualitative counterpart. The

method is formalized as follows: Let χ denote a set of

qualitative abstraction functions

χ : D→ G (9)

χ consists of three individual abstraction functions:

χ = (χT QU ,χQ,χW ) , where

χT QU : T ×Q×U→ Λ (10)

χQ : Q→Q (11)

χW : W → Σ (12)
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Kokar [8] introduced a set of necessary and suf-

ficient conditions, or ‘consistency postulates’ that the

pair G ,χ must satisfy in order to be a valid representa-

tion of the general dynamical system. The consistency

postulates can be stated as follows:

Definition 2.3 Let D, G and χ represent a GDS, QDS

and an abstraction function respectively. Then the pair

(G ,χ) forms a consistent representation in a probabilis-

tic sense if, ∀q,u, t,

γ(χQ(q)) = χW (g(q)) (13)

χQ ( f (t,q,u))∼ δ (χQ(q),χT QU (t,q,u)) (14)

where X ∼ P means the random variable X is dis-

tributed according to the probability distribution P.

Theorem 2.1 (Kokar [8]) Let Wπ = W1, ...,Wn, n ∈ N

be a finite discretization of a GDS’s output space W,

given by χ−1
W : Σ→Wπ . Let Qπ describe a discretization

of Q defined as an inverse image of Wπ through g,

Qπ = g−1(Wπ),

and let T QUπ describe a discretization of T ×Q×U

defined as an inverse image of Qπ through f ,

T QUπ = f−1Qπ .

Then Qπ is a maximal admissible discretization of Q,

and TQUπ is an admissible discretization of T ×Q×U.

With such discretization, the QDS is related to the

GDS through a homomorphism. If the system model of

the GDS is known, such discretization can be analyti-

cally evaluated and utilized as delineated above. How-

ever, in the absence of model equations, alternate ways

are required to evaluate such discretization without ex-

plicitly knowing functions f and g.

One possible scheme [7] involves construction of

a pseudo phase space from the output signal using

Taken’s theorem [9]. After such construction, the

pseudo phase space and the input space are individually

discretized. The main idea of this scheme is to place

the boundaries of the discretization segments in such a

way, that a change in both input and output symbols

is synchronized. A discretization constructed in this

way is admissible, but may not be maximal, since this

discretization is a sub-discretization of the original dis-

cretization proposed in Theorem 2.1. The discretization

scheme is illustrated in Fig. 1 and Fig. 2. In this exam-

ple, a simulated system is considered with input/output
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Figure 1. Admissible discretization scheme
showed on an illustrative example system; Bin

boundaries are marked on corresponding axes

as grid lines
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Figure 2. Scatter plot of input U and output Y

with admissible discretization of U given uni-

form discretization of Y ; Bin boundaries are

marked on corresponding axes as grid lines

signals as:

U(t) = 2cos(0.25t) (15)

Y (t) = cos(0.5t) (16)

It is clear that periodicity (or at least quasi-periodicity)

guarantees that the number of output and input symbols

will not explode. Also, evaluation of such discretiza-

tion may not be so obvious and the alphabet size may

explode when the data is significantly noisy. This is the

prime motivation of this present work where the follow-

ing crucial observation is made: the above discretiza-

tion process essentially aims to maximize the degree of

input-output symbol correspondence.

3. Methodology and Algorithm

This section develops the methodology and algo-

rithm for a discretization scheme that maximizes the
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degree of input-output symbol correspondence, hence

named Maximally Bijective Discretization (MBD).

3.1. Representation of Discretization

Let the time series data of a variable generated from

a physical complex system or its dynamical model be

denoted as q. A compact (i.e., closed and bounded)

region Ω ∈ R
n, where n ∈ N, within which the time

series is circumscribed, is identified. Let the space

of time series data sets be represented as Q ⊆ R
n×N ,

where the N ∈ N is sufficiently large for convergence

of statistical properties within a specified threshold.

Note, n represents the dimensionality of the time-series

and N is the number of data points in the time series.

A discretization encodes Ω by introducing a partition

B ≡ {B0, ...,B(p−1)} consisting of p mutually exclu-

sive (i.e., B j ∩ Bk = /0 ∀ j 6= k), and exhaustive (i.e.,

∪p−1
j=0 B j = Ω) cells. For one-dimensional time series

data, a discretization consisting of p cells is represented

by p− 1 points that serve as cell boundaries. In the

sequel, a p-cell discretization B is also expressed as

Γm , {γ1,γ2, · · · ,γm−1}, where γi denotes a bin bound-

ary.

3.2. Maximally Bijective Discretization

Let the complex system under consideration has

m real-valued output variables and n real-valued input

variables that are denoted as w1, · · · ,wm and u1, · · · ,un

respectively. In the continuous domain, an input vari-

able ui for any i is represented as a function of all output

variables for the purpose of discretization as follows:

ui = hi(w1, · · · ,wm) (17)

Suppose a m-dimensional discretization is imposed on

the space of output variables that divides the data for

output variables into K discrete classes. The goal is

to discretize each input variable based on the defined

classes of output variables. This paper develops a Maxi-

mally Bijective scheme of performing the discretization

of each input variable separately. The problem is for-

mulated in the sequel for any input variable u (omitting

the subscript).

Let B ≡ {B0, ...,B(l−1)} be a discretization of one

of the input variables, where B j, j ∈ {0, ..., l−1} is a bin

of the discretization. With this setup, correspondence

between a class and a bin is defined as follows:

If i = argmax
k

P(Ck|x ∈ B j)

then, Ci ⇒ B j (18)

where, P(·) denotes a probability function and x ∈ R.

In words, class Ci corresponds to bin B j. Note, a class

Ci may correspond to more than one disjoint bins. From

this perspective, a reward function is defined as follows:

R(B|x) =
{

P(Ci|x ∈ B j) : Ci⇒ B j

}

(19)

Note that this reward function signifies the notion of

bijection, i.e., with higher reward, the probability of a

class being corresponding to a bin increases. With this

setup, the total expected reward is calculated as

T R(B) =
∫

X
R(B|x)P(x)dx (20)

The goal here is to maximize this total reward function,

hence the discretization scheme is called Maximally Bi-

jective. It is clear from the formulation that maximizing

the total reward function is equivalent to maximizing

R(B|x) at each x.

B
∗ = argmax

B

{R(B|x) ∀x}

= argmax
B

{

P(Ci|x ∈ B j) : Ci⇒ B j ∀x
}

(21)

This observation leads to an algorithm that is developed

and used to identify MBD in this paper. Let Pm(x) de-

notes
{

P(Ci|x ∈ B j) : Ci⇒ B j

}

at any x. Note, by this

definition

Pm(x) = max
i

P(Ci|x) ∀x (22)

With this setup an overview of the proposed algorithm

is provided below:

Overview of the Algorithm

x =min(D) (D denotes one dimensional data vector)

k = 1

while x < max(D) do

Identify Ci such that P(Ci|x) = Pm(x);
Identify C j such that P(C j|x+ dx) = Pm(x+ dx);
if i 6= j then

γk = x % Note, γk denotes the kth bin boundary

k← k+ 1

end if

x← x+ dx

end while

However, the primary issue with the above process is

reliable estimation of P(Ci|x) from data [2]. This pa-

per adopts a basic frequency counting (over an interval)

method to estimate this conditional probability. This

means that the optimization process begins with consid-

ering a small window in the domain (around min(D)) to

identify the most probable class in that interval. Then
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the window is slided across the data range of the input

variable and bin boundaries (γks) are placed where the

most probable class changes from one interval to the

next. However, this approximation may result in sub-

optimality of the solution. The rationale is as follows:

Let [a,b]⊂R be an interval over which the frequencies

of different classes are estimated to identify the most

probable class. The frequency of class Ci in the interval

[a,b] is denoted as n(Ci)|[a,b] and it can be represented

as

n(Ci)|[a,b] =

∫ b

a
P(Ci|x)P(x)dx (23)

To identify the most probable class in [a,b], one needs

to compare n(Ci)|[a,b] with n(C j)|[a,b]. However, it is

known that

∫ b

a
P(Ci|x)P(x)dx ≷

∫ b

a
P(C j|x)P(x)dx

; P(Ci|x) ≷ P(C j|x) ∀x ∈ [a,b] (24)

Consequently, the solution may become suboptimal due

to the consideration of intervals of finite width. Also, in

a realistic setting, the intervals need to be wide enough

to avoid significant effects of noise in the data. How-

ever, the following lemma can be stated in this scenario:

Lemma 3.1 The total reward (TR) is a nondecreasing

function of adding new bin boundaries.

This ensures that the total reward at least does not

reduce when a new bin boundary is introduced in the se-

quential algorithm proposed here. A rough proof sketch

of this property is provided here:

Proof Sketch: First of all, it should be noted that

introduction of a new bin boundary can be considered

as splitting one of the current bins. Let B j be the bin

which is splitted into B1
j and B2

j with the introduction

of a new bin boundary. Also, let class Ci be the most

probable class of the bin B j with frequency n(Ci)|B j
.

Let the total reward function before and after splitting

be denoted as TR(k) and T R(k+ 1) respectively. Now,

three cases are possible with this splitting.

• Case I: In both new bins B1
j and B2

j , Ci is no

longer the most probable class and the most prob-

able classes in B1
j and B2

j are say Cp and Cq respec-

tively. In this case,

T R(k+ 1) = n(Cp)|B1
j
+ n(Cq)|B2

j
>

n(Ci)|B1
j
+ n(Ci)|B2

j
= T R(k) (25)

• Case II: In one of the new bins, say in B1
j , Ci is still

the most probable class. However, in B2
j , Cq is the

most probable class. In this case,

TR(k+ 1) = n(Ci)|B1
j
+ n(Cq)|B2

j
>

n(Ci)|B1
j
+ n(Ci)|B2

j
= TR(k) (26)

• Case III: In both new bins, Ci is still the most prob-

able class. In this case,

T R(k+ 1) = n(Ci)|B1
j
+ n(Ci)|B2

j
= T R(k) (27)

Therefore, T R(k + 1) ≥ T R(k), i.e., total reward does

not decrease when new bin boundaries are introduced

sequentially in the algorithm described above. This is

also compatible with the intuitive notion of increase in

reward with increase in complexity.
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Figure 3. Illustrative example: MBD of noisy in-

put U Given a Uniform discretization of output

Y ; Bin boundaries are marked on correspond-
ing axes as grid lines

Figure 3 shows the MBD for the illustrative ex-

ample problem introduced in Section 2. However,

a noisy version of the data as opposed to the previ-

ous noise-free version has been used to demonstrate

the efficacy of the algorithm. It is clear from the re-

sult that in a numerically stable scenario, the present

approach can identify the bin boundaries of an ad-

missible discretization defined in Section 2. Further-

more, Fig. 4 shows that the total reward monotoni-

cally increases with addition of new bin boundaries as

stated in Lemma 3.1. The total reward of the MBD

in this example is found to be 0.88. For comparison

purposes, uniform discretization of same complexity,

i.e., with same number of cells/bins (with bin bound-

aries [−1.66,−1.00,−0.350.300.961.61]) has total re-

ward of 0.79 and maximum entropy discretization with
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Figure 4. Monotonic increase in Total Reward

with addition of new bin boundaries

same complexity (with bin boundaries [−1.80−1.25−
0.450.451.231.80]) has total reward of 0.76. The fol-

lowing remark summarizes some of the key aspects the

proposed discretization policy.

Remark 3.1 The MBD scheme developed here avoids

computationally expensive iterative search for bin

boundaries in the data space. Instead, this algorithm

scans data space once to sequentially place optimal bin

boundaries and in turn identifies the optimal number

of cells/bins in a stable numerical scenario. Further,

the discretization of the output variables can be revised

once MBD of the input variables are obtained. This pro-

cess essentially involves removing certain bin bound-

aries of output variables that do not have effect in the

MBD of the input variables.

4. Summary, Conclusions & Future Work

This paper proposes a supervised multivariate dis-

cretization scheme for data-driven symbolic modeling

of dynamical systems. The primary goal is to discretize

certain dependent variables of a system given the dis-

cretization of certain independent variables such that

the functional relationships among variables in the con-

tinuous domain are preserved in the discrete domain as

much as possible . The primary contribution of this

work is formulation and algorithm development of a

MBD scheme that aims to maximize the symbolic cor-

respondence between discretized variables. It should

be noted that there are other popular cost functions (in-

volving e.g., maximizing mutual information and mini-

mizing Bayes risk) available in literature that may have

similar effects on discretization as the current reward

function proposed in this paper. Therefore, compari-

son of the strategy presented here with the other simi-

lar cost/reward functions is an important topic of future

investigation. Other than that, the following research

topics are currently being pursued as well - (1) Using

discretization complexity as a competing objective to

reduce the number of bins; (2) Extension of the cur-

rent algorithm to handle multi-dimensional discretiza-

tion; (3) Extensive validation on real data obtained from

human-engineered complex systems.
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