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Abstract— This paper presents an analytical tool for online
fatigue damage detection in polycrystalline alloys that are com-
monly used in mechanical structures. The underlying theory
is built upon symbolic dynamic filtering (SDF) that optimally
partitions time series data for feature extraction and pattern
classification. The proposed method has been experimentally
validated on a fatigue test apparatus that is equipped with
ultrasonics sensors and a traveling optical microscope for
fatigue damage detection.

I. INTRODUCTION

Fatigue damage is one of the most commonly encountered

source of structural degradation of mechanical structures,

made of polycrystalline alloys. The process of fatigue dam-

age accumulation in such materials normally takes place in

two stages:

• Stage I (Grain Level): Development of microscopic

cracks along grain boundaries or along crystal shear

planes within a critical grain.

• Stage II (Macro Level): Transformation or coalescence

of short cracks into a microcrack potentially leading to

a normal breakage crack.

The life of a machine component in the above two

stages depends on many factors such as loading conditions,

material geometry, material strength, initial distribution of

flaws within material. Given the random nature of loading

and initial distribution of flaws, model-based analysis is

infeasible for such materials under fatigue loads. However,

many model-based techniques have been reported in re-

cent literatures related to structural health monitoring [1].

These models are dependent on initial (randomly distributed)

defects tool that would be reliable for real-time decision

making. This can be accomplished by appropriate sensors

combined with time series data analysis along with knowl-

edge of current status of fatigue damage.
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A variety of damage detection techniques, based on differ-

ent sensing devices (e.g., ultrasonics, acoustic emission, and

eddy currents), have been proposed in recent literature for

fatigue damage monitoring [2][3][4]. These sensing methods

are not very suitable for real-time monitoring of damage.

The other technique to detect microstructural changes within

the materials used in complex electromechanical structures is

ultrasonic sensing. Ultrasonic impedance is very sensitive to

small microstructural changes occurring during early stages

of fatigue damage evolution. Therefore, it is logical to detect

the incipient damage from changes in statistical patterns of

ultrasonic data due to gradual evolution of anomalies (i.e.,

deviations from the nominal behavior) in material micro

structures [5].

Several techniques of pattern identification are avail-

able [6], but only very few of these tools (e.g., artificial

neural networks, and principal component analysis) have

been applied for online damage detection. Also, Such ap-

plications are largely restricted to the crack propagation

regime after a substantial part of the useful service life

has already been expended. Recently symbolic time series

analysis(STSA) [7] [8] has been proposed and demonstrated

successfully on ultrasonic time series data for early anomaly

detection of fatigue damage. In this method ultrasonic signals

are converted from the time domain to quasi-stationary

symbolic sequences by symbolic dynamic encoding [9]. This

procedure enables noise suppression due to symbolization

by coarse graining [10], extraction of relevant information

by partitioning and information compression into low-

dimensional probability vectors. A major step in SDF-based

feature extraction is partitioning of time-series data to gen-

erate symbols that are subsequently converted to feature

vectors by use of the probabilistic finite state automata

(PFSA) [7]. In this context, the major contributions of this

article are listed below.

• Formulation of sensor data based fatigue damage detec-

tion in crack initiation and propagation regime.

• Optimization of partitioning in the SDF-based feature

extraction setting.



The paper is organized into seven sections including the

present one. Section II formulates the damage classification

and detection problem in two different stages of fatigue

evolution. Section III introduces the experimental setup and

describe the test and data acquisition details. Section IV

presents a brief background and formulation of SDF-based

feature extraction for the current problem and Section V

describes the partitioning optimization methodology. Sec-

tion VI presents the results of validating the proposed

classification scheme on the experimental data. Section VII

summarizes the paper and makes major conclusions along

with recommendations for future research.

II. FATIGUE DAMAGE CLASSIFICATION

Fatigue is broadly classified into two phases; namely crack

initiation and crack propagation. As damage mechanism of

these two phases are significantly different, similar detec-

tion methods may not work effectively to classify different

damage levels in these two phases. Damage evolution in

crack initiation phase is much slower, resulting in smaller

change in ultrasonic signals as compared to that in the crack

propagation phase. So to get maximum information from the

ultrasonic data sequences, different partitioning is required

in these two phases. Damage classification scheme for these

phases are defined in the sequel.

A. Crack initiation

Since crack initiation predominantly forms a significant
portion of the total life [11], especially in the high cycle
fatigue, the quantification of fatigue damage during crack
initiation is of paramount importance for safety, reliability,
and maintenance of mechanical and aerospace structures. As
this phase is caused by multiple small cracks, dislocations
and other defects, any direct physical parameter to define
damage in this regime is difficult. In the present classification
method different classes are defined based on the fraction
of crack initiation life. This is defined as the number of
load cycles that a specimen sustains before appearance of
the crack at surface. In this paper crack initiation is divided
into three classes :

Class Used crack initiation life fraction

1 0 to 0.5
2 0 .5 to 0.8
3 0.8 to 1.0

Identifying the class of damage is very critical for the

maintenance as well as the control operation. If the compo-

nent is in first class of damage it means more than 50% life is

still remaining, so it is safe to continue the operation. While

the third class suggests that more than 80% is consumed so

crack may appear soon, sending alarm to controller to take

the appropriate action for safe operation. This can also be a

basis for maintenance schedule.

B. Crack Propagation

The phase transition from crack initiation to crack prop-
agation occurs when several small microcracks coalesce
together to develop a single large crack that propagates
under oscillating load. Several crack propagation models
have been developed based on the inherent stochastic nature
of fatigue damage evolution for prediction of the remaining
useful life. Due to stochastic nature of material properties and

Fig. 1. Ultrasonic flaw detection scheme

operating conditions, any physical model requires knowledge
of some parameter associated with the particular specimen
or component. These parameters are random and can not be
known beforehand. Crack propagation rate is a function of
crack length; after a certain length, crack propagates unstably
leading to catastrophic failure. So appropriate action must be
taken before crack attains a critical size. In this classification
problem damage is classified on basis of crack length. The
crack propagation stage is divided into four classes:

Class Crack Length

1 0.5 to 1.75 mm
2 1.75 to 3.5 mm
3 3.5 to 5.5 mm
4 more than 5.5 mm

III. EXPERIMENTAL PROCEDURE

The fatigue tests were conducted at a constant amplitude

sinusoidal load for low-cycle fatigue, where the maximum

and minimum loads were kept constant at 87MPa and

4.85MPa, respectively. For low cycle fatigue studied in this

paper, the stress amplitude at the crack tip is sufficiently high

to observe the elasto-plastic behavior in the specimens under

cyclic loading. A significant amount of internal damage

caused by multiple small cracks, dislocations and microstruc-

tural defects alters the ultrasonic impedance, which results

in signal distortion and attenuation at the receiver end.

The optical images were collected automatically at ev-

ery 200 cycles by the optical microscope which is always

focussed in the crack tip. As soon as crack is visible by

the microscope, crack length is noted down after every 200

cycles. Ultrasonic waves with a frequency of 5 MHz were

triggered at each peak of the sinusoidal load to generate data

points in each cycle. Ultrasonic data were collected at the

peak of each sinusoidal load cycle, where the stress is maxi-

mum and the crack is open causing maximum attenuation of

the ultrasonic waves. The slow time epochs for data analysis

were chosen to be 1000 load cycles (i.e., ∼80 sec) apart. To

generate training and test data sample multiple experiments

are conducted on different specimen. For each specimen all

ultrasonic signals are labeled with either life fraction (Crack

initiation) or crack length (crack propagation).

IV. SYMBOLIC DYNAMIC FILTERING (SDF)-BASED

FEATURE EXTRACTION

This section reviews symbol dynamic filtering approach

for anomaly detection [7]. The methodology of this symbolic

feature extraction tool is reported in recent literature [12]; a

brief outline of the procedure is succinctly presented here

for completeness of the paper.



• The fast scale is related to the response time of process

dynamics. Over the span of a given time series data

sequence, the behavioral statistics of the system are

assumed to remain invariant.

• The slow scale is related to the time span over which

the process may exhibit non-stationary dynamics due to

(possible) evolution of anomalies.

• Sensor time series data, generated from a physical

system or its dynamical model, are collected at a slow-

scale epoch and let it be denoted as q. A compact (i.e.,

closed and bounded) region Ω ∈ R
n, where n ∈ N,

within which the stationary time series is circumscribed,

is identified. Let the space of time series data sets be

represented as Q ⊆ R
n×N , where N ∈ N is sufficiently

large for convergence of statistical properties within a

specified threshold.

• Encoding of Ω is accomplished by introducing a parti-

tion B , {B0, ..., B(|Σ|−1)} consisting of |Σ| mutually

exclusive (i.e., Bj ∩ Bk = ∅ ∀j 6= k), and exhaustive

(i.e., ∪
|Σ|−1
j=0 Bj = Ω) cells, where each cell is labeled by

symbols σj ∈ Σ and Σ = {σ0, ..., σ|Σ|−1} is called the

alphabet. This step enables transformation of the time

series data {q} to a symbol sequence {s}, consisting of

the symbols σj in the alphabet Σ.

• A probabilistic finite state machine (PFSA), consisting

of r states, is then constructed and the symbol sequence

{s} is run through the PFSA. Thus, an (r × r) state

transition matrix Π ≡ [πjk] is obtained at the slow-scale

epoch, where πjk ≥ 0 is the transition probability from

state j to state k of the PFSA. State probability vector

p = [p1 · · · pr] is the left eigenvector corresponding to

the unique unity eigenvalue of Π. The (1× r) vector p

could be treated the extracted feature vector .

For anomaly detection using SDF, the nominal time-

series is partitioned by one of the classical schemes (e.g.,

Uniform Partitioning (UP) or Maximum Entropy partitioning

(MEP)) [7], [13], [14]. Then using the steps described before,

a low dimensional feature vector pnom is constructed for

the nominal slow-scale epoch. Similarly, from a time-series

at a possibly anomalous epoch, feature vector poff-nom is

constructed using the same partitioning.

V. OPTIMIZATION OF PARTITIONING

Properties and variations of transformation from the sym-

bol space to the feature space have been extensively studied

in the Mathematics, Computer Science and especially Data

Mining literature. Apparently, similar efforts have not been

expended to investigate partitioning of time series data to

optimally generate symbol blocks for pattern classification

and anomaly detection. Wavelet space partitioning (WSP) is

particularly effective for noisy data for large-dimensional dy-

namical systems [7]; maximum entropy partitioning (MEP)

was used to generate symbol blocks from time series data

by WSP. Subbu and Ray [14] introduced Hilbert-transform-

based analytic signal space partitioning (ASSP) as an al-

ternative to WSP, and Sarkar et. al [15] generalized ASSP

for symbolic analysis of noisy signals. Nevertheless, these

partitioning techniques primarily provide a symbolic rep-

resentation of the underlying dynamical system under a

given quasi-stationary condition, rather than capturing the

data-evolution characteristics due to a fault in the system.

The partitioning optimization methodology elaborated in this

section endeavors to overcome this shortcoming to make

SDF, a robust data-driven feature extraction tool for pattern

classification and fault detection.

In this paper, the wrapper method is adopted (i.e., the

classification error is minimized on the training set for opti-

mization) primarily because of the non-binary nature of the

problem at hand and the possible non-Gaussian distribution

of training samples in the feature space.

In a multi-class problem, ideally one should jointly min-

imize all the off-diagonal elements of the confusion matrix,

while maximizing the diagonal elements. However, in that

case, the dimension of the objective space blows up with

increase in the number of classes which is obviously imprac-

tical. Therefore, two costs may be defined on the confusion

matrix by using another penalty weighting matrix, elements

of which denote the relative penalty values for different

confusions in the classification process. Formally, let there be

Cl1, · · · , Cln classes of labeled time-series data given as the

training set. A partitioning B is employed to extract features

from each sample and a k-NN classifier K is used to classify

them. After the classification process, the confusion matrix

C is obtained, where the value of its element cij denotes the

frequency of data from class Cli being classified as data from

Clj . Let W be the weighting matrix, where the value of its

element wij denotes the penalty incurred by the classification

process for classifying a data set from Cli as a data set from

class Clj . With these definitions, the cost due to expected

classification error, CostE is defined as:

CostE =
1

Ns





∑

i

∑

j

wijcij



 (1)

where Ns is the total number training samples including all

classes. The outer sum in the above equation sums the total

penalty values for misclassifying each class Cli. Thus CostE
is related to the expected classification error.

It is implicitly assumed in many supervised learning

algorithms that the training data set is a statistically similar

representation of the whole data set. However, this assump-

tion may not be very accurate in practice. A natural solution

to this problem is to choose a feature extractor that minimizes

the worst-case classification error [16] as well. In the present

setting, the cost due to worst-case classification error, CostW
can be defined as:

CostW = max
i





1

Ni

∑

j

wijcij



 (2)

where Ni is the number of training samples in class

Cli. Finally, in accordance with multi-objective optimization

literature, an overall cost CostO is defined as a linear
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Fig. 2. General Framework for optimization of feature extraction

combination of CostE and CostW with parameter α ∈ [0, 1].

CostO = αCostE + (1 − α)CostW (3)

Figure 2 depicts the general outline of the classification

process. Labeled time series data from the training set

are partitioned and the generated low-dimensional feature

vectors (via symbolization and PFSA construction) are fed

to the classifier. After classification, the training error cost,

defined in Eq. (3), is computed and fed back to the feature

extraction block. During classification, the classifier may be

tuned to the obtain better classification rates. For example,

for k-NN classifiers [17], choice of neighborhood size or

the distance metric can be tuned. The partitioning is updated

to reduce the cost based on the feedback. The iteration is

continued until the set of optimal partitioning in a multi-

objective scenario and the correspondingly tuned classifier

are obtained.

Ideally, the optimization procedure involves construction

of the Pareto front by minimizing CostO for different values

of α and the user should choose a particular value of α as

the operating point. Thus, the optimal partitioning B
∗ is the

solution to the following optimization problem:

B
∗ = arg min

B

CostO(B) (4)

Optimization Procedure

This paper adopts a sequential search based optimization

technique of partitioning, previously proposed in [18]. As

the continuity of the partitioning function with respect to

the range space of classification error-related costs may not

exist or at least are not adequately analyzed, gradient-based

optimization methods are not explored in this paper. Suppose,

the number of cells of the partitioning B is |Σ| and the

region Ω ∈ R
1 (see Section IV) that circumscribes the

one dimensional times series data space, is identified. To

construct the search space, a suitably fine grid size depending

on the data characteristics needs to be assumed. Each of the

grid boundaries denotes a possible position of a partitioning

cell boundary. Let the data space region Ω be divided into

G grid cells, i.e., there are G− 1 grid boundaries excluding

the boundaries of Ω. Thus, there are |Σ| − 1 partitioning

boundaries to choose among G−1 possibilities, i.e., the num-

ber of elements (i.e., |Σ|-dimensional partitioning vectors)

in the space P of all possible partitioning is: G−1C|Σ|−1.

It is clear from this analysis that the partitioning space P
may get significantly large with increase in values of G and

|Σ| (e.g., for G >> |Σ|, computational complexity increases

approximately by a factor of G/|Σ| with increase in value of

|Σ| by one). In that case, usage of a direct search approach

becomes infeasible for evaluation of all possible partitioning.

Therefore, this paper develops a sub-optimal solution for the

multi-objective optimization problem described above.

The objective space consists of the scalar valued cost

CostO , while decisions are made in the space P of all pos-

sible partitioning. In the case of one-dimensional time series

data, a partitioning consisting of |Σ| cells may be succinctly

represented by the |Σ| − 1 points that separate the cells. In

the sequel, a Σ-cell partitioning B is expressed as Λ|Σ| ,
{λ1, λ2, · · · , λ|Σ|−1}, where, λi, ∀i ∈ {1, 2, · · · , |Σ|−1} de-

notes a partitioning boundary. The overall cost is dependent

on a specific partitioning Λ and is denoted by CostO(Λ).
This sub-optimal partitioning scheme involves sequential

estimation of the elements of the partitioning Λ.

The partitioning process is initiated by searching the

optimal cell boundary to divide the data set into two cells,

i.e., Λ2 = {λ1}, where λ1 is evaluated as

λ∗
1 = arg min

λ1

CostO(Λ2) (5)

Now, the two-cell optimal partitioning is given by Λ∗
2 =

{λ∗
1}. The next step is to partition the data into three cells

as Λ3) by dividing either of the two existing cells of Λ∗
2 with

the placement of a new partition boundary at λ2, where λ2

is evaluated as

λ∗
2 = arg min

λ2

CostO(Λ3) (6)

where Λ3 = {λ∗
1, λ2}. The optimal 3-cell partitioning is

obtained as Λ∗
3 = {λ∗

1, λ
∗
2}. In this (local) optimization

procedure, the cell that provides the largest decrement in

CostO upon further segmentation ends up being partitioned.

Iteratively, this procedure can be extended to obtain the m
cell partitioning as follows.

λ∗
|Σ|−1 = arg min

λ|Σ|−1

CostO(Λ|Σ|) (7)

where Λ|Σ| = Λ∗
|Σ|−1 ∪ {λ|Σ|−1} and the optimal |Σ| cell

partitioning is given by Λ∗
|Σ| = Λ∗

|Σ|−1 ∪ {λ∗
|Σ|−1}

This optimization procedure is monotonically decreasing

in the cost function with every additional sequential oper-

ation, i.e., CostO(Λ∗
|Σ|−1) ≥ CostO(Λ∗

|Σ|). This is evident

from the following argument.

Let Λ∗
|Σ|−1 be the (|Σ|-1)-cell partitioning that minimizes

CostO . Based on the algorithm, Λ|Σ| = Λ∗
|Σ|−1∪{λ|Σ|−1}).



If λ|Σ|−1 is chosen such that it already belongs to Λ∗
|Σ|−1,

then there would be no change in the partitioning structure

and CostO(Λ|Σ|) = CostO(Λ∗
|Σ|−1). Since CostO(Λ∗

|Σ|) ≤
CostO(Λ|Σ|) ∀Λ|Σ|, it follows that min(CostO(Λ|Σ|−1)) ≥
min(CostO(Λ|Σ|)). The monotonicity in the cost function

allows formulation of a rule for termination of the sequential

optimization algorithm. The process of creating additional

partitioning cells is stopped if the cost decrease falls below

a specified positive scalar threshold ηstop and the stopping

rule is: Λ∗
|Σ|−1 is the optimal partitioning if

CostO(Λ∗
|Σ|−1) − CostO(Λ∗

|Σ|) ≤ ηstop. (8)

VI. RESULTS AND DISCUSSION

This section presents the classification results for the two

stages of fatigue damage evolution : (i) crack initiation and

(ii) crack propagation. As damage mechanism is entirely dif-

ferent in these two regimes, which is evident from big change

in the ultrasonic signal in these two phases.To start with the

classification process first time series data is converted to

wavelet transform at a particular scale, time shift and basis

function selected appropriately. Each transformed signal is

normalized with the maximum amplitude of transformed

signal obtained at the beginning of experiment, when there

is no damage in the specimen. The normalization is done to

remove the effect of variability in placement of ultrasonic

sensors during different experiments.
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Fig. 3. Representative signal from different classes in crack initiation phase

A. Crack Initiation

The fatigue crack initiation phase is divided into three

classes based on the fraction of crack initiation life. The

three classes represent different life fraction as defined in

section II-A. Fig. 3 shows the representative test data sample

for each class. For partitioning the data, a weighing matrix

W needs to be defined to calculate the costs CostE and

CostW from the confusion matrix for the training data set.

The weights wij are defined as penalty for classifying a data

sample originally from Cli is classified as a member of Clj .

The weighing matrix has to follow two rules in the case of

fatigue damage classification: (i) wii = 0 ∀i ∈ {1, 2, 3}, i.e.

there is no penalty for correct classification and (ii) wij >
wji; if i > j, i.e. penalty for classifying a higher level

damage as a lower level damage is much more than vice-

versa. W is given as:

W =





0 1 2
3 0 1
6 3 0





The data space region Ω is divided into 100 grid cells,

i.e., 99 grid boundaries excluding the boundaries of Ω. The

sequential partitioning optimization procedure described in

Section V is then employed to identify the optimal partition-

ing. The threshold value ηstop for stopping the algorithm is

chosen to be 0.001 and the optimal alphabet size is found

to be, |Σ| = 7. For SDF analysis, the depth for constructing

PFSA sates is taken to be, D = 1 and features are classified

by a k-NN classifier (with k = 5) using the Euclidean

distance metric.

For comparison purpose, classical partitioning schemes,

such as, Uniform Partitioning (UP) and Maximum Entropy

Partitioning (MEP) are also used with the same alphabet

size, Σ = 7. Finally, the confusion matrices for the Optimal,

Uniform and Maximum Entropy Partitioning on the test data

set are given by C
OptP
test , C

UP
test and C

MEP
test respectively.

C
UP
test =





92 8 0
3 87 10
0 10 90



 ,CMEP
test =





95 5 0
3 90 7
0 11 89





C
OptP
test =





95 5 0
4 91 5
0 9 91





Table I compares the values of CostE and CostW for OptP,

UP and MEP on the test set. It is interesting to notice

that both CostE and CostW have reduced compared to

the classical partitioning schemes. Also observing the confu-

sion matrices, it is evident that confusion between different

classes are least for optimal partitioning as compared to other

two partitioning methods.

TABLE I

COMPARISON OF CLASSIFICATION PERFORMANCES OF DIFFERENT

PARTITIONING SCHEMES ON TEST DATA SET

Partitioning CostE CostW

OptP 0.1222 0.1866
UP 0.1489 0.2000

MEP 0.1357 0.2267

B. Crack Propagation

During crack propagation damage is defined by crack
length. Training and test data set is classified based on
crack length as all the ultrasonic signal is labeled with the
corresponding crack length. This regime has been partitioned
into four classes as defined in section II-B. The weighing
matrix W is defined as per rules described in section VI-A.
W matrix is defined as

W =







0 1 2 3

3 0 1 2

6 3 0 1

9 6 3 0









Sequential optimization of partitioning has been carried

on the training data set to find optimal partitioning. The

optimal alphabet size is 6 with stopping threshold value

ηstop = 0.005.The confusion matrices for Optimal, Uniform

and Maximum Entropy Partitioning on the test data set are

given by C
OptP
test C

UP
test and C

MEP
test respectively. Table II

shows the comparison of classification performances using

different partitioning processes.

TABLE II

COMPARISON OF CLASSIFICATION PERFORMANCES OF DIFFERENT

PARTITIONING SCHEMES ON TEST DATA SET

Partitioning CostE CostW

OptP 0.255 0.5
UP 0.40333 0.68

MEP 0.31333 0.52

The confusion matrices obtained from the three different
partitioning schemes are:

C
UP
test =







94 5 1 0

15 74 11 0

0 9 85 6

1 5 11 83






C

MEP
test =







93 7 0 0

12 82 6 0

0 7 89 4

1 3 7 89







C
OptP
test =







93 7 0 0

5 89 6 0

0 4 92 4

0 3 7 90







It is observed that both costs CostE and CostW have

reduced for optimal partitioning as compared to maximum

entropy and uniform partitioning. Also, from confusion

matrix it is evident that optimal partitioning has improved

the classification results. By close observation of confusion

matrix we find that chances of higher damage level data

samples being classified as a lower level damage is reduced

by the current choice of weighing matrix.

VII. CONCLUSIONS AND FUTURE WORK

This paper presents symbolic dynamic filtering (SDF)-

based feature extraction and pattern classification for fatigue

damage detection in polycrystalline alloys that are common

used in mechanical structures. Sequential optimal partition-

ing has been used for feature extraction to improve pattern

classification rate and reducing classification errors. Different

partitioning methods have been tested for detection and

classification of the two phases of fatigue damage, namely,

initiation and propagation. The classification results using

optimal partitioning is compared with the other classical

partitioning scheme (Uniform partitioning and Maximum

entropy partitioning). Optimal partitioning results in better

classification than the other classical partitioning schemes by

reducing costs related to classification. The proposed method

of fatigue damage classification has been validated to yield

low classification error rates in presence of sensor noise and

variability in the material properties that have a significant

bearing on the ultrasonic impedance.

The advantages of the proposed fatigue detection scheme

include real-time implementation where the classification

information can be readily used to make maintenance &

control decisions, which is critical for the safe operation of

machine or structural components. The following topics are

suggested for future research.

• Use change in surface profile as a basis for classification

in crack initiation regime.

• Usage of other types of classifiers (e.g., Support Vector

Machines) and feature extraction methods, and per-

formance comparison among different classifiers and

feature extraction methods.

• Study the effect of phase transition on complexity of the

fatigue process to get new insight about fatigue damage

evolution phenomenon.

• Development of a control strategy based on the classifier

information to increase the fatigue life;
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