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Abstract— This paper presents estimation of multiple faults
in aircraft gas-turbine engines, based on a statistical pattern
recognition tool called Symbolic Dynamic Filtering (SDF).
The underlying concept is built upon statistical analysis of
evidences to estimate anomalies in multiple critical parameters
of the engine system; it also presents a framework for sensor
information fusion. The fault estimation algorithm is validated
by numerical simulation on the NASA C-MAPSS test-bed of
commercial aircraft engines.

1. INTRODUCTION

Aircraft propulsion system health monitoring is one of the

key issues regarding aviation safety. Current state of the art

of health monitoring involves a regular and fixed schedule

of inspection and maintenance which are essentially conser-

vative in nature and hence may not be cost effective. On

the other hand, in unusual circumstances, the normal ground

inspection schedule may not be able to detect aggravation

of hidden faults, which may result in a permanent damage

of the engine or a potentially catastrophic accident. Hence,

there is a need for new technologies of health monitoring

for aircraft gas turbine engines, which can be pursued either

onboard during a flight or on the ground but without the

need for installation of additional sensors and/or mounting

the engine on a maintenance test facility. Hoffman and

van der Merwe [1] have shown that traditional frequency-

based methods may not be readily applicable to estimate

the evolution of multiple faults in gas turbine engines; fault

dictionaries have been used to alleviate this problem, but they

are often infeasible to store in onboard applications because

of their large sizes [2].

In a two-part paper [3][4], we have reported an SDF-

based algorithm for detection and isolation (FDI) of faults

(Specifically, faults that cause efficiency degradation in en-

gine components) in aircraft engine subsystems. The major

contributions of this paper beyond our previous work in the

field of engine health monitoring are listed below.
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Agreement No. NNX07AK49A and by the U.S. Army Research Office un-
der Grant No. W911NF-07-1-0376. Any opinions, findings and conclusions
or recommendations expressed in this publication are those of the authors
and do not necessarily reflect the views of the sponsoring agencies.

• Estimation of (simultaneously occurring) multiple faults

in aircraft gas-turbine engines.

• Formulation of a framework for sensor data fusion as

needed for estimation of multiple faults.

• Data compression as pattern vectors of low-dimension

for feature-level sensor fusion as needed for onboard

vehicle health monitoring and resilient control.

2. MULTIPLE FAULT ESTIMATION METHODOLOGY

This section describes a statistical methodology for multi-

ple fault estimation in aircraft gas-turbine engines along with

a sensor fusion framework.

A. Problem Statement

Let S denote a collection of (finitely many) data points in

the n-dimensional parameter space, where the positive inte-

ger n is the number of parameters that are to be estimated.

That is, S =
{

s0, s1, · · · , s|S|−1
}

, on which the training

process is executed. In the context of gas-turbine engines,

sk signifies a particular faulty condition in the set of fault

conditions S under consideration. Let s0 denote the nominal

condition of the engine, and Y be the set of sensors for the

engine system consisting of sensors yj for j = 1, 2, ..., |Y|.
Let Ω be the convex hull of S, which represents the range

over which the parameters take values. It is noted that Ω is a

convex and compact subset of the separable space R
n. The

problem at hand is to statistically estimate fault condition

s ∈ Ω, given an experimental data set Υ, i.e., to identify the

conditional probability density f(s|Υ). It is noted that s ∈ Ω
may not be one of the points in set S.

The multiple-fault estimation procedure is divided into

two steps, which are: (i) Forward Problem/Training, and (ii)

Inverse Problem/Testing, as described below in detail.

B. Forward Problem/Training

In the forward problem, a database of patterns is created

at parameter values, sk, ∀k = 0, 1, · · · , (|S| − 1), by col-

lecting time-series data from sensors yj ∈ Y . Generation

of statistical patterns from time series data is posed as a

two-scale problem [5][3]. The fast scale is related to the

response time of the process dynamics, over the span of

which the process is assumed to be quasi-stationary. The slow
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scale is related to the time span over which deviations (e.g.,

parametric or non-parametric changes) may occur and exhibit

non-stationary dynamics. In the present context, time-series

data are collected with the system being quasi-stationary at

a particular slow-scale epoch sk. The procedural steps of the

forward problem are presented below.

Time series data acquisition on the fast scale from the

available sensors: Time series data sets from each sensor

yj ∈ Y are collected for each epoch sk ∈ S.

Wavelet/Hilbert transform pre-processing of the time-

series data: The wavelet or Hilbert transforms largely al-

leviate the difficulties of phase-space partitioning and are

particularly effective with noisy data from high-dimensional

dynamical systems [3][6].

Maximum Entropy Partitioning of the transformed space

at the reference condition of epoch s0: This step enables

transformation of the pre-processed time series data from the

continuous domain to the symbol domain [5] by partitioning

the transformed phase space, where the data set from each

sensor yj , j = 1, · · · , |Y|, has its own alphabet; for each

sensor, a specific symbol is assigned to each partition seg-

ment from the respective alphabet. Maximum entropy parti-

tioning [3][6] is constructed separately for different sensor

data sets at epoch s0. These partitions are kept invariant for

analysis at subsequent epochs s1, s2, ..., s|S|−1 of respective

sensor data.

Construction of a probabilistic finite state automaton

(PFSA) at the reference condition s0 and Computation of

state probabilities: PFSA are constructed for every sensor

data at epoch s0 and their structures remain invariant for

subsequent epochs of each sensor data. Let the Nj , be

the number of states in the PFSA corresponding to the

sensor yj, j = 1, · · · , |Y|. The sum of the probabilities of

all states is equal to unity, i.e.,
∑Nj

i=1 p
j
i (s

k) = 1 ∀j ∈
{1, · · · , |Y|} ∀k ∈ {0, · · · , |S| − 1}, where pj

i (s
k) denotes

the probability of the ith state of the PFSA constructed fron

time series of jth sensor at epoch sk; at most Nj − 1, out

of the Nj elements of the state probability vector can be

independent. Therefore, the pattern for each sensor labeled

by j = 1, · · · , |Y| is represented by a (Nj − 1)-dimensional

row vector pj ,
[

pj
1 · · · p

j
Nj−1

]

∀j ∈ {1, · · · , |Y|}; this

notation holds for all epochs sk ∀k ∈ {0, · · · , |S| − 1}.

Construction of the pattern database: A reference pattern

array P(s0) is constructed by vertical stacking of the refer-

ence row vectors, pj(s0), j ∈ {1, · · · , |Y|}, as shown below.
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Computation of pattern statistics: Different units of iden-

tically manufactured engines are different in behavior or

performance; this inevitable uncertainty is modeled as the

process noise. Therefore, several runs are performed for each

fault condition, with a certain value of process noise along

with an a priori determined sensor noise (e.g., calculated

from instrumentation manufacturer’s specifications) to obtain

the pattern vector statistics. Let the pattern array P(sk)
be modeled as a random array Q(sk), whose elements are

ql
i(s

k) that is constructed from the ensemble of realizations

pl
i(s

k). Considering up to second order statistics, elements

of the random array Q(sk) are modeled to have multivariate

structures from the perspectives of state machine construction

in the SDF setting. Thus, for each epoch sk, a mean

pattern vector µ(sk) and a corresponding covariance matrix

Γ(sk) of the pattern are calculated from the elements of

Q(sk). An element of µ(sk) is expressed as ml
i(s

k), ∀l ∈
{1, 2, · · · , |Y|} and ∀i ∈ {1, 2, ..., Nl − 1}, which signifies

the mean values of pl
i(s

k) generated from the data sets

of different runs. Similarly, an element of the covariance

matrix Γ(sk) is expressed as γlℓ
ij(s

k), ∀l, ℓ ∈ {1, 2, ..|Y|} and

∀i ∈ {1, 2, ..., Nl − 1}, and ∀j ∈ {1, 2, ..., Nℓ − 1}, which

signifies the value of cross-covariance between pl
i(s

k) and

pℓ
j(s

k), which is also generated from the data sets of different

runs. Note that, for l = ℓ, the covariance matrix terms yield

correlation among the states i and j of the PFSA generated

from the same sensor data and, for l 6= ℓ, the covariance

matrix terms yield correlation among the states i and j of

different PFSA corresponding to different sensors.

For the purpose of book-keeping in statistical calculations,

each of the (two-dimensional) arrays P(sk) is rearranged

as a single row vector p(sk) by horizontally concatenat-

ing the row vectors pj(sk), j ∈ {1, · · · , |Y|}, i.e., the

random pattern array Q(sk) is rearranged as the random

pattern vector q(sk). The mean pattern vector µ(sk) and

covariance matrix Γ(sk) are constructed correspondingly.

The covariance matrix Γ(sk) is comprised of several blocks

of elements. The square diagonal blocks correspond to the

covariance among states of same sensor data, where as the

off-diagonal possibly non-square (due to possible different

alphabet size for different sensor data) blocks correspond to

the covariance among states of different sensor data.

The (jointly Gaussian as involves only second order statis-

tics) conditional probability distribution of a random pattern

vector q is given as

fq|Ω

(

p|sk
)

=
1

(2π)N/2|Γ(sk)|1/2
·

exp
(

−
1

2
(p − µ(sk))(Γ(sk))−1(p − µ(sk))T

)

(1)

where N = N1 + · · · +N|Y| − |Y|.
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C. Inverse Problem/Testing

The objective here is to identify the probabilistic location

of the fault in the multi-dimensional parameter space, i.e.,

identification of the unknown parameter vector s ∈ Ω;

however, it is possible that s /∈ S. Therefore, for a particular

test case, time series data are collected from different sensors.

The data are analyzed using the same symbolic dynamic filter

constructed in the forward problem/training (see Section 2-

B), and the resulting row vector p is a realization of a random

pattern vector q. The density function fΩ|q(s|p) is obtained

as

fΩ|q(s|p) =
fq|Ω (p|s) fΩ(s)

fq (p)

=
fq|Ω (p|s) fΩ(s)

∫

Ω fq|Ω (p|s̃) fΩ(s̃)ds̃
(2)

In the absence of a priori information, an assumption is

made that all operating conditions are equally likely, i.e.,

fΩ(s) = fΩ(s̃) ∀s̃, s̃ ∈ Ω. With this assumption of uniform

probability, Eq. (2) reduces to

fΩ|q(s|p) =
fq|Ω (p|s)

∫

Ω fq|Ω (p|s̃)ds̃
(3)

It is noted that accuracy of the above distribution would be

improved if the actual prior mapping, i.e., fΩ(s) is known.

The integral in the denominator of Eq. (3) is approximated

by a Reimann sum as

fΩ|q(s|p) ≈ κ
fq|Ω (p|s)

∑

S fq|Ω (p|s̃)
(4)

where κ is a constant. This approximation converges to the

exact solution as the training set S approaches a countable

dense subset of Ω ⊂ R
n. The density function in Eq. (4) is

now sampled at the points sk in the training set S and the

following sampled density is constructed as to yield

fΩ|q(s|p)
∣

∣

s=sk ≈ κ
fq|Ω

(

p|sk
)

∑

s̃∈S fq|Ω (p|s̃)
∀sk ∈ S (5)

The density functions in the numerator and denominator

of Eq. (5) are obtained from Eq. (1), which were determined

in the training phase. It is noted that the nature of the density

function fΩ|q

(

sk|p
)

does not depend on the constant κ.

The probability mass functions are obtained by evaluating

the probability density function in Eq. (5) at points sk ∈ S.

P (sk|p) ,
fΩ|q

(

sk|p
)

∑|S|
j=1 fΩ|q (sj |p)

≈
fq|Ω

(

p|sk
)

∑|S|
j=1 fq|Ω (p|sj)

(6)

Following Eq. (1), the above equation is expressed as

P (sk|p) ≈

1
(2π)N/2|Γ(sk)|1/2

∑|S|
l=1

1
(2π)N/2|Γ(sl)|1/2

·

exp
(

− 1
2 (p − µ(sk))(Γ(sk))−1(p − µ(sk))T

)

exp
(

− 1
2 (p − µ(sl))(Γ(sl))−1(p − µ(sl))T

) (7)

The above equation signifies a statistical pattern matching

by calculating the Mahalnobis distance [7] between the test

and the training patterns; therefore, smaller the Mahalnobis

distance, better is the match between these two patterns.

It has been observed from experimental data that fluc-

tuations of the pattern vectors are very weakly correlated

among different symbols and different sensors. Therefore,

the jointly Gaussian distribution of all fq|Ω

(

p|sk
)

’s can be

reduced to the product of individual Gaussian distributions

fq|Ω

(

pj
i |s

k
)

of different symbols ∀j ∈ {1, 2, .., |Y|} and

∀i ∈ {1, 2, ..., Nj−1}. Therefore, instead of using the multi-

variate jointly Gaussian distribution, univariate Gaussian

distribution is used for each symbol, (the variance being the

corresponding diagonal element of the covariance matrix) to

calculate P (sk|p). Thus, Eq. (7) reduces to Eq. (8).

P (sk|p) ≈

∏

j

∏

i
1

(2π)1/2(γjj
ii (sk))1/2

∑|S|
l=1

∏

j

∏

i
1

(2π)1/2(γjj
ii (sl))1/2

·

exp
(

− 1
2 (pj

i −mj
i (s

k))(γjj
ii (sk))−1(pj

i −mj
i (s

k))
)

exp
(

− 1
2 (pj

i −mj
i (s

l))(γjj
ii (sl))−1(pj

i −mj
i (s

l))
)(8)

∀j ∈ {1, 2, .., |Y|} and ∀i ∈ {1, 2, ..., Nj − 1}.

Once the probability mass function P (sk|p) is obtained,

there can be different estimates ŝ ∈ Ω depending upon

the cost function of estimation. For example, the median

of the distribution yields the estimated value by minimizing

the root mean square value of the deviations. Again, most

likely parameter value can be obtained from the mode of

the distribution. In this paper, estimated mean is considered

which minimizes the average of the square of the absolute

deviations around the estimated point. Estimated mean ŝ and

estimated covariance matrix Ĉs of the parameter (column)

vector s are obtained directly from P (sk|p) as

ŝ(p) ,

|S|
∑

k=1

sk P (sk|p) (9)

Ĉs(p) ,

|S|
∑

k=1

(

sk − ŝ(p)
)

P (sk|p)
(

sk − ŝ(p)
)T

(10)

Since the statistical information is available in the form of

probability mass functions, the third and higher moments

of the parameter vector can be estimated in a similar way;
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however, third and higher moments are redundant because

the inherent distribution is assumed to have a Gaussian

structure that carries full statistical information in the first

two moments.
D. Discussion on Sensor Fusion

The above formulation of the inverse problem uses infor-

mation from all the sensors yj for j = 1, 2, ..., |Y|, i.e., the

information from all sensors are fused together to estimate

the fault level in the engine test case. However, this fusion

technique allows the user to choose the number and the

combination of sensors to be used for the multiple fault esti-

mation. Suppose only sensors s1 and s3 are to be used. Then,

elements mj
i (s

k), ∀j ∈ {1, 3} and ∀i ∈ {1, 2, ..., Nj−1} are

selected from µ(sk) and elements γmn
xy (sk), ∀m,n ∈ {1, 3}

and ∀x ∈ {1, 2, ..., Nm − 1}, ∀y ∈ {1, 2, ..., Nn − 1} are

selected from Γ(sk) ∀sk ∈ S. It follows from the above

example that the elements of the test patterns need to be

selected corresponding to the sensors under consideration.

Remark 2.1: The current framework attempts to fuse in-

formation from different sensors at feature level as opposed

to the frameworks of data level or decision level fusion.

The advantages of the present sensor information fusion

framework are delineated below.

• Data level fusion techniques often encounter scaling

problem while fusing information from sensors of dif-

ferent modality. However, the present technique fuses

the probability vector patterns, which does not have any

scaling issue.

• Decision level fusion generally provides too coarse

diagnosis of faults and also requires in depth under-

standing of the physical system.

3. VALIDATION ON THE C-MAPSS TEST-BED

The C-MAPSS simulation test-bed, developed at NASA,

is built upon the model of a commercial-scale two-spool

turbofan engine and its control system. The details of the

model are available in [8], a brief outline of C-MAPSS is

provided here for completeness of the paper. The simulation

test-bed of the gas turbine engine system consists of five

major rotating components namely, fan (F), low pressure

compressor (LPC), high pressure compressor (HPC), high

pressure turbine (HPT), and low pressure compressor (LPT).

Given the inputs of throttle resolving angle (TRA), altitude

(a) and Mach number (M ), the interactively controlled com-

ponent models at the simulation test-bed compute nonlinear

dynamics of real-time turbofan engine operation. The entire

test-bed code is written on Matlab and Simulink platform.

As indicated earlier, this paper addresses estimation of

those faults that cause efficiency degradation in engine

components. In the current configuration of the C-MAPSS

simulation test-bed, there are 13 health parameter inputs,

among which the following are considered. For the engine’s

five rotating components (i.e., Fan, LPC, HPC, HPT and

LPT), the ten health parameters are: (a) fan (ψF , ζF ), (b)

low pressure compressure (ψLPC , ζLPC ), (c) high pres-

sure compressor (ψHPC , ζHPC ), (d) high pressure turbine

(ψHPT , ζHPT ), and (e) low pressure turbine (ψLPT , ζLPT ).

Table I lists the (commercially available) sensors and their

locations that have been used for multiple fault estimation in

C-MAPSS engine test-bed.

TABLE I

REQUIRED ENGINE SYSTEM SENSORS

Sensors Description

P24 LPC exit/ HPC inlet pressure
T24 LPC exit/ HPC inlet temperature

Ps30 HPC exit static pressure
T30 HPC exit/ Burner inlet temperature
T50 LPT exit temperature

A. Results and Discussions

Time series data have been collected for different sen-

sors under persistent excitation of TRA inputs that have

truncated triangular profiles with the mean value of 80◦,

fluctuations within ±2◦ and frequency of 0.056 Hz. The

ambient conditions are chosen to be at the sea level (i.e.

altitude a = 0.0, Mach number M = 0.0) when the engine

is on the ground for fault monitoring and maintenance by the

engineering personnel. The engine simulation is conducted

at a frequency of 66.67 Hz (i.e., inter-sample time of 15ms)
and the length of the simulation time window is 150 seconds,

which generate 10, 000 data points for each training or test

case.

An engine component C is considered in nominal condi-

tion when both ψC and ζC are equal to 1. Fault is injected

in the component C by simultaneously reducing both ψC

and ζC by same amount in the results reported in this paper.

Although the algorithm described above, does not have any

restriction on the dimension of the parameter space, the

result presented here considers simultaneous degradation of

two different components. Subsection 3-A.1 describes a fault

condition, where Fan and LPC are degraded simultaneously,

whereas Subsection 3-A.2 analyzes simultaneous degradation

in HPT and LPT . For both training (i.e., forward problem)

and testing (i.e., inverse problem), time series data from all

sensors, listed in Table I, are generated with ψ and ζ ranging

from 1.0 to 0.96 (i.e., 4% relative loss in efficiency) in steps

of 0.005 for the engine components under consideration. For

SDF analysis, the number of states in the PFSA is selected to

be 15 for each sensor after pre-processing the time series data

by Hilbert transform and pattern vectors are generated for

each of the possible fault conditions. Fifty repetitions of each

simulation have been conducted to generate pattern vector

statistics with injected process and sensor noise. For testing

(i.e., inverse problem), fault conditions are chosen within the

range of training data such that they do not coincide with the

training grid points.. The results of multiple-fault estimation

are presented in the following two subsections along with

discussions on sensor fusion.
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Fig. 1. Fault estimation in Fan-LPC based on Ps30 sensor

1) Fault estimation in Fan and LPC: A test pattern is

generated for a given fault condition, ψF = ζF = 0.973 and

ψLPC = ζLPC = 0.981. The 3-dimensional plot in Fig. 1(a)

shows the bivariate probability distribution of the estimated

fault condition, followed by a close-up view of the contour

plots in Fig. 1(b), where the results are generated from

time series of a single sensor, namely, Ps30. The estimates

lie within the ±3σ bound around the estimated mean (see

Eq. (9)), where the variance σ2 is obtained as a diagonal

element of the estimated covariance matrix Ĉs (see Eq. (10)).

In this case, the estimates range from 0.9606 to 0.9704 for

ψF and ζF , and from 0.9805 to 0.9813 for ψLPC and ζLPC ,

respectively. This indicates that the correct region is located

in the parameter space, which assigns highest probability to

the nearest training grid point.

2) Fault estimation in HPT-LPT: This example shows

the result for a fault condition, ψHPT = ζHPT = 0.977
and ψLPT = ζLPT = 0.985. In contrast to the previous

example of fan and LPC, the plots in Fig. 2(a) and Fig. 2(b)

show that there is an ambiguity in estimation when using

information from only one sensor, namely Ps30. Although,
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Fig. 2. Fault estimation in HPT-LPT based on Ps30 sensor

it identifies the correct region with significant probability,

another fault condition is seen to be identified with higher

probability. Similar is the result if sensor T24 is used as seen

in Fig. 3(a) and Fig. 3(b). To resolve this ambiguity, the

sensor information fusion framework makes use of both Ps30
and T24 to correctly identify the fault in the parameter space

without any ambiguity, as seen in Fig. 4(a) and Fig. 4(b).

The estimates lie in the ranges (±3σ bound) of 0.9747 to

0.9753 for ψHPT and ζHPT and 0.9847 to 0.9853 for ψLPT

and ζLPT , respectively; in this case, highest probability is

assigned to the training grid point that is nearest to the test

point.

4. SUMMARY, CONCLUSIONS AND FUTURE WORK

This paper presents a symbolic dynamic filtering (SDF)-

based methodology for multiple-fault estimation in aircraft

Gas turbine engines in a sensor-information-fusion frame-

work. While there are many other issues that need to be

addressed before the proposed estimation method can be
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Fig. 3. Fault estimation in HPT-LPT based on T24 sensor

considered for real-life applications in commercial aircraft,

the following research topics are being currently pursued.

• Identification of the mode (e.g., gradual deterioration,

intermittently occurring, and abrupt large) of multiple

fault evolution.

• Extension of Fault Estimation to Fault Prognosis by

using usual deterioration profiles of the components

with respect to cycles of operation.

• Optimal sensor selection based on the estimation results

of the whole parameter space.
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