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Abstract—This paper focuses on data-driven detection
of incipient fault in commercial aircraft gas turbine
engines. Detection of incipient engine fault often manifest
better in transient data. This paper extends recently
reported literature in the areas of symbolic dynamic
filtering, i.e., Markov model based analysis of steady
state data, to model and analyze transient data gener-
ated during the take-off phase. The fault detection and
classification algorithms are validated on the NASA C-
MAPSS transient test case generator.

I. INTRODUCTION

Condition-based maintenance of aircraft gas turbine
engines is critical for aviation safety and reliability.
Engine performance monitoring is typically performed
on steady-state data collected during cruise conditions.
However, in a time and safety-critical operation like
this, understanding transient data from takeoff, climb
or landing is extremely important. Furthermore, in-
cipient fault detection during the transient operations
can significantly reduce the costs related to in-flight
shutdowns, unscheduled engine removals, or take-off
aborts. Engines operate under much higher stress and
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temperature conditions under these circumstances com-
pared to the low-stress cruise phase. Certain incipi-
ent engine fault (e.g., bearing faults, controller miss-
scheduling, starter system faults) signatures magnify
during the transient conditions [1]. Moreover, the ef-
fects of feedback control in suppressing sensor and
component faults is minimal during transient condi-
tions, increases the possibility of detecting any fault
in the system [2]. Several model-based and data-driven
fault diagnosis studies have been done using transient
data. A neural network based fault diagnosis method
was developed in [3] for automotive transient opera-
tions. In [4], adaptive Myriad filter has been used to
improve the quality of transient data for gas turbine
engines. Often model-based diagnostics appear to be
difficult due to lack of reliability of the transient
models. Data-driven diagnostics using Hidden Markov
Models (HMMs) have been performed for transient gas
turbine engine operation [5].
A recently developed data-driven technique, called

the symbolic dynamic filtering (SDF) [6], have been
shown to yield superior performance in terms of early
detection of anomalies and robustness to measurement
noise in comparison with other existing techniques
such as Principal Component Analysis (PCA), Neural
Networks (NN) and Bayesian techniques [7]. Recently,
in a two-part paper [8][9], an SDF-based algorithm
for detection and isolation of engine subsystem faults
(specifically, faults that cause efficiency degradation in
engine components) has been reported and an exten-
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sion of that work to estimate simultaneously occurring
multiple component-level faults has been presented
in [10]. Furthermore, an optimized feature extraction
technique has been developed under the same semantic
framework in [11]. However, all of the above studies
were done on steady-state cruise flight data, that also
conformed with the quasi-stationary data assumption
made in SDF. Due to this assumption, SDF potentially
could not handle transient data (and of limited length).
The goal of this paper is to extend SDF’s capability
to be able to handle transient data. In this context,
Dirichlet and multinomial distributions have been used
to construct the a priori and a posteriori models
of uncertainties, respectively. The algorithms are for-
mulated by quantitatively incorporating the effects of
finite-length symbol strings in both training and testing
phases of fault detection. The resulting algorithm is
validated using the Transient Test-case Generator [12]
of the Commercial Modular Aero Propulsion System
Simulation (C-MAPSS) test bed, developed by NASA.
The paper is organized in five sections including the

present one. Section II explains the symbolic frame-
work of transient time-series analysis along with neces-
sary background information. Section III describes the
C-MAPSS test bed [13] along with the sensors and the
fault injection scheme. Section IV presents the results
of case studies to validate the proposed method on the
C-MAPSS test bed. Finally, the paper is summarized
and concluded in Section V with recommendations of
future work.

II. SYMBOLIC ANALYSIS OF TIME SERIES DATA

A symbol string is obtained from the output of a
dynamical system (a gas turbine engine) by partitioning
(also called quantization) of the time-series data. There-
after, a probabilistic finite state automaton (PFSA) is
constructed from the (finite-length) symbol sequence
via one of the construction algorithms (e.g., [6], [14],
and [15]). Due to the quasi-stationarity assumption in
SDF, it may not be feasible to obtain sufficiently long
strings of symbols in both training and testing phases
of classification. Therefore, the estimated parameters of
the resulting PFSA model may not be precise.
The goal of this section is to construct a Bayesian

classifier for identification of the probability morph ma-
trices of PFSA based on the transient data in both train-
ing and testing phases. The Dirichlet and multinomial
distributions have been used to construct the a priori
and a posteriori models of uncertainties, respectively.

This formulation by quantitatively incorporates the ef-
fects of finite-length symbol strings in both training and
testing phases of pattern classification.

A. Partitioning of time series data

The sensor time series is encoded by introducing
partitions in the range of the signal. This step enables
transformation of the sensor data from the continuous
domain to the symbolic domain. In other words, the
real valued sensor data (at each time step is replaced
by a corresponding symbol from a set Σ (called the
alphabet set)

B. Modeling via Probabilistic Finite State Automaton

The symbolic sequence is modeled as a probabilistic
finite state automaton (PFSA). A PFSA is a tuple
G � (Q,Σ, δ,Π). The alphabet Σ is a nonempty finite
set of symbols. The set of states Q is nonempty and
finite. As a simplifying assumption, this paper considers
only a class of PFSAs know as D-Markov machines[6].
In D-Markov machines, the states are strings of the D
past symbols. The number D is called the depth of the
machine and the number of states |Q| = |Σ|D. The
state transition function δ : Q × Σ → Q indicates
the new state given the previous state and an observed
symbol. In addition, the morph function π : Q× Σ →
[0, 1] is an output mapping that satisfies the condition:∑

σ∈Σ π(q, σ) = 1 for all q ∈ Q. The morph function π
has a matrix representation Π, called the (probability)
morph matrix Πij � π(qi, σj),∀qi ∈ Q and ∀σj ∈ Σ.
Note that Π is a (|Q|×|Σ|) matrix where each element
of Π is non-negative and each row sum of Π is equal
to 1.

C. The Online Classification Problem

Let there be K symbolic systems of interest, denoted
by C1, C2, . . . , CK , over the same alphabet Σ and each
class Ci is modeled by an ergodic (i.e., irreducible)
PFSA Gi = (Qi,Σ, δi,Πi, qi0), where i = 1, 2 . . . ,K.
During the training phase, a symbol string Si �

si1s
i
2 . . . s

i
Ni

is generated from each class Ci. The state
transition function δ of the D-Markov machine is
fixed by choosing an appropriate depth D. Thus, Πi’s
become the only unknowns and could be selected as
the feature vectors for the purpose of classification. The
distribution of the morph matrix Πi is computed in the
training phase from the finite length symbol sequences
for each class.
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In the testing phase, let another symbol string S̃ be
obtained from a sensor time series data. Then, the task
is to determine which class this observed symbol string
S̃ belongs to. While the previous work [6][14][15] has
aimed at identification of a PFSA from a given symbol
string, the objective of this paper is to imbed the un-
certainties due to the finite length of the symbol string
in the identification algorithm that would influence the
final classification decision.
In the training phase, each row of Πi is treated as a

random vector. Let the mth row of Πi be denoted as
Πim and the nth element of the mth row as Πimn ≥ 0

and
∑|Σ|

n=1Π
i
mn = 1. The a priori probability density

function fΠi
m|Si of the random row-vector Πim, con-

ditioned on a symbol string Si, follows the Dirichlet
distribution [16] [17] as described below.

fΠi
m|Si(θim|Si) =

1

B(αi
m)

|Σ|∏
n=1

(θimn)
αi

mn−1 (1)

where θim is a realization of the random vector Πim,
namely,

θim =
[
θim1 θim2 . . . θim|Σ|

]
and the normalizing constant is

B(αi
m) �

∏|Σ|
n=1 Γ(α

i
mn)

Γ(
∑|Σ|

n=1 α
i
mn)

(2)

where Γ(•) is the standard gamma function, and αi
m =[

αi
m1 αi

m2 . . . αi
m|Σ|

]
with

αimn = N i
mn + 1 (3)

where N i
mn is the number of times the symbol σn in

Si is emanated from the state qim, i.e.,

N i
mn �

∣∣{(sik, vik) : sik = σn, v
i
k = qim}

∣∣ (4)

Recalling that sik is the k-th symbol in Si, and
denoting the number of occurrence of the state qim in
the state sequence Vi \ {viN i} as N i

m �
∑|Σ|

n=1N
i
mn, it

follows from Eqs. (2) and (3) that

B(αi
m) =

∏|Σ|
n=1 Γ(N

i
mn + 1)

Γ(
∑|Σ|

n=1N
i
mn + |Σ|)

=

∏|Σ|
n=1(N

i
mn)!

(N i
m + |Σ| − 1)!

(5)

by use of the relation Γ(n) = (n− 1)! ∀n ∈ N1.
By the Markov property of the PFSA Gi, the (1 ×

|Σ|) row-vectors, {Πim},m = 1, . . . |Q|, are statistically
independent of each other. Therefore, it follows from

Eqs. (1) and (5) that the a priori joint density fΠi|Si

of the probability morph matrix Πi, conditioned on the
symbol string Si, is given as

fΠi|Si(θi|Si) =
|Qi|∏
m=1

fΠi
m|Si

(
θim|Si

)

=

|Qi|∏
m=1

(
N i
m + |Σ| − 1

)
!

|Σ|∏
n=1

(θim)
N i

mn

(N i
mn)!

(6)

where θi =
[
(θi1)

T (θi2)
T . . . (θi|Q|)

T
]T ∈

[0, 1]|Q|×|Σ|

In the testing phase, the probability of observing
a symbol string S̃ belonging to a particular class
of PFSA, (Qi,Σ, δi,Πi) is a product of indepen-
dent multinomial distribution [18] given that the exact
morph matrix Πi is known.

Pr
(
S̃|Qi, δi,Πi

)

=

|Q|i∏
m=1

(Ñ i
m)!

|Σ|∏
n=1

(
Πimn

)
˜N i
mn

(Ñ i
mn)!

(7)

� Pr
(
S̃|Πi

)
when Qi and δi are kept invariant

(8)

Similar to N i
mn defined earlier for Si, Ñ i

mn is the
number of times the symbol σn is emanated from the
state qim ∈ Qi in the symbol string S̃ in the testing
phase, i.e.,

Ñ i
mn � |{s̃k : s̃k = σn, (δi)�(qio, s̃1 . . . s̃k−1) = qim}|

(9)

where s̃k is the k-th symbol in the observed string
S̃. It is noted that Ñ i

m �
∑|Σ|

n=1 Ñ
i
mn.

The results, derived in the training phase and the
testing phase, are now combined. Given a symbol string
Si in the training phase, the probability of observing
a symbol string S̃ in the testing phase is obtained as
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follows.

Pr(S̃|Si) =
∫

· · ·
∫

Pr
(
S̃|Πi = θi

)
f iΠi|Si(θi|Si)dθi

=

∫
· · ·

∫ ⎡
⎣ |Qi|∏
m=1

(Ñ i
m)!

|Σ|∏
n=1

(
θimn

)
˜N i
mn

(Ñ i
mn)!

⎤
⎦

×
|Qi|∏
m=1

⎡
⎣(N i

m + |Σ| − 1
)
!

|Σ|∏
n=1

(θimn)
N i

mn

(N i
mn)!

dθimn

⎤
⎦

=

|Qi|∏
m=1

(Ñ i
m)!

(
N i
m + |Σ| − 1

)
!

×
∫ · · · ∫ ∏|Σ|

n=1(θ
i
mn)

˜N i
mn+N

i
mndθimn∏|Σ|

n=1(Ñ
i
mn)!(N

i
mn)!

(10)

The integrand in Eq. (10) is the density function for
the Dirichlet distribution up to the multiplication of a
constant. Hence, it follows from Eq. (5) that

∫
· · ·

∫ |Σ|∏
n=1

(θimn)
˜N i
mn+N

i
mn d(θimn)

=

∏|Σ|
n=1(Ñ

i
mn +N i

mn)!(
Ñ i
m +N i

m + |Σ| − 1
)
!

Then, it follows from Eq. (10) that

Pr(S̃|Si) =
|Qi|∏
m=1

(Ñ i
m)!

(
N i
m + |Σ| − 1

)
!(

Ñ i
m +N i

m + |Σ| − 1
)
!

×
|Σ|∏
n=1

(Ñ i
mn +N i

mn)!

(Ñ i
mn)!(N

i
mn)!

(11)

In practice, it might be easier to compute the loga-
rithm of Pr(S̃|Si) by virtue of Stirling’s approximation
formula log(n!) ≈ n log(n)− n [19] because, in most
cases, both N i and Ñ would consist of large numbers.
The posterior probability of the observed symbol

string S belonging to the class Ci is denoted as
Pr(Ci|S̃) and is given as

Pr(Ci|S̃) = Pr(S̃|Si) Pr(Ci)∑K
j=1 Pr(S̃|Sj) Pr(Cj)

, i = 1, 2, · · · ,K
(12)

where Pr(Ci) is the known prior distribution of the
class Ci. Then, the classification decision is made as

follows.

Dclass = argmax
i

Pr(Ci|S̃)

= argmax
i

(
Pr(S̃|Si) Pr(Ci)

)
(13)

III. FAULT INJECTION IN C-MAPSS TEST BED

This section presents the C-MAPSS test bed along
with the fault injection scheme. The C-MAPSS simula-
tion test bed [13] was developed at NASA for a typical
commercial-scale two-spool turbofan engine and its
control system. Figure 1 shows the schematic diagram
of a commercial aircraft gas turbine engine used in the
C-MAPSS simulation test bed.

Fig. 1. Gas turbine engine schematic [13]

The engine under consideration produces a thrust of
approximately 400,000 N and is designed for operation
at altitude (A) from the sea level (i.e., 0 m) up to
12,200 m, Mach number (M ) from 0 to 0.90, and
temperatures from approximately −50◦C to 50◦C. The
throttle resolving angle (TRA) can be set to any
value in the range between 0◦ at the minimum power
level and 100◦ at the maximum power level. The gas
turbine engine system consists of five major rotating
components, namely, fan (F), low pressure compressor
(LPC), high pressure compressor (HPC), high pressure
turbine (HPT), and low pressure turbine (LPT), as
seen in Figure 1. Apart from the rotating components,
three actuators are modeled in the simulation test bed,
namely, Variable Stator Vane (VSV), Variable Bleed
Valve (VBV), and Fuel Pump that controls the fuel
flow rate (Wf).
Given the inputs of TRA, A andM , the interactively

controlled component models in the simulation test
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bed compute nonlinear dynamics of real-time turbofan
engine operation. A gain-scheduled control system is
incorporated in the engine system, which consists of
speed controllers and limit regulators for engine com-
ponents.

FAN LPC
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DUCT
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DUCT
LPT
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Fig. 2. Schematic diagram of the C-MAPSS engine model with
Sensors

TABLE I

SENSOR SUITE FOR THE ENGINE SYSTEM

Sensors Description
T24 LPC exit/ HPC inlet temperature
Ps30 HPC exit static pressure
T48 HPT exit temperature
P50 LPT exit pressure
Nf Fan spool speed
Nc Core spool speed

Out of the different types of sensors (e.g., pressure,
temperature, and shaft speed) used in the C-MAPSS
simulation test bed, Table I lists those sensors that are
commonly adopted in the Instrumentation & Control
system of commercial aircraft engines, as seen in
Figure 2.
In the current configuration of the C-MAPSS sim-

ulation test bed, there are 13 component level health
parameter inputs, namely, efficiency parameters (ψ),
flow parameters (ζ) and pressure ratio modifiers, that
simulate the effects of faults and/or degradation in
the engine components. Ten, out of these 13 health
parameters, are selected to modify efficiency (η) and
flow (φ) that are defined [20] as:

• η � Ratio of actual enthalpy and ideal enthalpy
changes.

• φ � Ratio of rotor tip and axial fluid flow veloci-
ties.

For the engine’s five rotating components F, LPC,
HPC, LPT, and HPT, the ten respective efficiency and
flow health parameters are: (ψF , ζF ), (ψLPC , ζLPC),
(ψHPC , ζHPC), ((ψHPT , ζHPT ), and (ψLPT , ζLPT ).
An engine component C is considered to be in nominal

condition if both ψC and ζC are equal to 1 and fault
can be injected in the component C by reducing the
values of ψC and/or ζC . For example, ψHPC = 0.98
signifies a 2% relative loss in efficiency of HPC.
A stochastic damage model has been developed

and incorporated in the C-MAPSS Transient Test-case
Generator [12] (developed by NASA), based on the
experimental data for trending the natural deteriora-
tion of the engine components. Although injection of
faults is described in the transient test-case generator
code [12], it is explained in this paper for completeness.
For all five rotating components, faults exhibit random
magnitudes (Fm), and a random health parameter ratio
(HPR). While Fm and HPR directly determines
the change in efficiency health parameter ψ(C) of a
component C , a change in the flow health parameter
ζC is determined by HPR for a given perturbation in
ψC . Formally, the following two relations are used.

δψC
= − Fm√

1 +HPR2
and δζC = δψC

·HPR (14)

where δψC
and δζC denote the changes in ψC and ζC

respectively.
In the case study, fault magnitude (Fm) follows

a random uniform distribution ranging from 1 to 7.
Health parameter ratios (HPR) for Fan, LPC, and HPC
are uniformly distributed between 1.0 and 2.0, whereas
HPR s for HPT and LPT are uniformly distributed
between 0.5 to 1.0. The changes in health parameters
occur from certain base values of ψC and ζC .

IV. VALIDATION EXPERIMENTS AND RESULTS

This section discusses the validation experiments and
results of the symbolic transient time series analysis
and incipient fault detection on the C-MAPSS test bed.
It is important to identify the fault quickly in time-
critical operations such as takeoff, climb and landing.
To find the relation between detection time and de-
tection accuracy, numerous experiments are performed
during the ’takeoff’ operating condition, where Mach
number varies from 0 to 0.24 in 60 seconds keeping
Altitude zero and TRA at 80%. Faulty operation in
three different components (Fan, LPC and HPT) along
with the ideal engine condition are considered in this
analysis. Hence, from the fault classification point of
view, this is a four-class problem. T48 sensor is chosen
to provide the transient response as it is able to capture
the above failure signatures in the gas path model. The
rationale behind choosing this sensor can be attributed
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to the physical fact that it is placed between HPT and
LPT, and LPT is mechanically connected to the Fan and
LPC via the outer shaft. The sampling frequency of the
T48 sensor data is 66.7 Hz. For the purpose of training,
the duration for each experiment run is chosen to be 60
sec (i.e., length of the time series 4002) and transient
responses from 50 runs of experiments for each fault
class are concatenated.
The next step is to partition the data sets to yield

respective symbol strings. The range of the time series
is partitioned into 5 intervals (the size of the alphabet
Σ is 5, i.e., |Σ| = 5) , each of which corresponds
to a distinct symbol σn ∈ Σ, n = 1, 2, · · · , |Σ|. The
conversion to symbol strings is achieved by substituting
each real-valued data point in the discrete time series by
a symbol corresponding to the interval within which the
data point lies. The training phase commences after the
symbol strings are obtained for each of the four classes
i.e., three component fault conditions and one nominal
condition. In the D-Markov construction [6], the depth
D is chosen to be 1, which implies that the probability
of generation of a future symbol depends only on the
last symbol, and hence the set of states is isomorphic
to the symbol alphabet (i.e., Q ≡ Σ). For every class
Ci, the parameters N i

mn are obtained by counting the
number of times the symbol σn is emitted from state
qm.
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Fig. 3. Fault detection in multi-fault framework (The ground truth
data corresponds to a faulty LPC)

The testing phase starts with partitioning a new time
series from one of the classes and obtaining the symbol
sequence by using the same alphabet and partitioning

in the training phase. Following Eq. (12), the posterior
probability of each class is calculated as a function
of the length of the testing data set. Figure 3 shows
the posterior probability of each class as a function of
the length of the observed test data. It is seen that the
observed sequence is correctly identified to belong to
the class of LPC fault as the posterior probability of
the corresponding class approaches one, while for each
of the remaining classes (i.e., for other two component
faults and nominal condition) it approaches zero. By
repeating the same classification technique on 50 test
runs of LPC fault, it is observed that 400 data length
(i.e., 6 seconds) is enough to detect the fault with
reasonable confidence. For other two component faults
the posterior probability for the correct fault class
approaches unity within data length 50. This is because
the fault signatures for fan and HPT are very dominant
in T48 response, even if they are incipient.
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Fig. 4. High level fan fault detection (The ground truth data
corresponds to high level of fault in fan)

The symbolic transient fault detection technique can
also be extended to classify different levels of fault in a
single component of the gas-turbine engine. To verify
that, some samples of nominal data are injected with
low level fan fault, where fault magnitude (Fm) follows
a random uniform distribution ranging from 1 to 3. The
remaining samples of nominal data are injected with
high level fan fault with fault magnitude (Fm) within
the range of 5 to 7. In this case, the alphabet size is
6 to obtain better class separability. Figure 4 shows
that posterior probability for high fan fault reaches one
quickly within 70 samples which is equivalent to one
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second. But when the test case is low fan fault, the
posterior probability of the high fan fault is dominant
till 400 data length resulting in a false classification and
the posterior probability for true class reaches 1 slowly
at around 1000 data length (i.e., 15 seconds) as shown
in fig. 5. This result agrees well with the intuition,
that with decrease in the fault level, the detection time
increases.
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Fig. 5. Low level fan fault detection (The ground truth data
corresponds to low level of fault in fan)

To examine the performance of the symbolic tran-
sient fault detection technique, a family of receiver
operating characteristic (ROC) is constructed for dif-
ferent test data length. A binary classification scenario
is considered which consists of two classes, namely,
nominal engine condition belonging to the class C1,
and faulty fan condition belonging to the class C2. The
training data length is same as described in the previous
experiments. The general classification rule [21] in a
symbol string S̃ is given by

Pr(S̃|C1)

Pr(S̃|C2)

C1

≷
C2

λ (15)

where the threshold λ is varied to generate the ROC
curve. For the binary classification problem at hand, the
ROC curve provides the trade-off between the proba-
bility of detection PD = Pr{decide C2|C2 is true} and
the false alarm rate PF = Pr{decide C2|C1 is true}.
Figure 6 exhibits a family of ROC curves for the
proposed fault detection technique with varying lengths
of test data. It is observed that the ROC curve improves
(i.e., moves toward the top left corner) considerably as
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Fig. 6. ROC curves for fan fault identification with different test
data lengths

the test data length is increased from Ntest = 20 to
Ntest = 200. Based on a family of such ROC curves,
it is possible to select a best combination of PD and
Ntest for a given PF , which would lead to a choice of
the parameter λ.

V. SUMMARY, CONCLUSIONS AND FUTURE WORK

This paper addresses the analysis of transient time
series data, obtained from sensors, for detection of
incipient faults in aircraft gas turbine engines. A prob-
abilistic finite state automaton is used to model the
process and subsequent fault identification is performed
in the context of symbolic dynamic filtering (SDF). In
this method, the Dirichlet distribution and the multi-
nomial distribution are used to model the uncertainties
resulting from the finite length of symbol strings in
both the training and testing phases respectively. The
relation of the detection accuracy with data-length is
also reported.
Although the method presented in the paper can be

implemented in real time, various operating conditions
need to be investigated for its on-board (in-flight)
application. In addition, the following research areas
are currently being pursued.

• Single sensor may not capture small faults in
components or actuators. As a result, for accurate
fault identification the sensor data may have to
be observed for a longer period of time. Sensor
fusion using cross relation among sensors in SDF
framework may reduce the detection time.
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• comparison with other methods, model-based and
data-driven

• extension of the methodology to accommodate
other types of sensor degradation, such as bias and
drifting
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