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Abstract— This paper presents a statistical mechanics-based
approach to investigate critical phenomena and size scaling
in communication networks. The qualitative nature of phase
transitions in the underlying network systems is characterized;
and its static and dynamic critical behaviors are identified.
Effects of network size, different routing strategies have been
analyzed. In all these analyses, phase transition is considered
using a single intensive parameter of the communication net-
work system, namely the external packet load. These problems
have been investigated by extensive simulation on the model of
a wired communication network.

1. INTRODUCTION

A complex network is broadly defined as a collection of
interconnected and interacting systems [1], [2] where the
individual subsystems (or participating agents) themselves
could be complex dynamical systems. Complex networks
have been shown to characterize the behavior and topological
organization of many natural and engineered systems, such as
those found in the disciplines of sociology [3], biology [4],
finance [5], communication networks [6], sensor networks
etc. A common feature across all these multi-agent systems
is that their global behavior emerges from local dynamics
of the participating agents. Thus, dynamics of complex
networks can be characterized by the relation between micro-
motion (i.e., local dynamics) and macro-motion (i.e., global
dynamics), which could be characterized by application of
the principles of Statistical Mechanics [1], [7], [8].

A characteristic phenomenon of complex systems, con-
sisting of interacting and interdependent dynamics, is phase
transition, where an abrupt non-smooth change in the oper-
ating characteristics may take place with a relatively small

FThis work has been supported in part by the U.S. Office of Naval
Research under Grant No. N00014-09-1-0688, by the U.S. Army Re-
search Laboratory and the U.S. Army Research Office under Grant No.
W911NF-07-1-0376, and by NASA under Cooperative Agreement No.
NNX07AK49A. Any opinions, findings and conclusions or recommenda-
tions expressed in this publication are those of the authors and do not
necessarily reflect the views of the sponsoring agencies.

variation of the system parameter(s). One of the prime
uses of statistical mechanics in the field of networks is to
characterize this critical phenomenon. For network commu-
nication, this phenomenon would correspond to dependence
of the network’s global characteristics (e.g., connectivity,
average rate of change of queue length, average packet
drop rate etc.) on local parameters (e.g., communication
radius, packet load, transmission probability etc.) [9], [10],
[11]. A key task in the analysis of phase transitions is to
characterize the system behavior in the vicinity of a critical
point. This paper focuses on analysis of congestion problems
in communication networks as phase transitions or critical
phenomena in the sense of statistical Mechanics. Typically,
for communication networks, concept of bottleneck buffers
(routers) is used to detect and control (i.e., mitigate) network
congestion. Due to the use of bottleneck buffers, the network
structure essentially reduces to a multi-source and single
destination (or vice-versa) one, that helps developing aver-
age global analytical models (mean-field models) as shown
in [12]. Due to same reason, mean field models of 1-D
network or Cayley-tree network are also tractable that can be
found in [11]. However, in general, multi-source and multi-
destination communication problems need to be analyzed,
which in turn makes the tasks of modeling and optimal rout-
ing much harder and often analytically intractable. From this
perspective, tools of statistical mechanics prove to be very
useful. It is also necessary to understand finite-size scaling
laws to analyze the critical behavior of necessarily finite-size
systems (e.g., communication networks) that are usually very
small in size compared to typical thermodynamic systems.
This paper presents a statistical mechanics-based approach to
investigate critical phenomena and size scaling by extensive
simulation on the model of a wired communication network.
The network modeling and the choice of order parameter
are based on [10] and [11], respectively. The major contri-
butions of this article beyond the authors’ recent work [9]
in this direction are i) estimation of relaxation time to detect
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Fig. 1. Network architecture in the simulation model

phase transition in communication networks and ii) analysis
of the effects of finite size and routing strategies on the
phenomenon.

2. PHASE TRANSITION IN SQUARE-GRID WIRED
NETWORK COMMUNICATION

The network under consideration is a two-dimensional
square grid as shown in Fig. 1, where the nodes (routers)
are placed at the grid points. For a square grid network with
N ×N nodes there are 4× (N − 1) boundary nodes (shown
as squares in the Fig. 1) and N2 − 4 × (N − 1) internal
nodes (shown as circles in the Fig. 1). Only boundary nodes
are assumed to be the sources and/or the sinks for packet
generation and termination; internal nodes can only transmit
the packets. Each node receives packets in an infinite queue
from its neighboring nodes and packets are terminated after
reaching their destinations. In each time unit, packets are
created in the boundary nodes with a Poisson arrival rate λ.
Destination nodes are chosen randomly from the boundary
nodes, including their source nodes. Each node transmits
one packet from the head of its queue to a deterministically
chosen neighboring node at each time unit. The node chosen
to forward a data packet is selected so that the packet travels
via the shortest path to its destination. When there are more
than one candidate nodes for the shortest path, the node with
a smaller queue length is chosen to prevent early congestion
of the network.

In this context, the congestion phenomenon can be viewed
as a continuous phase transition as discussed in [9], where
the global intensive parameter that triggers the network phase
transition is the packet arrival rate λ and the global order
parameter is the rate of change of average queue length
per node. However, as only 4 × (N − 1) boundary nodes
generate packets and all N2 nodes share these packets, a
surface correction is needed to define the proper intensive
parameter. To avoid the surface effect, an effective load per

node, λeff is defined as follows:

λeff = λ · 4(N − 1)
N2

(1)

Similarly, to define the order parameter, scaling adjustments
are made as discussed in the sequel. Let Q(t) is the total
queue length (total number of packets) in the network at
time t. Thus, average queue length per node at time t is
q(t) = Q(t)/N2 and the rate of change of average queue
length per node is modeled as:

q̇(t) = lim
∆t→0

q(t)− q(t−∆t)
∆t

(2)

Then, the expected value of the time rate of change of
average queue length, 〈q̇(t)〉 is normalized to define the order
parameter, M .

M =
〈q̇(t)〉
λeff

(3)

In the above equation, M is the fraction of incoming packets
that accumulate inside the network per unit time. Therefore,
if there is no congestion, M becomes negligible, i.e. there is
no packet accumulation. In the event of network congestion,
the worst scenario could be zero packet departure, i.e., all
packets that enter the network accumulate inside. In that case,
M is approximately equal to 1. Following this procedure, M
has been computed for given values of λeff . To eliminate the
effect of transients, the expected value of q̇(t) is calculated
from only steady-state time series data. The plot of M vs.
λeff from a Monte Carlo simulation for a 10× 10 network
is depicted in Fig. 2; there is a critical value λc

eff ≈ 0.11
of effective load per node such that, for λeff < λc

eff ,
the value of order parameter M is almost negligible. In
contrast, for λeff > λc

eff , M takes on non-zero values. This
abrupt change of system behavior across the critical value
λc

eff is identified as a continuous phase transition, where
the communication network moves from a steady phase of
negligible M to an unsteady phase of finite positive M .

A phase transition is marked by the presence of analytical
singularities or discontinuities in the functions describing
macroscopic physical parameters of the system. In the vicin-
ity of the critical point marking the phase transition, the
functional form of the order parameter is often modeled
by the power law, m ∼ |T − Tc|β with critical exponent
β, where m is the order parameter, T is the intensive
variable (e.g., temperature) and Tc is the critical value of
T corresponding to the phase transition. The log-scale plot
in Fig. 3 shows that the critical exponent β is approximately
0.3. However, in the sense of statistical mechanics, β is
defined only in the close vicinity of the critical point. Since
it is very difficult to simulate a large system close to the
critical point, there is apparently no reliable information on
M in the vicinity of λc

eff . Thus, the plot given here makes
use of values of M up to a certain proximity of λc

eff .
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Fig. 2. Continuous phase transition in network communication
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Fig. 3. Identification of critical exponent β

A. Critical Slowing Down

In statistical mechanics, it is known that the spatial corre-
lation length ξ increases as the system approaches the critical
point and, at the critical point, spatial correlation pervades
the whole system. The process is modeled by the power law,
ξ(t) ∼ |t|ν near the critical point, where t = T−Tc, and ν is
a critical exponent that is 1/2 according to Landau-Ginzburg
theory. More accurate values that match closely to the exper-
imental data, are obtained by other theories [13]. Thus, ν is
one of the important static exponents. Similar to the spatial
correlation properties, certain temporal correlation laws are
also present for critical phenomena in large systems, which
lead to the definition of Dynamic Critical Exponent [14]. Let
Z be the dynamic critical exponent and τ be the relaxation
time or the temporal correlation length of the slowest mode.
Near a phase transition point, the relaxation time of the
slowest mode of a system diverges as τ ∼ ξZ , Formally,
the normalized time-correlation function φx(t1 − t2) of an

observable x(t) is defined as [15]:

φx(t1 − t2) =
[〈x(t1)x(t2)〉 − 〈x〉2]

[〈x2〉 − 〈x〉2] (4)

with the boundary conditions, φx(0) = 1 and φx(∞) =
0, and the function φx(t) decays monotonically with t. If
φx is time integrable, then its integral, τx ,

∫∞
0

φx(t)dt,
is called the relaxation time or temporal correlation length
of the observable x(t); in the sequel, τx is abbreviated as
τ . Although more than one relaxation time may exist, the
slowest mode is considered as:

[〈x(t1)x(t2)〉 − 〈x〉2]
[〈x2〉 − 〈x〉2] ≈ exp

(
−|t1 − t2|

τ

)
(5)

The increase of τ near the critical point is known as the
Critical slowing down [13]. That is, near the phase transition
point, the time interval between two consecutive independent
observations become longer, which makes it difficult to
simulate a large system at the phase transition point. On
the other hand, if the relaxation time can be estimated, then
the phase transition point can be anticipated. The concept
of Statistical Dependence time, will be considered here to
estimate the relaxation time. The procedure for estimation
of Statistical Dependence time in a continuous-time form
is briefly derived below. Let the observable x(t, ζ) be a
stochastic process, where ζ denotes a random sample. To
estimate the relaxation time τ of x(t, ζ), let the average
process s(ζ) be defined as:

s(ζ) =
1
T

∫ T

0

x(t, ζ)dt (6)

where T is the length of the time window per sample. The
variance of s(ζ) across the samples is obtained as:

σ2
s =

1
T 2

∫ T

0

∫ T

0

(
E[x(t1)x(t2)]− 〈x〉2

)
dt1dt2

≈ σ2
x

T 2

∫ T

0

∫ T

0

e−
|t1−t2|

τ dt1dt2 (using Eqn. 5)

=
σ2

x

T 2

∫ T

0

∫ T−b

−b

e−
|a|
τ dadb =

σ2
x

( T
2τdep

)
(7)

where σ2
x , 〈x2〉 − 〈x〉2 and τdep , τ [1 − τ

T + τ
T e−

T
τ ].

If x(t, ζ) is an uncorrelated process (e.g., a white noise),
then the variance of the average process decays as fast as
the length T of the time window. However, if the process
is positively correlated, then the decay rate of the variance
changes to T

2τdep
. That is, a positive correlation decreases

the rate of decay of the variance of the average process. For,
T À τ , it can easily be seen that τ ∼ τdep and

τ ≈ σ2
sT

2σ2
x

(8)

In the present case, a very long time series of q̇(t)/λeff

is collected. The time series is divided into several windows
of length T . Assuming ergodicity, different windows can be
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Fig. 4. Estimation of relaxation time τ

thought of as different samples. The mean is calculated for
each sample and variance of these mean values would be
σ2

s corresponding to the observable q̇(t)/λeff . Estimated
relaxation time τ is calculated for a 10 × 10 network in
this way and the plot of τ vs. λeff is shown in Fig. 4
using T = 500 and T = 1000. As the system approaches
the critical point, τ increases and a larger window length
is required to achieve a smaller estimation error. This is
seen in the plot of Fig. 4 where the difference in estimated
values of τ with different window lengths becomes higher
as the system approaches the critical point. This estimation
procedure of τ is useful for dynamically detecting a critical
phenomena in large complex systems; it simply needs to fix
a threshold for the relaxation time.

3. EFFECT OF NETWORK SIZE

Human-engineered multi-agent systems are of signifi-
cantly smaller size compared to natural thermodynamic
systems that consist of very large numbers of particles.
Therefore, size-scaling laws need to be carefully formulated
for such human-engineered systems. In general, for finite-
sized systems, the critical value of the intensive parameter,
denoted as Tc(N), is a function of the size N, and as N
goes to infinity, Tc(N) converges to Tc(∞) of the corre-
sponding infinite-sized system. Figure 5 shows continuous-
phase-transition plots for networks of different sizes - 5× 5,
7× 7, 10× 10, 12× 12, 15× 15, and 20× 20. The plot in
Fig. 6 shows that indeed λc

eff (N) decreases with increase
in the network size N . It is already stated that the space
correlation length ξ(t) behaves as a function of |t| in a power
law. In the statistical mechanics literature, the following size
dependency form of ξ(t) is assumed [13], which conforms
to the nature of ξ(t) function.

ξ(Tc(N)− Tc(∞)) = aN (9)
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Fig. 5. Continuous phase transition plots for networks of different sizes
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Fig. 6. Size dependency of critical network load

where a is a constant parameter. The following law is now
derived.

Tc(N) = Tc(∞) + bN− 1
ν (10)

where b is another constant parameter. This model has been
verified for 2-D Ising models. Similar formulation is intended
to be used for the current application. However, in the present
problem, λeff ∼ 1

N . Thus, it is impossible to provide a finite
effective load per node to an infinite sized network, which
means there can not be any finite load phase transition in
an infinite-sized network, i.e., λc

eff (∞) = 0 in the current
configuration. Hence, for this case

λc
eff (N) = bN− 1

ν (11)

for a coefficient b and an exponent ν. Figure 6 shows a good
fit of this proposed model with b = 1.18 and ν ≈ 0.9.

Next the critical exponent β is calculated for networks of
different size as shown in Fig. 7. Similar exponent values
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Fig. 7. Critical exponent β for networks of different Sizes
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Fig. 8. Size independent global phase transition plot

are observed for different sizes, which is in agreement with
the plots in Fig. 5. Figure 7 shows the possibility to obtain a
size-independent global model for phase transition in square-
grid communication networks. Such a model is achieved as
shown in Fig. 8 by using a reduced effective load λred ,
λeff

λc
eff

instead of λeff . Usage of this correction factor draws
inspiration from the discipline of Thermodynamics, where
compressiblity curves for a variety of pure substances can be
unified by in terms of a single parameter - reduced pressure
or reduced temperature instead of a family of pressure or
temperature points.

4. EFFECT OF ROUTING STRATEGY

This section deals with the effect of the network routing
strategy on the nature of phase transition. Thus far, all
the results have been obtained with a deterministic routing
strategy as explained earlier in Section 2. The results in this
subsection have been generated with a change in the routing
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Fig. 9. Continuous phase transition plots for networks (with random
routing) of different sizes
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Fig. 10. Size dependency of critical network Load (for random routing)
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Fig. 12. Size independent global phase transition plot (for random routing)

strategy as explained below. In this routing strategy, a node
is chosen randomly when two choices are available, whereas
the previous strategy makes a deterministic choice of the
node with the smaller queue length. Systematic study has
been performed with this random routing strategy similar to
that with the previous deterministic routing strategy. Figure 9
shows continuous phase transition plots for networks of
different sizes with the random routing. As expected, the
network becomes increasingly congested for decreased val-
ues of λc

eff that serves the normalization factor to generated
the reduced effective load λred as explained in the previous
section. Figure 10 shows size dependency of the critical
network load with b = 1.16 and ν ≈ 0.77. Figure 11
shows the critical behavior for networks of different sizes
with random routing. It is seen that the critical exponent
β ≈ 0.29 is largely insensitive to network size. As it was
done for the previous routing strategy, a size-independent
global phase transition model is identified for this random
routing strategy as shown in Fig. 12.

5. SUMMARY, CONCLUSIONS AND FUTURE WORK

A statistical mechanics-based method has been proposed
for analysis of critical phenomena in communication net-
works. The basic concepts and underlying principles are
validated by Monte Carlo simulation on the model of a
wired communication network with single data type. The
notions of order parameter, network-analog temperature are
introduced for analysis of critical phenomena in the setting
of statistical mechanics. A comprehensive analysis of finite-
size scaling has been presented for a specific type of network
structure and the effects of network routing strategies have
been investigated. The results of Monte Carlo simulation
show that the qualitative behavior of communication net-
works remains remarkably similar irrespective of the routing
strategy although the coefficients and exponents in the power

law models could be different for different routing strategies.
This observation suggests correctness of the chosen global
parameters for this statistical mechanics-based analysis and
those could potentially be used as measures of performance
and stability of communication networks. However, much
theoretical and experimental research is needed before the
statistical mechanics-based concept, presented in this paper,
can be considered for analysis and synthesis of large-scale
networks. A few examples are presented below as topics of
future research.
• Investigation of the effects of packet arrival statistics,

distribution of source and destination nodes.
• Investigation of the effects of network shapes (e.g.,

rectangular instead of square grid).
• Dynamic analysis of global stability and convergence in

terms of the network equilibrium parameters (e.g. order
parameter)

• Investigation of stability and performance robustness
relative to exogenous disturbance (e.g. spatial variations
in packet arrival distribution).

• Experimental validation on more complex and realistic
(e.g., sensor network) topologies.
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