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Abstract— This paper presents an application of Statistical
Mechanics for analysis of critical phenomena in complex net-
works. Using the simulation model of a wired communication
grid, the nature of phase transition is characterized and
the corresponding critical exponent is computed. Network
analogs of thermodynamic quantities such as order parame-
ter, temperature, pressure, and composition are defined and
the associated network phase diagrams are constructed. The
notion of network eutectic point is introduced by showing char-
acteristic similarities between the network phase diagram and
the binary phase diagram. A concept of robust and resilient
control in communication networks is presented based on
network phase diagrams.

I. INTRODUCTION

A complex network is broadly defined as a collection of

interconnected and interacting systems [1], [2] where the

individual subsystems (or participating agents) themselves

could be complex dynamical systems. Complex networks

have been shown to characterize the behavior and topolog-

ical organization of many natural and engineered systems,

such as those found in the disciplines of sociology [3],

biology [4], finance [5], and communication networks [6].

A common feature across all such systems is that their

global behavior emerges from local dynamics of the par-

ticipating agents. Specifically, each agent may share its

local responsibility as dictated by its neighborhood, which

eventually leads to emergence of a global behavior of the

whole network. Thus, dynamics of complex networks can

be characterized by the relation between micro-motion

(i.e., local dynamics) and macro-motion (i.e., global dy-

namics), which could be characterized by application of the

principles of Statistical Mechanics [7], [8]. The underlying

similarity of these two disciplines has recently triggered

the interest of many researchers to investigate complex

networks from the perspectives of Statistical Mechanics;

for example, see [1] for a review of recent literature in

this field.
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A characteristic phenomenon of complex systems, con-

sisting of interacting and interdependent dynamics, is

phase transition, where an abrupt (continuous or discon-

tinuous) change in the operating characteristics may take

place with a relatively small variation of the system param-

eter(s). For a communication network, this phenomenon

would correspond to dependence of the network’s global

characteristics (e.g., connectivity and average delay rate)

on local parameters (e.g., communication radius and trans-

mission probability) [9]–[11]. This paper presents a Sta-

tistical Mechanics approach to study phase transition phe-

nomena in a wired communication network. The qualita-

tive nature of phase transition in the underlying system is

characterized and its critical exponent is computed. Phase

diagrams are constructed for the network under consid-

eration by defining network analogs of thermodynamic

quantities, such as order parameter, temperature, pressure,

and composition. The characteristic similarity between the

network phase diagram and the binary phase diagram is

exploited to define a network eutectic point based on

thermodynamic analogy.

The paper is organized as follows. Section II presents

a brief background of phase transition and critical phe-

nomena. Using the example of a wired communication

network, Section III formulates a Statistical Mechanics

approach to study phase transitions. It also investigates the

effects of single-parameter and two-parameter variations

on initiation of phase transition in a network consisting

of single and mixed data types. Section IV discusses

potential utilization of phase diagrams for robust and

resilient control of communication networks. The paper

is concluded with a short discussion and recommendation

for future work.

II. PHASE TRANSITION AND CRITICAL PHENOMENA

A key task in the analysis of phase transitions is to

characterize the system behavior in the vicinity of a critical

point. The Mean Field theory is applied to study phase

transitions, which involves identification of a global param-

eter, called the order parameter [7]. It essentially quantifies

the presence of order in the underlying system, which is

zero (or negligible) in the disordered phase and takes on
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non-zero values in the ordered phase. A phase transition

is caused by a continuous or a discontinuous change

of the order parameter from zero to a non-zero value

when an intensive system parameter (e.g., temperature) is

varied across the critical point. For the well-known case

of ferromagnetism, the order parameter net-magnetization

M(T ) has a non-zero value leading to spontaneous magne-

tization for temperatures below the Curie temperature [7].

The nature of phase transition is often broadly classified

into two types (i) first-order phase transition - when the

order parameter changes discontinuously with the intensive

parameter at the critical point and, (ii) Continuous (also

called second or higher order) phase transition - when

the order parameter varies continuously with the intensive

parameter during the phase transition.

A phase transition is marked by the presence of an-

alytical singularities or discontinuities in the functions

describing macroscopic physical parameters of the system.

In the vicinity of the critical point marking the phase

transition, the functional form of the order parameter is

often modeled using a power law with a critical exponent

as stated in Eqn. 1 below.

m ∼ (Tc − T )β (1)

where m is the order parameter; T is the intensive variable

(e.g., temperature); Tc is the critical value of T correspond-

ing to the phase transition; and β is the critical exponent

that characterizes the nature of phase transition.

III. PHASE TRANSITION IN NETWORKS

Ohira and Sawatari [9] developed a probabilistic routing

strategy for a simple wired communication network, which

was shown to perform better than a deterministic routing

strategy.

A. Example 1: Square-grid wired communication network

This subsection builds on the concepts presented in

Section II to elucidate the phase transition phenomena

in wired communication networks based on the Ohira

and Sawatari model [9]. Order parameters and network

temperature are identified for the network system under

consideration; the critical exponent is computed and is

compared with the mean-field-theoretic result. A binary

network phase diagram is constructed by defining the

network composition and different phases are identified. In

Section III-B, the model is augmented with the addition of

a data type and a network eutectic point is defined.

The network under consideration is a two-dimensional

square grid as shown in Fig. 1, where the nodes (routers)

are placed at the grid points. For a square grid network

with N × N nodes there are 4(N − 1) boundary nodes

(shown as squares in the Fig. 1) and N2−4(N−1) internal

nodes (shown as circles in the Fig. 1). Only boundary

nodes are assumed to be the sources and/or the sinks

for packet generation and destruction; internal nodes can

only transmit the packets. Each node receives packets in

an infinite queue from its neighboring nodes and packets

Fig. 1. Network architecture in the simulation model

are terminated after reaching their destinations. In each

time unit, packets are created in the boundary nodes with

a Poisson arrival rate λ. Destination nodes are chosen

randomly from the boundary nodes, including their source

nodes. Each node transmits one packet from the head of

its queue to a deterministically chosen neighboring node at

each time unit. The node chosen to forward a data packet

is selected so that the packet travels via the shortest path

to its destination. When there are more than one candidate

nodes for the shortest path, the node with a smaller queue

length is chosen to prevent early congestion of the network.

Monte Carlo simulation has been performed on a 5× 5
node network. In the simulation model, the wired com-

munication grid is subjected to varying traffic arrival rates

λ and the network performance is recorded for 300 time

units. Average delay D(t) of the network at time instant t

is computed as the mean delay of all packets terminating

at time t. While the average queue length q(t) is computed

as the mean queue length of all nodes at time t. A typical

plot of average delay D(t) and average queue length q(t)
with time for arrival rate λ = 0.25, 0.30, 0.35 and 0.40 is

shown in Fig. 2(a) and Fig. 2(b), respectively.

It is seen in Fig. 2 that, after expiry of initial transients,

average delay and average queue length come to a steady-

state for both λ = 0.25 and λ = 0.30. However, for λ =
0.35 and 0.40, each of D(t) and q(t) does not settle to

a steady-state values and shows a consistent rise with a

positive rate. The parameters, average delay rate 〈D′(t)〉
and average queue rate 〈q′(t)〉, for a given value of λ are

computed over a span of 300 time units. To eliminate the

effects of initial transients in 〈D′(t)〉 and 〈q′(t)〉, values

of D(t) and q(t) corresponding to first 50 time steps are

not included in the computation. Also, for each λ, delay

rate and queue rate of the network are averaged over 10
simulation runs using same system parameters. The plot of

〈D′(t)〉 and 〈q′(t)〉 with λ is depicted in Fig. 3. It is seen

that there is a critical value λc = 0.3 of the arrival rate such

that, for λ < λc, the average delay rate of data packets is

negligible; in contrast, for λ > λc, average delay rate takes

on non-zero values. Similar phenomena are observed for

average queue rate of the network. Following Section II,

this abrupt change of system behavior across the critical

arrival rate λc is identified as a phase transition.

The above discussion and the plots in Fig. 3 evince that

the average network delay rate 〈D′(t)〉 and average queue
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Fig. 2. Plots of (a) time series of delay D(t) (b) time series of queue length q(t) for arrival rates λ = 0.25, 0.30,0.35 and 0.40
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Fig. 3. Continuous phase transition: (a) average delay rate 〈D′(t)〉 (b) average queue rate 〈q′(t)〉 vs. arrival rate λ; critical arrival rate λc = 0.3

rate 〈q′(t)〉 are candidates for network order parameter.

With these choices of order parameter and Eqn. (1), the

packet arrival rate λ is identified as network temperature.

The phase transition of the network is of continuous type

as defined earlier in Section II. Across the critical point λc,

the network moves from a stable phase (S) of negligible

delay rate and queue rate to an unstable phase (U).

The value of the critical exponent β is calculated to be

0.68 and unity for order parameter 〈D′(t)〉 and 〈q′(t)〉,
respectively, so that 〈D′(t)〉 ∼ |λc − λ|0.68 and 〈q′(t)〉 ∼
|λc−λ|1, with λc = 0.3. The same value of λc is expected

for both choices of the order parameter. This is justifiable

because longer queue lengths imply a higher value of delay

for data packets and vice versa.

Previous analyses studied the effects of variation of

a single parameter, i.e., packet arrival rate (or network

temperature) λ, on the average delay rate 〈D′(t)〉. Now,

transmission probability p of the nodes, defined as the

probability of transmitting a packet by an internal node

in a time unit, is varied along with λ. In the previous case,

p was set to unity. When p is decreased from unity, the

network is expected to move from the steady delay phase to

the unsteady delay phase for lower values of arrival rate λ.

Similar phenomena also take place in thermodynamic (e.g.,

solid-liquid and gas-liquid) systems, where the critical

temperature of solid-liquid (gas-liquid) transition can be

altered by a change of super-incumbent pressure; lower

pressures lead to lower values of melting (boiling) point.

In this regard, the transmission probability p of the nodes

is identified as the network pressure. Phase transition in

the network is therefore a function of a combination of

network temperature λ and network pressure p.

Simulation runs for different combinations of λ and

p have been performed. Network stability is determined

based on delay rate; and queue rate is negligible for the

stable phase and is non-zero for an unstable phase. The

1551
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network phase diagram in Fig. 4 is constructed with λ and

p as network temperature and pressure, respectively. Stable

and unstable regions are labeled as S and U respectively

in Fig. 4. It is seen that the network phase diagram is

characteristically similar to the pressure-temperature phase

diagram for ferromagnetic materials for phase transition

from ferromagnetism to paramagnetism [7].
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Fig. 4. Network phase diagram

B. Example 2: Square-grid wired communication network

with two different data types

Often, due to limited resources such as channel capacity,

data prioritization is used in communication networks to

ensure desired performance. The network model studied in

the previous section is modified to simulate this situation.

Two types of data packets form the network traffic, namely,

Type I and Type II . In this example, both data types are

created with the same poisson arrival rate λ. Similar to the

model in Section III-A, only nodes at the periphery are

assumed to be sources and/or sinks for packet generation

and termination; only the nodes internal to the network are

allowed to transmit the packets. All nodes have an infinite-

length queue for each data type; and data packets received

from neighboring nodes are maintained until forwarded

to the next node. Packets are terminated after reaching

their respective destinations and the routing strategy is kept

the same as in Section III-A. Since a node is allowed to

transmit only one packet at a time in this model, each

node has to choose between two queues for transmitting a

packet at each time unit.

Let the priority probability Pp of Type I packets be

defined as the likelihood with which, a node will choose

to transmit data type I at a particular time step. Thus, the

probability of transmitting a Type II packet for a node

is 1 − Pp because the transmission probability (network

pressure) of each node is maintained at unity. For data

traffics of Type I and Type II, each of the three plates in

Fig. 5 shows a pair of plots of average queue rate against

λ for different priority probabilities, (a) Pp = 0.3, (b) 0.5
and (c) 0.9. Note that, in this model, test cases Pp = 0.7

and 0.1 are equivalent to test cases Pp = 0.3 and 0.9
respectively due to interchangeability of data types and

are not shown.

The priority probability Pp has a direct influence on the

stability of the network with respect to the data types I

and II . The critical value λc of arrival rate is seen to

be different for different data types. Thus, for different

combinations of λ and Pp, it is possible to have one or

both data types have a positive delay (queue) rate. It is seen

in Fig. 5 that a lower value of λc occurs for lower priority

data as expected because a packet of lower priority is less

likely to reach its destination and is therefore subjected to

higher delays and contributing to longer queues.

As defined earlier, the stable phase S (unstable phase U)

for a data type is characterized by zero (non-zero) delay

rate and queue rate for that data type. The following four

phases of the network are now identified based on this

notion.

• Completely Stable phase (S1+S2): Both data types

have steady-state delay in this phase, which signifies

negligibly small values of D′ for both channels.

• Unstable data type I and Stable data type II (U1+S2):

Data type I has a relatively large D′ while data type

II still maintains a negligibly small D′.

• Stable data type I and Unstable data type II (S1+U2):

Data type I maintains a negligibly small D′ while

Data type II has a relatively large D′.

• Completely Unstable phase (U1+U2): Both data types

have unsteady delay with large D′ for each.

A phase diagram is constructed for the network by

evaluating the network performance for the two data types

at different combinations of λ and Pp. The network phase

diagram is shown in Fig. 6 with the four phases of the

network defined above. Three locations corresponding to

Pp = 0.3, 0.5 and 0.9 are marked for which the plot of

queue rate 〈q′(t)〉 with λ is given in the plates (a), (b)

and (c) of Fig. 5, respectively. In this context, priority

probability Pp is defined as the network composition as

it directly controls the composition of data types in the

network traffic.

C. Material science analogy

The phase diagram in Fig. 6 is analogous to the binary

eutectic phase diagrams in the discipline of Material Sci-

ence [12] as displayed in Fig. 7. The binary eutectic phase

diagram explains the chemical behavior of two immiscible

crystals from a completely miscible liquid. For example,

let us consider olivine (i.e. isolated tetrahedra) as Crystal

A, and pyroxene (i.e. single chain tetrahedra) as Crystal

B. Similar to the network phase diagram, temperature

is plotted along the ordinate, percentage composition of

Crystal A is plotted along the abscissa to construct the

binary phase diagram, where pressure is held constant

at 1 atmosphere. Note that the network pressure is also

held constant in the example in Subsection III-B. The

completely stable (i.e., S1+S2) zone in the network phase

diagram is analogous to the solid solution (i.e. Crystals
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Fig. 5. Average queue rate 〈q′(t)〉 vs. arrival rate λ with mixed traffic: (a) Pp = 0.3 (b) Pp = 0.5 (c) Pp = 0.9

A+B) zone of the binary phase diagram in Fig. 7. While the

completely Unstable (U1+U2) zone in Fig. 6 is analogous

to the “All Melt” zone in Fig. 7. Similarly, zones (U1+S2)

and (S1+U2) are analogous to the “Melt+A” and “Melt+B”

zones respectively, where “Melt+A” signifies a phase with

molten mixture and crystals of A in it; and similar analogy

hold for “Melt+B”. Equivalent solidus and liquidus lines

can also be drawn for network phase diagram, which will

denote the boundaries between different phases.
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Fig. 6. Network phase diagram for mixed traffic

IV. NETWORK ROBUSTNESS AND RESILIENCE

Robustness of a dynamical system signifies its insen-

sitivity to exogenous disturbances, internal faults, and

uncertainties. In this context, robust decision & control

laws are synthesized with the objectives of achieving

optimal trade-offs between stability and performance under

disturbances and (both structured and unstructured) uncer-

tainties within specified bounds [13]. For the binary phase

diagram described above, the melting point of the eutectic

mixture is as low as possible. The corresponding melting

temperature is called the eutectic temperature, and the

composition and temperature at which melting takes place

is called the eutectic point as ‘e’ in Fig. 7. Therefore, when

reducing the temperature across the eutectic point, both

constituents crystallize simultaneously from the molten

liquid solution. Similarly, a network eutectic point en is

Fig. 7. Binary phase diagram for mixed crystals

defined as the point at which both data types move to

their unstable phases when the network temperature (i.e.,

packet arrival rate λ) is increased keeping the network

composition constant. Thus, the corresponding λ would be

highest amount of traffic that can be accommodated with

both data types stable to achieve the highest performance.

However, due to some disturbances or fluctuations in the

network traffic if this point is crossed, then both the traffic

types will become unstable. Therefore, qualitatively, this

phase diagram dictates that, for robustness of the network

the operating point, should not be in the vicinity of the

network eutectic point.

While network robustness is relevant in the infinite-time

horizon, network resilience needs to be considered in a

a finite-time horizon. The role of a resilient controller

is to accommodate unanticipated adverse conditions and

large faults as well as emergency situations by altering

its operational envelope in real time [14]. Upon reaching

normalcy, the network system must return to the original

state of operation or a gracefully degraded state in the event

of a permanent damage.

As an example, a real-life situation is presented in this

paper to elucidate the concept of network resilience. Let

us consider a sensor network deployed to collect video and

chemical data from a monitored environment. Depending

on the situation at hand, the video or the chemical data
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would be of higher priority. Chemical sensor data that

are less bulky compared to video sensor data would be

expected to be assigned higher priority. However, this

policy may change in an emergency situation when a

resilient network controller is required to opportunistically

assign the priorities to individual data types. In an attempt

to do so, the network may possibly visit the unstable phase

of low priority data for a short duration to allow the time-

critical data to reach its destination fast enough. Upon

accomplishing this task, the network should autonomously

return to the stable phase for both data types. A plot of

allowed time units that the network can spend in a phase

before becoming unstable is shown in Fig. 8. This infor-

mation is computed as the time before the average queue

lengths become larger than a predefined bound, which is

chosen to be 40 in this example. Since the network average

queue rate is approximately zero in the stable phase (i.e.,

S1+S2), the network can operate indefinitely without filling

up the queues. However, in an unstable phase (i.e., S1+U2,

U1+S2 or U1+U2), there is a specified number of time

units, shown as contours lines in Fig. 8, before which

priorities of individual data types should be altered to

maintain the queue lengths within the specified bound.

Thus, depending on the current needs of data transmission,

the network prioritizes the data based on the network phase

diagram and choose the network composition for resilient

control.

V. CONCLUSIONS AND FUTURE WORK

Phase transition in communication networks are consid-

ered and the associated phase diagrams of network oper-

ation are constructed. In this context, network analogues

of order parameter, temperature, pressure, and composition

are defined along with the concept of the network eutectic

point. To elucidate this concept, the model of a wired

communication network is considered with single data

type and a mixture of two different data types for Monte

Carlo simulation. A binary phase diagram is constructed

for the network with a mixture of two different data types.

Significance of the network phase diagram is discussed to

achieve robustness and resilience for network control.

Further research is needed before the Statistical Mechan-

ics concept , presented in this paper, can be considered for

analysis and synthesis of large-scale networks. While there

are many research areas to be investigated, the following

topics are being currently pursued.

• Concepts of Statistical Mechanics such as the re-

normalization group [15] [16] for modeling phase

transition in multi-time-scale network operations.

• Investigation of more complex topologies as needed

for large-scale communication networks and sensor

networks.

• Development of Statistical Mechanics inspired rout-

ing algorithm for robust and resilient control of large

scale sensor networks.
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