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Abstract—This paper develops a language-measure-theoretic agents do not seek consensus. Often localized percolation o
distributed algorithm for decision propagation in a mobile-agent  decision is desired to localize the information source.
network topology. The agent interaction policy proposed hee The main contribution of this paper is the development of

enables the control of the tradeoff betweerPropagation Radius lized ) algorithm based i tv devel
and Localization Gradient. Analytical results regarding statistical & 9€N€raiized gossip algorithm based on the recently devel-

moment convergence are presented and validated with simuian ~ Oped language-measure theory [10], [11] for a time-varying
experiments. network topology. The algorithm is used for distributedlgb

propagation of decision/awareness in mobile-agent nétsvor
1. INTRODUCTION and it is shown that the generalization parameter controls

the tradeoff betweerPropagation Radius and Localization

Distributed information propagation and control mechaz ~ . . .
nisms in mobile-agent networks have drawn much attentiag;r{ad'em' Analysis of moment dynamics [12] (up to second

recently due to their relevance in engineering problerr%rder) is presented and verified using simulation experimen

Particularly, in a resource constrained environment, teobi ariance analysis is performed under two conditionsCoj-

agents have potential advantages over static networksrrste gruoustl me-scale: when network topology evolution and agent

of coverage and time-criticality. Application areas. ird interaction dynamics has similar time-scales andXigparate

. . . time-scale: when (faster) agent interaction dynamics can be
surveillance and reconnaissance by autonomous vehictas wi ( ) ag y

limited capabilities, trust establishments in mobile ad het- considered as a singular perturbation with respect to (sfpw

works (MANETS) [1] and threat monitoring by mobile sensopetwork topology evolution.
networks. Furthermore, diffusion of aggregated inforomais
more relevant compared to individual sensor information [2
mostly due to its robustness to individual agent’s failune i This section describes a mobile-agent scenario in terms of
detection/communication. In this context, this papersleath  proximity networks [3] and subsequently formulates therdige
global propagation of a localized awareness in a leaderlésteraction policy.
environment in a robust and completely distributed manner.

In general, there are two aspects of interacting agegt Model Description

sys_tems, namely () network topology _and (i) agent inter- Let the area of a two dimensional (Euclidean) operational
action dynamics. Recently, the analysis of so called prox-

imity networks [3] (also called the moving nei hborhooélegion be A. In the present case, it is assumed to be a
Y 9 9 . Square area with side length, i.e., A = L2. Initially, N
networks [4]) has been performed to model contact/colisio i . :
ents are distributed randomly in the given area, and the

. : al
based disease spreading. In a recent paper [5], the authcﬁgm density is defined a5 = N/A. The uniform radius
used a similar approach to analyze mobile agent networks f)‘(ﬂ ‘

) . L . . communication for each agent is denoted Byi.e., two

engineering application. The mobile agent network useHis t . .
2 - agents can only communicate (to say, exchange their state
paper follows the same structure. Distributed agent ictara . .
: e : . values) when the distance between them is less fafhe

dynamics for decision propagation has several mechanisms : )

. o . agents move in a 2-D random walk where the spe&dsame
available in literature, examples are game theoretic [b]ohgy

o AR : for all the agents in the current setup. The random walk is
|nsp|red,_ physics |nsp|re_d (Ismg/Eotts models)_ (6], . realized by independently choosing a direction of motiamfr

percolation [7] and majority voting [8]. Gossip algorithms . Lo .

oo . L a_uniform distributionU (0, 27), by all agents at every time

are the most studied interaction dynamics in the context of L : .

. . step. During its motion, every agent is assumed to broadcast

consensus [9]. However, in many applications, large grdup 0 . L .

message (e.g., its own state) over a certain time window that

This work has been supported in part by the U.S. Office of NReslearch is known a_s the message lifetinde,,. At the same time, the
under Grant No. N00014-09-1-0688, by the U.S. Army Resehatioratory agent receives messages (e.g., state values) from othetisage
and the U.S. Army Research Office under Grant No. WO1INF-0376. \vhich may come within the distancB. After expiry of a
Any opinions, findings and conclusions or recommendatiomsessed in this . .
publication are those of the authors and do not necessafilgct the views message, an agent pOSSIbly undergoes a state updatlng and
of the sponsoring agencies. then it starts broadcasting the new state for another window

2. FORMULATION OF THE PROBLEM



of message lifetime. If the message lifetinlg,, is very adjacency matrix of the mobile agent network (described in
small, then the effective network will be equivalent to nplé  Section 2-A), after the expiry of the message lifetimg, will
instances of static random graphs. On the other hand, thee ones in thé;j*" position if agenti communicates with
network eventually becomes fully connected &g — oo. agentj in the period ofL,,, otherwise the matrix element will
Thus, to model realistic situationd,,, should be chosen be zero. All the diagonal elements of the adjacency matex ar
appropriately based on the other network parameters. Adtho kept as zeros. The Laplacian matrig)(of G is defined as:
the message/state updating may occur in a non-synchrongus- D — A, where, D denotes the degree matrix. Degree
manner in the agent population, for analytical tractapiif matrix D is defined as the diagonal matrix with;; = d;,
the agent interaction policy, only synchronous messaaje/stwhered; is the degree of node Finally, the agent interaction
updating is considered in this paper. Furthermore, olestaahatrix IT is considered as [14]:
avoidance is a natural componentin any agent mobility model T—1-3c (1)
and it is not considered in the current setup. In this setup, t
degree of a node (agent) is defined to be the number of distifi¢tte parametef is chosen appropriately such tHatbecomes
nodes (agents) in the network it connects (communicates)actochastic matrix and its second largest eigenvalueieatis
within a message lifetimé,,,. The above setup is only usedthe condition [X\2(IT)] < 1. In the context of Proximity
for simulation study of the paper. Therefore, please seéof5] networks, this requirement of keepihgstochastic is achieved
detailed discussion on nature of expected degree distibutby taking 5 = m. Now, 5 is a parameter that is
and expected degree of the network class considered helgsen off-line and hence so i&,,,. Therefore to satisfy
Furthermore, note that a slower time-scale correspondingthe above condition on-line, an agent ignores communieatio
measure updating can be considered compared to the fast timigh distinct agents beyond,,.,, number of agents within a
scale of agent motion. Let, time in this slower scale be dethotmessage lifetimé.,,, (note,d, . is pre-determined). However,
by 7. The agent interaction policy is introduced in the sequediven the degree distributio®(k, L,,) (for a fixed message
lifetime L,,), dmna. iS chosen to be large enough such that the
B. Agent Interaction Policy probability of k > d,,42, is very low. For simulation studies,
The generalized gossip interaction policy developed ia thihe low probability is taken as = 0.001. Note thatll is a
paper is essentially based on the concepts of signed régichastic and symmetric (i.e., also doubly stochastidyima
measure of probabilistic regular languages generated diy-prdue to the above construction procedure.
abilistic finite state automata (PFSA) [10], [11]. Howeie In the present context, hotspots are detected only by agents
details are omitted for simplicity and the policy is preseht proximal to them. From this perspective, agents (nodesy hav
here in a self-sufficient way. state characteristic functiop: Q — {0, 1}, where@ denotes
Consider the case of multiple agents performing survetfe set of nodesy’ = 1 means that the agenthas detected
lance, where the agents are tasked with detection of threatbotspot and(’ = 0 denotes otherwise. Agents (nodes) also
in a given region. A typical example of such a threat couldave real measure values: @ — [0,1]. In this context,
be plumes of harmful chemicals that have to be detecteédhigher value of,* denotes a higher level of awareness of
Taking into account the nature of these threats, they magenti about a hotspot in the operational area.
be modeled as local hotspots within the surveillance region Decentralized Strategy: The decentralized strategy proposed
Only a few agents that search areas within the hotspot hdwere involves synchronous updating of measures of all agent
a non-zero probability of detecting the threat. The aim df thafter the expiry of one message lifetime,,. Naturally, L., is
paper is to develop a distributed and leader-less algorithm also homogeneous in the agent population. Correspondingly
mobile agents that is able to disseminate the information bfan agenti detects a hotspot at some instagt,= 1 is kept
a threat to other agents that may be far off from the loctll the next global measure updating even if the agent does
hotspot in a controlled way. Previous literature [13] haveot see the hotspot anymore. Thus, it is clear that boéimd
extensively studied the gradient based approaches fartitete x are functions ofr (slow time-scale of measure updating, as
of hotspots. These approaches primarily focus on the movidigfined in Section 2-A). According to the definition provided
agents towards the hotspots based on distributed estimat®ove, the matriXI is also a function ofr.
of gradients. However, in this application, it is requiréctt ~ With this setup, a decentralized strategy for measure updat
all agents should become cognizant of the presence of iAg in the mobile-agent population is introduced below that
threat while operating and monitoring in their own respexti involves a user defined control paramefer
local areas. In our approach, the presence of a hotspot does i _ j i
not affect the motionpcr;f the agentg. Instead, the infofnnatio Yolr+1 = (1=0) Z Llrvgle +0x°1, ()
states of other agents are updated to reflect the required ) )
level of awareness that the agents should posses regardinghere,Nb(i) denotes the set of agents in the neighborhood
the threat. The motivation here is to disseminate inforamati Of 2genti i.e., agents that communicate with ageértetween
away from the local hotspot to the entire population of agenf” @nd7 + 1. Expansion of the above equation gives:
A language-measure-theoretic approach to this problem is
developed in the sequel. Vilr = (1—0) | (1 — Bdi)vi|- + Z BVZIT + oy,
Problem Setup: Let the connectivity graph be denoted@s JEND()
and the corresponding adjacency matrix be denoted. ahe 3)

JE{i}UND(1)



The above equation signifies that the self-influence for &@onsidering the unrestricted 2-D random motion of the agent
agent reduces with increase of its degree. In other words, th the entire region, the process is assumed to be ergodic.
more neighbors an agent communicates to, the less it rell@serefore, the ensemble expectationy6f9|, can be denoted
just on its own observation. Vectorially the dynamics can kes E[x“*?] Vk (no time dependency). In this casB[y*"I]
expressed as: signifies the fraction of agents that visit hotspot(s) on av-

erage. Therefore, it is evident that with a constant stiengt
Volr1 = (1 = O)IL7vol- + Oxl7 @ of hotspot(s), E[x“*9] remains constant over time. Taking
The recursive relation in the Eqn. (4) above is expanded agensemble) expectation on both sides of Eqn. 9, the follgwin
relation is obtained at steady state {as> o).
I/9|T+1 = (1 - 9)T+1[H|TH|T—1 o 'H|O]V0|O + 9X|'r

avg . 2 av
+0(1 — O)II| - x| r—1 + 0(1 — 6)*IL|, 1| _1 x|, —2 ElvyY]] = OE +(1=0)+1—-0)"+ - ]E[X"]

_ _ —1 avg
o 01— Oy Tl () = O (=6 EX™]
o : . . . = E[™7] ford e (0,1] (10)
Thus, this policy is simply a gossip algorithm with varying

input x|, and varying network topology represented liy.. Therefore, using the notation of steady-state averager (ove
The memory of a past input fades as a function of thegents) introduced before, the steady-state expecteduneeas
parameted. Due to this notion, the above policy can be calledverage (over agents) is obtained as:
Zagr;:nme;?grz.ed gossip algorithm with 6 as the generalizing EM, ()] = E[M,(x)] (11)
Convergence of average measure to averagaplies that at
3. CONVERGENCE OFSTATISTICAL MOMENTS steady state, sum of values over agents is same as the sum

The convergence results presented here involve expecéd values over agents. In general, the physical significance is
quantities due to the inherent stochastic nature of thelpnab that the detection decision of hotspot by few agents isrgpti
Thus even in steady statey will always fluctuate in the redistributed as awareness over a (possibly) larger number
slow time-scale due to the fluctuation Th and y. However of agents, where the total awareness measure is conserved.
interesting observations regarding slow time-scale dimiu From this perspective, it is interesting to know the nature o
of the system can be made in terms of statistical momemg§asure distribution in the population and measure vagianc
of 14 computed over the agent population. In this paper, botAver agents) provides an insight in this aspect. For exempl
average (over agentd)l,[] and variance (over agentd),[] 2an extreme case would be when measure variance is zero,
of v are considered at steady state. Note, at any slow time that is all agents have the same measure value and it is equal
instantr is an N-dimensional vector, wherd is the number [0 the average measure value of the population. In litegatur
of agents in the population. Hendel, [v|,] andV,[vg|,] are this scenario is known asonsensus. The opposite extreme
respectively scalar average and variance values whgreis Case would be when there is no awareness propagation; only
considered as a random variable withsamples. In general those agents have nonzero measure values that have detected

the functionsM,[-] and V,[] defined on anV dimensional hotspot(s) (i.e., have nonzegovalues). The measure variance

column vectorx = [z1, 23, ..., zx]T as follows: will be equal to the variance of in this case and the hotspot(s)
can be localized very well following the measure distribati
M, (X) = ilx — Xy (6) due to a sharp localization gradient. Thus, measure disiil

essentially dictates a tradeoff betwd@nopagation Radius and
where, 1 is a row vector with all elements as 1. After meam ocalization Gradient and variance of over agents quantifies
subtraction, let the resulting vector be denotekase.,X = the position of the system in this tradeoff scale.
x — x291". ThereforeV,(x) = +X"x.

B. Convergence of Measure Variance over Agents

A. Convergence of M e Average over Agents It is evident from the discussion till now that there exists

Recall the system dynamics as given in Eqn. 4. two fundamentally different time-scales, one related to- ne
work evolution and the other related to agent state dynamics
Volr+1 = (1= )] volr + Oxl 0 The analytical developments in the sequgel will be p?/esented
The following equation is obtained by pre-multiplyilﬁl on for two special cases of relations between these two time-
both sides of Eqgn. 7., scales, namely: (i) Congruous Time-Scale (CTS) case and (ii
av av . Disparate Time-Scale (DTS) case.
vg e = (1= 0)vg™le + 60X (8) Congruous Time-Scale case: The two time-scales are equiv-
Note, 11|, = 1, asTI|, is doubly stochastic. Expandingalent in this case, which means at each slow-time epoch
Eqn. 8, one obtains (when the agent measures are updated), the system has an
avg B ri1 avg avg independent state transition matfixas well as an independent
Vo 'lr1 = (1 —=0)"" g o+ Ox*7|; state characteristic vectoy. More formally, the following
+0(1 — 0)x“ 9,1 +0(1 — 0)*x ™9, o assumptions are made under the CTS case.

+o 01 =0)" X" 9) o II|; and x|, are independents, k.



« II}; andIl|; are independenti, j. where, Ay = Xy (E[(II]-)"(11])]). Therefore, for the upper

« x|i andx|; are independents, j. bound
Note,_ 'Fhe first two assumpt_ions are feas_ible under fgirl;emln_ E(glr 1) Folrr1) 78] -] < (1 — 0)*As(ip],)T (T6]+)
conditions whereas the third one requires a special camditi Ot/ AT g~
of agent mobility (agents moving fast enough). +0°E[(x[-)" (x]+)]
Disparate Time-Scale case: In this case, the two time-scales= E[(Zolr+1)" (7]+1)] < (1 = 0)*A2E(Zo])" (] )]
are very different such that, the network evolution (theaslo +02E[(x]-)" (x]+)] (20)

dynamics) and the agent state updating (the fast dynamics

can be treated independently as it is done in Swgular %t steady-state, [Va[ve]] =
Perturbation theory. This leads to the assumption tHatand NE[(’/“)| )" (7],)]. Therefore,
x remain time-invariant over the course of transience in aigen EV,[well 1 - (1 - 9)2/\2} < 0%V,[x]
state dynamics, i.e., agent measures converge beforeithere E[Va[vsl] 02
a change inl and y. EV.o S1-(=

For variance calculation, consider post-multiplicatidriLd alX

on both sides of Eqn. 8, Note, # € (0,1] and A, € [0, 1].

%E[(ﬂﬂr-ﬁ-l) (179|.,.+1)] —

g (21)

Figure 1 presents the plot

I/gvg|7-+11T = (1 — H)ngg|7-1T + oxavg|T1T

= 5", 11" = (1 - 0)vg*?| 1|17 + 0x™9|. 17 (12) T -

9r 2

The above equation presents the mean dynamics for - 08t _22f2‘5

system. Now, the following equation is obtained by subinact o7k b— 2

the mean dynamics (in Eqn. 12) from the system equation %

Eqn. 7). i o6r "

Uglr1 = (1 — O, Dl + OX|~ (13) % oo "'
For calculation of variance (over agents), Z oal [
Zolr+1)" (Polrs1) = (1 = 6)* (] )" (W) T (1] ) (o)) 02 |
+02(X]) T (X]5) + 20(1 — 0) (7)) (T])T (%]) (14) 0L

O TR = L L L L

Taking ensemble expectation (gives,) on both sides (under 0 02 04 06 08 !

the CTS assumptions),

E[(170| 1)T(770| 1) T ] Fig. 1. Upper bounds of the variance ra@% as a function off
T+ T+ T

5]
(1= 0)*(%ol-) " EI(1]-) " (11])] (7] ) +
2EI(x1)" (X)) +20(1 = 0) (7] )" EI(11]7) 7] E[(X])] (15)

Since all the agents perform a random walk motion, the

[y

and IT|- under CTS assumptions; Lower bound is independent ofand
coincides with the upper bound fdro = 0

are ~equaIIy likely to visit the hot spot. This implies tha F Experimental Data with Degree = 3 *,
E[(x|+)] = 0. Furthermore, 0-97 1.\ Upper Bound o
9 - T T ~ ogk == Lower Bound ;P\
(1 —0)>(Zol,)" E[(1])" (I]-)](Zp]) > 0 (16) o7 ;fi
o »
Therefore, for the lower bound -5 06 =
. _ N . ®e
E[(@ol7+1)" (7] +1)|70l7] > 8> B[(x]7)" (X])] %0-5 R
~ ~ ~ ~ = R
= Bl(0o]r)" (0]r0)) 2 BRI ()] A7) Fos
L Ka

The expected (steady-state) variance can be expressed 03 = 2
E[V,[ve]] = % E[(#o|r+1)" (79]-+1)]. Using similar notation 0.2 o x o
for x, one has: 01 *;K*_. -7

E [Va[Vé’]] Z 2 (18) 0 \9\%\-‘\*-\-“\\ ‘ ‘ ‘

E[V.[x]] 0 0.2 0.4 0.6 0.8 1

Note, by constructiom,|, L 17 [15]. Also, 1 is the stationary

vector (left eigenvector corresponding to the unity eigdne) Fig. 2.
under CTS assumptions

of a doubly stochastic matrix. Therefore,

(59|T)TE[(H|T)T(H|T)](’79|r) < A2(50|7)T(50|7)

Experimental Verification of Bounds on Variance B Vavell

Va[x]]

(19) of upper bounds of the variance ratighzlsll with ¢ for

[Valx]



three possible values of,. Note that the lower bound of
the variance ratio is independent & and coincides with

the upper bound forAs = 0. An experimental verification is
also presented in fig. 2 that shows the experimental data
closely follow the upper bound for the particular case. \&hil

o
)
T

the expected degree of the network is kep8akigh speed is =

assumed for agents to achieve the conditions describecin & 06l

CTS assumptions. g
Next, the analysis is performed under the DTS assumptior &

As discussed earlief] and xy are not functions ofr in this S 04

case. From Eqgn. 5, as— oo, one has:

Voloo = Ox + 0(1 — O)IIx + 6(1 — 6)*11%y
+0(1 — 0)3TI3 - - - (22)

0.2r

The following equation is obtained by subtracting the mee
dynamics from Eqn. 22.

,;9|OO =6y + 9(1 _ G)Hf( 4 9(1 _ 9)21_[2)2 Fig. 3.  Upper bounds of the variance ral lvel 45 a function of) and
3103 - II under DTS assumptions; Lower bound is |ndepender))t20and coincides
+0(1 —0)°II°x - - - (23)  with the upper bound fohs = 0

Using the above equation, the measure variance over agents
is calculated as:

1 T T NUNENERRRREER R RS TR
NV, [vg] = 02°xTx +0%(1 — )Y TIx + 6*(1 — )" 11" ¢ oo Lo Lt g g B * 7
+602(1 — 0)2XTTITTIY + 62(1 — 0)? X" TI% ¢ ol T e et * ;"
+67(1 = 0)°X" (%)% - (24) N ‘
o 0.71 Q. * * '!
As II is symmetric, one has: Zoel. o ¥ 'f
a4 S ox R
NV, [vg] = 0°xTx +26%(1 — )T TIx Sos-e ¥ o
+30(1 — 0)2 XTI - (25)  Foa
> s \o\'
Sincell* s are positive definite fok € N, the lower bound is 03[ #’[ @ Exp1,Degree=3
obtained as 0.2f = » o Upper Bound(Expl)
Va[”&] > 62 26 o’ * Exp2, Degree=7
v [X] = ( ) 0.1r: \_\—\' ----- Upper Bound(Exp2)
a - e R Lower Bound
. . . . 0 - : :
Using the same logic as before, it is evident tRaTFy < 0 02 04 o 0.6 08 1

Ao (ITF) YT for k € N. Also, Ao (TTF) = A5 (IT) and Ao (11) is

denoted simply as. in the sequel. Therefore,
Fig. 4. Experimental Verification of Bounds on Variance Bax,‘ﬂ under

Va[ve] < 02Va[x] +20%(1 — 0)XaVa[x] DTS assumptions
+36%(1 — 0)*A3Va[x] - - (27)

By calculating the infinite sum, the upper bound is obtaine@a[ye] — 0asf — 0 andV,[vg] — Va[x] asé — 1. In other

as v 2 words, the agent population approacleessensus as — 0.
[Vg] 0 . . .
< 3 (28) In this case, although the entire population becomes awfare o
Valx] =1 =0)X] the hotspot(s), there is no localization gradient as evggna
Note, § € (0,1] and A2 € [0,1]. The upper bound for the has same measure value. On the other hand, @itk 1,
variance ratio calculated above is valid for a particdlar the localization gradient improves at the cost of propagati
Figure 3 Presents the plot of upper bounds of the varianadius. In generaly,[vy] decreases with decreasednThe
ratio V ”9 with 6 for three possible values of,. Note that other system component affecting the variance ratio islthe
the Iower bound of the variance ratio is independent\@f matrix. In both CTS and DTS cases, this effect is realized
and coincides with the upper bound fby = 0. Experimental through second largest eigenvaluelbfLower second largest
verification is presented in fig. 4 that shows the experimentigenvalue ofII signifies more connectivity among agents.
data for two cases with expected degree of the network ag his fact explains the decrease in variance ratio with desere
and7. Agent speed is kept very low (but not zero) to achieviea the second largest eigenvalue. It is evident that second
the conditions described in the DTS assumptions. largest eigenvalue is a function of degree of the network.
It is observed in both cases that upper bound and lowldowever, degree certainly is not the only network parameter
bound coincide a® approaches extreme valugsor 1 and that determines the decision propagation characteriatci




is observed in the experimental data for CTS and DTS cases.
Therefore, apart from network degree, compatibility betwe
time-scales of network evolution and agent state dynantgcs a
plays a key role in determining the system characteristics.

4. SUMMARY, CONCLUSIONS ANDFUTURE WORK

This paper addresses the problem of distributed decis]
sion propagation in a mobile-agent network environment
for surveillance and reconnaissance. A generalized goSSi ; p. skufca and E. M. Bolit, “Communication and synchiation in
algorithm derived from the concepts of recently developed
language-measure-theory is used for modeling the agest int
action dynamics. A completely decentralized implemeatati
of this algorithm is shown to be useful for propagation of
global awareness regarding a local hotspot in the opem@dtion
area. Analytical results have been obtained for convergehnc

measure (awareness level) distribution in the agent ptpala

A (user-defined) critical parametéy that controls the tradeoff
between the propagation radius and the localization gmadie[

In this setting consensus can be achieved @&— 0. Two cases

(CTS and DTS) relating the time-scales network topology
and agent interaction are presented and verified by nunheridél

simulation. In this algorithm, the system resets autoradiyic

upon removal of a hotspot. Another advantage of this apiproggo
is that it extends to multiple hotspot scenarios; future kwor

will involve detailed investigation with multiple hotsmot

Following are the other future research directions that are

currently being pursued:
« Analytical evaluation of the expected characteristic$lo

characteristics of the proximity network;

« Investigation of scenarios with asynchronous measure up-
dating and heterogeneous message lifetime distributiopi4]
o Relaxation of assumptions for variance calculation and

identification of the network size-scaling laws;

[1
o Analysis of convergence dynamics/time under general-

ized gossip framework.

[12]
f
(hence, second largest eigenvalues), given the expected
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