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Abstract—This paper develops a language-measure-theoretic
distributed algorithm for decision propagation in a mobile-agent
network topology. The agent interaction policy proposed here
enables the control of the tradeoff betweenPropagation Radius
and Localization Gradient. Analytical results regarding statistical
moment convergence are presented and validated with simulation
experiments.

1. INTRODUCTION

Distributed information propagation and control mecha-
nisms in mobile-agent networks have drawn much attention
recently due to their relevance in engineering problems.
Particularly, in a resource constrained environment, mobile
agents have potential advantages over static networks in terms
of coverage and time-criticality. Application areas include
surveillance and reconnaissance by autonomous vehicles with
limited capabilities, trust establishments in mobile ad hoc net-
works (MANETs) [1] and threat monitoring by mobile sensor
networks. Furthermore, diffusion of aggregated information is
more relevant compared to individual sensor information [2]
mostly due to its robustness to individual agent’s failure in
detection/communication. In this context, this paper deals with
global propagation of a localized awareness in a leaderless
environment in a robust and completely distributed manner.

In general, there are two aspects of interacting agent
systems, namely (i) network topology and (ii) agent inter-
action dynamics. Recently, the analysis of so called prox-
imity networks [3] (also called the moving neighborhood
networks [4]) has been performed to model contact/collision
based disease spreading. In a recent paper [5], the authors
used a similar approach to analyze mobile agent networks for
engineering application. The mobile agent network used in this
paper follows the same structure. Distributed agent interaction
dynamics for decision propagation has several mechanisms
available in literature, examples are game theoretic [1], biology
inspired, physics inspired (Ising/Potts models) [6], bootstrap
percolation [7] and majority voting [8]. Gossip algorithms
are the most studied interaction dynamics in the context of
consensus [9]. However, in many applications, large group of
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agents do not seek consensus. Often localized percolation of
decision is desired to localize the information source.

The main contribution of this paper is the development of
a generalized gossip algorithm based on the recently devel-
oped language-measure theory [10], [11] for a time-varying
network topology. The algorithm is used for distributed global
propagation of decision/awareness in mobile-agent networks
and it is shown that the generalization parameter controls
the tradeoff betweenPropagation Radius and Localization
Gradient. Analysis of moment dynamics [12] (up to second
order) is presented and verified using simulation experiments.
Variance analysis is performed under two conditions: (i)Con-
gruous time-scale: when network topology evolution and agent
interaction dynamics has similar time-scales and (ii)Disparate
time-scale: when (faster) agent interaction dynamics can be
considered as a singular perturbation with respect to (slower)
network topology evolution.

2. FORMULATION OF THE PROBLEM

This section describes a mobile-agent scenario in terms of
proximity networks [3] and subsequently formulates the agent
interaction policy.

A. Model Description

Let the area of a two dimensional (Euclidean) operational
region beA. In the present case, it is assumed to be a
square area with side lengthL, i.e., A = L2. Initially, N
agents are distributed randomly in the given area, and the
agent density is defined asρ = N/A. The uniform radius
of communication for each agent is denoted byR, i.e., two
agents can only communicate (to say, exchange their state
values) when the distance between them is less thanR. The
agents move in a 2-D random walk where the speedv is same
for all the agents in the current setup. The random walk is
realized by independently choosing a direction of motion from
a uniform distributionU(0, 2π), by all agents at every time
step. During its motion, every agent is assumed to broadcasta
message (e.g., its own state) over a certain time window that
is known as the message lifetimeLm. At the same time, the
agent receives messages (e.g., state values) from other agents,
which may come within the distanceR. After expiry of a
message, an agent possibly undergoes a state updating and
then it starts broadcasting the new state for another window



of message lifetime. If the message lifetimeLm is very
small, then the effective network will be equivalent to multiple
instances of static random graphs. On the other hand, the
network eventually becomes fully connected asLm → ∞.
Thus, to model realistic situations,Lm should be chosen
appropriately based on the other network parameters. Although
the message/state updating may occur in a non-synchronous
manner in the agent population, for analytical tractability of
the agent interaction policy, only synchronous message/state
updating is considered in this paper. Furthermore, obstacle
avoidance is a natural component in any agent mobility model
and it is not considered in the current setup. In this setup, the
degree of a node (agent) is defined to be the number of distinct
nodes (agents) in the network it connects (communicates) to
within a message lifetimeLm. The above setup is only used
for simulation study of the paper. Therefore, please see [5]for
detailed discussion on nature of expected degree distribution
and expected degree of the network class considered here.
Furthermore, note that a slower time-scale corresponding to
measure updating can be considered compared to the fast time-
scale of agent motion. Let, time in this slower scale be denoted
by τ . The agent interaction policy is introduced in the sequel.

B. Agent Interaction Policy

The generalized gossip interaction policy developed in this
paper is essentially based on the concepts of signed real
measure of probabilistic regular languages generated by prob-
abilistic finite state automata (PFSA) [10], [11]. However,the
details are omitted for simplicity and the policy is presented
here in a self-sufficient way.

Consider the case of multiple agents performing surveil-
lance, where the agents are tasked with detection of threats
in a given region. A typical example of such a threat could
be plumes of harmful chemicals that have to be detected.
Taking into account the nature of these threats, they may
be modeled as local hotspots within the surveillance region.
Only a few agents that search areas within the hotspot have
a non-zero probability of detecting the threat. The aim of this
paper is to develop a distributed and leader-less algorithmfor
mobile agents that is able to disseminate the information of
a threat to other agents that may be far off from the local
hotspot in a controlled way. Previous literature [13] have
extensively studied the gradient based approaches for detection
of hotspots. These approaches primarily focus on the moving
agents towards the hotspots based on distributed estimation
of gradients. However, in this application, it is required that
all agents should become cognizant of the presence of the
threat while operating and monitoring in their own respective
local areas. In our approach, the presence of a hotspot does
not affect the motion of the agents. Instead, the information
states of other agents are updated to reflect the required
level of awareness that the agents should posses regarding
the threat. The motivation here is to disseminate information
away from the local hotspot to the entire population of agents.
A language-measure-theoretic approach to this problem is
developed in the sequel.

Problem Setup: Let the connectivity graph be denoted asG
and the corresponding adjacency matrix be denoted asA. The

adjacency matrix of the mobile agent network (described in
Section 2-A), after the expiry of the message lifetimeLm, will
have ones in theijth position if agenti communicates with
agentj in the period ofLm, otherwise the matrix element will
be zero. All the diagonal elements of the adjacency matrix are
kept as zeros. The Laplacian matrix (L) of G is defined as:
L = D − A, where,D denotes the degree matrix. Degree
matrix D is defined as the diagonal matrix withDii = di,
wheredi is the degree of nodei. Finally, the agent interaction
matrix Π is considered as [14]:

Π = I − βL (1)

The parameterβ is chosen appropriately such thatΠ becomes
a stochastic matrix and its second largest eigenvalue satisfies
the condition |λ2(Π)| < 1. In the context of Proximity
networks, this requirement of keepingΠ stochastic is achieved
by taking β = 1

dmax+1 . Now, β is a parameter that is
chosen off-line and hence so isdmax. Therefore to satisfy
the above condition on-line, an agent ignores communications
with distinct agents beyonddmax number of agents within a
message lifetimeLm (note,dmax is pre-determined). However,
given the degree distributionP (k, Lm) (for a fixed message
lifetime Lm), dmax is chosen to be large enough such that the
probability of k > dmax, is very low. For simulation studies,
the low probability is taken asǫ = 0.001. Note thatΠ is a
stochastic and symmetric (i.e., also doubly stochastic) matrix
due to the above construction procedure.

In the present context, hotspots are detected only by agents
proximal to them. From this perspective, agents (nodes) have a
state characteristic functionχ : Q → {0, 1}, whereQ denotes
the set of nodes.χi = 1 means that the agenti has detected
a hotspot andχi = 0 denotes otherwise. Agents (nodes) also
have real measure valuesν : Q → [0, 1]. In this context,
a higher value ofνi denotes a higher level of awareness of
agenti about a hotspot in the operational area.

Decentralized Strategy: The decentralized strategy proposed
here involves synchronous updating of measures of all agents
after the expiry of one message lifetime,Lm. Naturally,Lm is
also homogeneous in the agent population. Correspondingly,
if an agenti detects a hotspot at some instant,χi = 1 is kept
till the next global measure updating even if the agent does
not see the hotspot anymore. Thus, it is clear that bothν and
χ are functions ofτ (slow time-scale of measure updating, as
defined in Section 2-A). According to the definition provided
above, the matrixΠ is also a function ofτ .

With this setup, a decentralized strategy for measure updat-
ing in the mobile-agent population is introduced below that
involves a user defined control parameterθ.

νiθ|τ+1 = (1− θ)
∑

j∈{i}∪Nb(i)

Πij |τν
j
θ |τ + θχi|τ (2)

where,Nb(i) denotes the set of agents in the neighborhood
of agenti i.e., agents that communicate with agenti between
τ andτ + 1. Expansion of the above equation gives:

νiθ|τ+1 = (1− θ)



(1− βdi)ν
i
θ|τ +

∑

j∈Nb(i)

βνjθ |τ



+ θχi|τ

(3)



The above equation signifies that the self-influence for an
agent reduces with increase of its degree. In other words, the
more neighbors an agent communicates to, the less it relies
just on its own observation. Vectorially the dynamics can be
expressed as:

νθ|τ+1 = (1− θ)Π|τ νθ|τ + θχ|τ (4)

The recursive relation in the Eqn. (4) above is expanded as:

νθ|τ+1 = (1− θ)τ+1[Π|τΠ|τ−1 · · ·Π|0]νθ|0 + θχ|τ

+θ(1− θ)Π|τχ|τ−1 + θ(1− θ)2Π|τΠ|τ−1χ|τ−2

+ · · ·+ θ(1− θ)τΠ|τΠ|τ−1 · · ·Π|1χ|0 (5)

Thus, this policy is simply a gossip algorithm with varying
input χ|τ and varying network topology represented byΠ|τ .
The memory of a past input fades as a function of the
parameterθ. Due to this notion, the above policy can be called
a generalized gossip algorithm with θ as the generalizing
parameter.

3. CONVERGENCE OFSTATISTICAL MOMENTS

The convergence results presented here involve expected
quantities due to the inherent stochastic nature of the problem.
Thus even in steady state,νθ will always fluctuate in the
slow time-scale due to the fluctuation inΠ andχ. However,
interesting observations regarding slow time-scale evolution
of the system can be made in terms of statistical moments
of νθ computed over the agent population. In this paper, both
average (over agents),Ma[·] and variance (over agents),Va[·]
of νθ are considered at steady state. Note,νθ|τ at any slow time
instantτ is anN -dimensional vector, whereN is the number
of agents in the population. Hence,Ma[νθ|τ ] andVa[νθ|τ ] are
respectively scalar average and variance values whereνθ|τ is
considered as a random variable withN samples. In general,
the functionsMa[·] andVa[·] defined on anN dimensional
column vectorx = [x1, x2, ..., xN ]T as follows:

Ma(x) =
1

N
1x = xavg (6)

where,1 is a row vector with all elements as 1. After mean
subtraction, let the resulting vector be denoted asx̃, i.e., x̃ =
x − xavg1T . Therefore,Va(x) = 1

N
x̃T x̃.

A. Convergence of Measure Average over Agents

Recall the system dynamics as given in Eqn. 4.

νθ|τ+1 = (1− θ)Π|τ νθ|τ + θχ|τ (7)

The following equation is obtained by pre-multiplying1
N

1 on
both sides of Eqn. 7.,

νavgθ |τ+1 = (1 − θ)νavgθ |τ + θχavg|τ (8)

Note, 1Π|τ = 1, as Π|τ is doubly stochastic. Expanding
Eqn. 8, one obtains

νavgθ |τ+1 = (1− θ)τ+1νavgθ |0 + θχavg|τ

+θ(1− θ)χavg|τ−1 + θ(1 − θ)2χavg|τ−2

+ · · ·+ θ(1 − θ)τχavg|0 (9)

Considering the unrestricted 2-D random motion of the agents
in the entire region, the process is assumed to be ergodic.
Therefore, the ensemble expectation ofχavg|k can be denoted
as E[χavg] ∀k (no time dependency). In this case,E[χavg]
signifies the fraction of agents that visit hotspot(s) on av-
erage. Therefore, it is evident that with a constant strength
of hotspot(s),E[χavg] remains constant over time. Taking
(ensemble) expectation on both sides of Eqn. 9, the following
relation is obtained at steady state (asτ → ∞).

E[νavgθ |∞] = θ[1 + (1− θ) + (1− θ)2 + · · · ]E[χavg ]

= θ[1− (1− θ)]−1E[χavg]

= E[χavg] for θ ∈ (0, 1] (10)

Therefore, using the notation of steady-state average (over
agents) introduced before, the steady-state expected measure
average (over agents) is obtained as:

E[Ma(νθ)] = E[Ma(χ)] (11)

Convergence of average measure to averageχ implies that at
steady state, sum ofχ values over agents is same as the sum
of ν values over agents. In general, the physical significance is
that the detection decision of hotspot by few agents is getting
redistributed as awareness over a (possibly) larger number
of agents, where the total awareness measure is conserved.
From this perspective, it is interesting to know the nature of
measure distribution in the population and measure variance
(over agents) provides an insight in this aspect. For example,
an extreme case would be when measure variance is zero,
that is all agents have the same measure value and it is equal
to the average measure value of the population. In literature,
this scenario is known asconsensus. The opposite extreme
case would be when there is no awareness propagation; only
those agents have nonzero measure values that have detected
hotspot(s) (i.e., have nonzeroχ values). The measure variance
will be equal to the variance ofχ in this case and the hotspot(s)
can be localized very well following the measure distribution
due to a sharp localization gradient. Thus, measure distribution
essentially dictates a tradeoff betweenPropagation Radius and
Localization Gradient and variance ofν over agents quantifies
the position of the system in this tradeoff scale.

B. Convergence of Measure Variance over Agents

It is evident from the discussion till now that there exists
two fundamentally different time-scales, one related to net-
work evolution and the other related to agent state dynamics.
The analytical developments in the sequel will be presented
for two special cases of relations between these two time-
scales, namely: (i) Congruous Time-Scale (CTS) case and (ii)
Disparate Time-Scale (DTS) case.

Congruous Time-Scale case: The two time-scales are equiv-
alent in this case, which means at each slow-time epochτ
(when the agent measures are updated), the system has an
independent state transition matrixΠ as well as an independent
state characteristic vectorχ. More formally, the following
assumptions are made under the CTS case.

• Π|i andχ|k are independent∀i, k.



• Π|i andΠ|j are independent∀i, j.
• χ|i andχ|j are independent∀i, j.

Note, the first two assumptions are feasible under fairly general
conditions whereas the third one requires a special condition
of agent mobility (agents moving fast enough).

Disparate Time-Scale case: In this case, the two time-scales
are very different such that, the network evolution (the slow
dynamics) and the agent state updating (the fast dynamics)
can be treated independently as it is done in theSingular
Perturbation theory. This leads to the assumption thatΠ and
χ remain time-invariant over the course of transience in agent
state dynamics, i.e., agent measures converge before thereis
a change inΠ andχ.

For variance calculation, consider post-multiplication of 1T

on both sides of Eqn. 8,

νavgθ |τ+11
T = (1− θ)νavgθ |τ1T + θχavg|τ1T

⇒ νavgθ |τ+11T = (1− θ)νavgθ |τΠ|τ1T + θχavg|τ1T (12)

The above equation presents the mean dynamics for the
system. Now, the following equation is obtained by subtracting
the mean dynamics (in Eqn. 12) from the system equation (in
Eqn. 7).

ν̃θ|τ+1 = (1− θ)Π|τ ν̃θ|τ + θχ̃|τ (13)

For calculation of variance (over agents),

(ν̃θ|τ+1)
T (ν̃θ|τ+1) = (1 − θ)2(ν̃θ|τ )

T (Π|τ )
T (Π|τ )(ν̃θ |τ )

+θ2(χ̃|τ )
T (χ̃|τ ) + 2θ(1− θ)(ν̃θ|τ )

T (Π|τ )
T (χ̃|τ ) (14)

Taking ensemble expectation (givenν̃θ|τ ) on both sides (under
the CTS assumptions),

E[(ν̃θ|τ+1)
T (ν̃θ|τ+1)|ν̃θ|τ ] =

(1− θ)2(ν̃θ|τ )
TE[(Π|τ )

T (Π|τ )](ν̃θ|τ ) +

θ2E[(χ̃|τ )
T (χ̃|τ )] + 2θ(1− θ)(ν̃θ|τ )

TE[(Π|τ )
T ]E[(χ̃|τ )] (15)

Since all the agents perform a random walk motion, they
are equally likely to visit the hot spot. This implies that
E[(χ̃|τ )] = 0. Furthermore,

(1 − θ)2(ν̃θ|τ )
TE[(Π|τ )

T (Π|τ )](ν̃θ |τ ) ≥ 0 (16)

Therefore, for the lower bound

E[(ν̃θ|τ+1)
T (ν̃θ|τ+1)|ν̃θ|τ ] ≥ θ2E[(χ̃|τ )

T (χ̃|τ )]

⇒ E[(ν̃θ|τ+1)
T (ν̃θ|τ+1)] ≥ θ2E[(χ̃|τ )

T (χ̃|τ )] (17)

The expected (steady-state) variance can be expressed as:
E [Va[νθ]] =

1
N
E[(ν̃θ|τ+1)

T (ν̃θ|τ+1)]. Using similar notation
for χ, one has:

E [Va[νθ]]

E [Va[χ]]
≥ θ2 (18)

Note, by constructioñνθ|τ ⊥ 1T [15]. Also, 1 is the stationary
vector (left eigenvector corresponding to the unity eigenvalue)
of a doubly stochastic matrix. Therefore,

(ν̃θ|τ )
TE[(Π|τ )

T (Π|τ )](ν̃θ|τ ) ≤ Λ2(ν̃θ|τ )
T (ν̃θ|τ ) (19)

where,Λ2 = λ2

(

E[(Π|τ )
T (Π|τ )]

)

. Therefore, for the upper
bound

E[(ν̃θ|τ+1)
T (ν̃θ|τ+1)|ν̃θ|τ ] ≤ (1− θ)2Λ2(ν̃θ|τ )

T (ν̃θ|τ )

+θ2E[(χ̃|τ )
T (χ̃|τ )]

⇒ E[(ν̃θ|τ+1)
T (ν̃θ|τ+1)] ≤ (1− θ)2Λ2E[(ν̃θ|τ )

T (ν̃θ|τ )]

+θ2E[(χ̃|τ )
T (χ̃|τ )] (20)

At steady-state,E [Va[νθ]] = 1
N
E[(ν̃θ|τ+1)

T (ν̃θ|τ+1)] =
1
N
E[(ν̃θ|τ )

T (ν̃θ|τ )]. Therefore,

E [Va[νθ]]
[

1− (1 − θ)2Λ2

]

≤ θ2Va[χ]

⇒
E [Va[νθ]]

E [Va[χ]]
≤

θ2

1− (1− θ)2Λ2
(21)

Note, θ ∈ (0, 1] andΛ2 ∈ [0, 1]. Figure 1 presents the plot
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Fig. 1. Upper bounds of the variance ratioE[Va[νθ]]
E[Va[χ]]

as a function ofθ
and Π|τ under CTS assumptions; Lower bound is independent ofΛ2 and
coincides with the upper bound forΛ2 = 0
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Fig. 2. Experimental Verification of Bounds on Variance Ratio E[Va[νθ]]
E[Va[χ]]

under CTS assumptions

of upper bounds of the variance ratioE[Va[νθ]]
E[Va[χ]]

with θ for



three possible values ofΛ2. Note that the lower bound of
the variance ratio is independent ofΛ2 and coincides with
the upper bound forΛ2 = 0. An experimental verification is
also presented in fig. 2 that shows the experimental data to
closely follow the upper bound for the particular case. While
the expected degree of the network is kept as3, high speed is
assumed for agents to achieve the conditions described in the
CTS assumptions.

Next, the analysis is performed under the DTS assumptions.
As discussed earlier,Π andχ are not functions ofτ in this
case. From Eqn. 5, asτ → ∞, one has:

νθ|∞ = θχ+ θ(1 − θ)Πχ+ θ(1 − θ)2Π2χ

+θ(1− θ)3Π3χ · · · (22)

The following equation is obtained by subtracting the mean
dynamics from Eqn. 22.

ν̃θ|∞ = θχ̃+ θ(1 − θ)Πχ̃+ θ(1 − θ)2Π2χ̃

+θ(1− θ)3Π3χ̃ · · · (23)

Using the above equation, the measure variance over agents
is calculated as:

NVa[νθ] = θ2χ̃T χ̃+ θ2(1− θ)χ̃TΠχ̃+ θ2(1 − θ)χ̃TΠT χ̃

+θ2(1− θ)2χ̃TΠTΠχ̃+ θ2(1− θ)2χ̃TΠ2χ̃

+θ2(1− θ)2χ̃T (Π2)T χ̃ · · · (24)

As Π is symmetric, one has:

NVa[νθ] = θ2χ̃T χ̃+ 2θ2(1− θ)χ̃TΠχ̃

+3θ2(1− θ)2χ̃TΠ2χ̃ · · · (25)

SinceΠk s are positive definite fork ∈ N, the lower bound is
obtained as

Va[νθ]

Va[χ]
≥ θ2 (26)

Using the same logic as before, it is evident thatχ̃TΠkχ̃ ≤
λ2(Π

k)χ̃T χ̃ for k ∈ N. Also, λ2(Π
k) = λk

2(Π) andλ2(Π) is
denoted simply asλ2 in the sequel. Therefore,

Va[νθ] ≤ θ2Va[χ] + 2θ2(1− θ)λ2Va[χ]

+3θ2(1− θ)2λ2
2Va[χ] · · · (27)

By calculating the infinite sum, the upper bound is obtained
as

Va[νθ]

Va[χ]
≤

θ2

[1− (1 − θ)λ2]2
(28)

Note, θ ∈ (0, 1] and λ2 ∈ [0, 1]. The upper bound for the
variance ratio calculated above is valid for a particularΠ.
Figure 3 presents the plot of upper bounds of the variance
ratio Va[νθ ]

Va[χ]
with θ for three possible values ofλ2. Note that

the lower bound of the variance ratio is independent ofλ2

and coincides with the upper bound forλ2 = 0. Experimental
verification is presented in fig. 4 that shows the experimental
data for two cases with expected degree of the network as3
and7. Agent speed is kept very low (but not zero) to achieve
the conditions described in the DTS assumptions.

It is observed in both cases that upper bound and lower
bound coincide asθ approaches extreme values,0 or 1 and
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Fig. 3. Upper bounds of the variance ratioVa[νθ]
Va[χ]

as a function ofθ and
Π under DTS assumptions; Lower bound is independent ofλ2 and coincides
with the upper bound forλ2 = 0
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Fig. 4. Experimental Verification of Bounds on Variance Ratio Va[νθ]
Va[χ]

under
DTS assumptions

Va[νθ] → 0 asθ → 0 andVa[νθ] → Va[χ] asθ → 1. In other
words, the agent population approachesconsensus as θ → 0.
In this case, although the entire population becomes aware of
the hotspot(s), there is no localization gradient as every agent
has same measure value. On the other hand, withθ → 1,
the localization gradient improves at the cost of propagation
radius. In general,Va[νθ] decreases with decrease inθ. The
other system component affecting the variance ratio is theΠ
matrix. In both CTS and DTS cases, this effect is realized
through second largest eigenvalue ofΠ. Lower second largest
eigenvalue ofΠ signifies more connectivity among agents.
This fact explains the decrease in variance ratio with decrease
in the second largest eigenvalue. It is evident that second
largest eigenvalue is a function of degree of the network.
However, degree certainly is not the only network parameter
that determines the decision propagation characteristicsas it



is observed in the experimental data for CTS and DTS cases.
Therefore, apart from network degree, compatibility between
time-scales of network evolution and agent state dynamics also
plays a key role in determining the system characteristics.

4. SUMMARY, CONCLUSIONS ANDFUTURE WORK

This paper addresses the problem of distributed deci-
sion propagation in a mobile-agent network environment
for surveillance and reconnaissance. A generalized gossip
algorithm derived from the concepts of recently developed
language-measure-theory is used for modeling the agent inter-
action dynamics. A completely decentralized implementation
of this algorithm is shown to be useful for propagation of
global awareness regarding a local hotspot in the operational
area. Analytical results have been obtained for convergence of
measure (awareness level) distribution in the agent population.
A (user-defined) critical parameterθ, that controls the tradeoff
between the propagation radius and the localization gradient.
In this setting,consensus can be achieved asθ → 0. Two cases
(CTS and DTS) relating the time-scales network topology
and agent interaction are presented and verified by numerical
simulation. In this algorithm, the system resets automatically
upon removal of a hotspot. Another advantage of this approach
is that it extends to multiple hotspot scenarios; future work
will involve detailed investigation with multiple hotspots.
Following are the other future research directions that are
currently being pursued:

• Analytical evaluation of the expected characteristics ofΠ
(hence, second largest eigenvalues), given the expected
characteristics of the proximity network;

• Investigation of scenarios with asynchronous measure up-
dating and heterogeneous message lifetime distribution;

• Relaxation of assumptions for variance calculation and
identification of the network size-scaling laws;

• Analysis of convergence dynamics/time under general-
ized gossip framework.
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