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Abstract— A recent publication has shown a Hilbert-
transform-based partitioning method, called analytic signal
space partitioning (ASSP). When used in conjunction with D-
Markov machines, also reported in recent literature, ASSP

provides a fast tool for pattern recognition. However, Hilbert
transform does not specifically address the issue of noise reduc-
tion and the usage of D-Markov machines with a small depth D

could potentially lead to information loss for noisy signals. On
the other hand, a large D tends to make execution of pattern
recognition computationally less efficient due to an increased
number of machine states. This paper explores generalization
of Hilbert transform that addresses symbolic analysis of noise-
corrupted dynamical systems. In this context, theoretical results
are derived based on the concepts of information theory. These
results are validated on time series data, generated from a
laboratory apparatus of nonlinear electronic systems.

1. INTRODUCTION

H ILBERT transform and the associated concept of an-

alytic signals, introduced by Gabor [1], have been

widely adopted for time-frequency analysis in diverse ap-

plications of signal processing. Hilbert transform [2] of a

real-valued signal x(t) is defined as:

x̃(t) , H[x](t) =
1

π

∫

R

x(τ)

t − τ
dτ (1)

That is, x̃(t) is the convolution of x(t) with 1
πt

over R ,
(−∞,∞), which is represented in the Fourier domain as:

̂̃x(ω) = −i sgn(ω) x̂(ω) (2)

where x̂(ω) , F [x](ω) and sgn(ω) ,

{
+1 if ω > 0
−1 if ω < 0

Given the Hilbert transform of a real-valued signal x(t),
the complex-valued analytic signal [2] is defined as:

X (t) , x(t) + i x̃(t) (3)
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and the (real-valued) transfer function with input x̂(ω) and

output X̂ (ω) is formulated as:

G(ω) ,
X̂ (ω)

x̂(ω)
= 1 + sgn(ω) (4)

Recently, Subbu and Ray [3] have reported an application

of Hilbert transform for symbolic time series analysis of

dynamical systems where the space of analytic signals,

derived from real-valued time-series data, is partitioned for

symbol sequence generation. This method, called analytic

signal space partitioning (ASSP), is comparable or superior

to other partitioning techniques, such as symbolic false

nearest neighbor partitioning (SFNNP) [4] and wavelet-space

partitioning (WSP) [5], in terms of performance, complexity

and computation time. A major shortcoming of SFNNP is

that the symbolic false neighbors rapidly grow in number

for noisy data and may erroneously require a large symbol

alphabet to capture pertinent information on the system

dynamics. The wavelet transform largely alleviates these

shortcomings and thus WSP is particulary effective for noisy

data from high-dimensional dynamical systems. However,

WSP has several other shortcomings such as identification of

an appropriate basis function, selection of appropriate scales,

and non-unique and lossy conversion of the two-dimensional

scale-shift wavelet domain to a one-dimensional domain of

scale-series sequences [5].

When applied to symbolic analysis in dynamical systems,

ASSP is used to formulate a probabilistic finite-state model,

called the D-Markov model [6], where the machine states are

symbol blocks of depth D. For noisy systems, it is expected

that modeling with a large D in the D-Markov machine

would result in higher gain in information on the system dy-

namics. However, a large D increases the number of machine

states, which in turn degrades computation efficiency (e.g.,

increased execution time and memory requirements) [7].

This paper introduces a generalization of the classical

Hilbert transform to modify ASSP for application to noisy

systems. The objective here is to partition the transformed

signal space such that D-Markov machines can be con-

structed with a small D without significant loss of infor-

mation for noisy signals. The key idea is to provide a
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mathematical structure of the generalized Hilbert transform

such that the low-frequency region is more heavily weighted

than that in the classical Hilbert transform.

2. GENERALIZATION OF HILBERT TRANSFORM

Lohmann et al. [8] introduced the concept of a generalized

Hilbert transform in the fractional Fourier space instead of

the conventional Fourier space; a discrete version of this

generalized Hilbert transform was developed later [9]. For

geophysical applications, Luo et al. [10] proposed another

type of generalized Hilbert transform that is essentially the

windowed version of traditional Hilbert transform. Our Gen-

eralization of Hilbert transform is different from previously

published methods of generalization of Hilbert transform.

Let us define a generalized Hilbert transform as: Hα of a

real-valued signal x(t) as the convolution:

x̃α(t) , Hα[x](t) = x(t) ∗
(sgn(t)

π |t|α

)
for α ∈ (0, 1] (5)

It is shown in the sequel that, as α ↑ 1 (i.e., the values

of α form an increasing sequence of positive real numbers

with the limit equal to 1), Hα converges to H, where H
is the classical Hilbert transform defined in Eq. (1); that is,

H1 ≡ H.

Two lemmas are presented, which are necessary for deriva-

tion of the main results in the Fourier space.

Lemma 2.1:
∫ ∞

−∞

e−iωt

π|t|α
sgn(t)dt

= −i sgn(ω)
2

π

Γ(1 − α)

|ω|1−α
sin

(π

2
(1 − α)

)
(6)

where α ∈ (0, 1); and Γ(1 − α) ,
∫ ∞

0
e−y

yα dy.

Lemma 2.2: As α ↑ 1, the integral
∫ ∞

−∞
e−iωt

π|t|α sgn(t)dt →

−i sgn(ω), i.e.,

lim
α↑1

Γ(1 − α)
( 2

π
sin

π

2
(1 − α)

)
= 1. (7)

Proofs of the above two lemmas are provided in Appendix

A.

Taking Fourier transform of the convolution in Eq. (5) and

an application of Lemma 2.1 yield:

̂̃x
α
(ω) = F

(
x(t) ∗

sgn(t)

π|t|α

)

= F(x(t)) · F

(
sgn(t)

π|t|α

)

= −i sgn(ω)
2

π

x̂(ω)Γ(1 − α)

|ω|1−α
·

sin
(π

2
(1 − α)

)
(8)

Since Γ(1−α) < ∞ for α ∈ (0, 1), the generalized Hilbert

transform x̃α(t) can be evaluated by taking the inverse

Fourier transform of ̂̃x
α
(ω).

The above formulation shows that reduced α puts more

weight on the low frequency part of the signal x(t) and

hence more effectively attenuates the high-frequency noise

than the classical Hilbert transform. Following Lemma 2.2,

as α ↑ 1, Fourier transform of the signal
sgn(t)
π|t|α converges

to −i sgn(ω). This leads to the fact, that as α ↑ 1, Hα

converges to H, where H is the classical Hilbert transform

defined in Eq. (1).

Analogous to the analytic signal in Eq. (3), the (complex-

valued) generalized analytic signal of the real-valued signal

x(t) is defined as:

Xα(t) , x(t) + i x̃α(t) (9)

and the (real-valued) transfer function with input x̂(ω) and

output X̂α(ω) is formulated as:

Gα(ω) ,
X̂α(ω)

x̂(ω)
= 1 + sgn(ω)

(ω0(α)

|ω|

)(1−α)

(10)

where ω0(α) ,
(

2
π Γ(1−α)sin

(
π
2 (1 − α)

) ) 1

1−α

.
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Fig. 1. Impulse response
(

sgn(t)
π|t|α

)
of the generalized Hilbert transform

Remark 2.1: For α = 1, it follows from Eq. (5) that the

real-valued signal x(t) is convoluted with 1
πt

. The implica-

tion is that the effects of memory in the signal x(t) reduce

as fast as 1
π|t| . As α is decreased, the tail of the impulse

response of the generalized Hilbert transform x̃α(t) becomes

increasingly fat as seen in Fig. 1. Hence, for 0 < α < 1,

the generalized analytic signal Xα(t) captures more (low-

frequency) information from time series data than that for

α = 1.

Remark 2.2: Fourier transform of a real-valued signal

does not contain any additional information beyond what is
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Fig. 2. Transfer function Gα(ω) of the generalized analytic signal

provided by the positive frequency components, because of

the symmetry of its spectrum. Therefore, in the construction

of an analytic signal in Eq. (3) and its transfer function in

Eq. (4), Hilbert transform removes the negative frequency

components while doubling the positive frequency compo-

nents. For α < 1, it follows from Fig. 2 that the negative

frequency components of the transfer function Gα(ω) of a

generalized analytic signal are no longer zero. Therefore, the

generalized analytic signal in Eq. (9) is not an analytic signal

in the sense of Gabor [1] for α < 1. However, the transfer

functions of both analytic and generalized analytic signals

are real-valued almost everywhere in the range ω ∈ R. The

phase of the (real-valued) transfer function Gα(ω) is either

0 or −π as explained below.

• The phase of G(ω) (i.e., Gα(ω) for α = 1) is 0 radians

in the frequency range (0,∞). Its magnitude in the

negative frequency range (−∞, 0) is identically equal to

0; therefore, the phase in this range is inconsequential.

• For 0 < α < 1, the phase of Gα(ω) is −π radians in

the frequency range (−ω0(α), 0), where ω0 is defined

in Eq. (10), and is 0 radians in the frequency range(
−∞,−ω0(α)

) ⋃
(0,∞).

3. TEST RESULTS AND VALIDATION

The concept of generalized Hilbert transform is tested and

validated by symbolic analysis of time series data, generated

from the same apparatus of nonlinear electronic systems

reported in the earlier publication [3]. The symbol sequence,

constructed from time series data, is passed through a

fixed structure D-Markov machine [6] to compute the state-

transition matrices, called Π-matrices, for two values of the

depth parameter, D = 1 and D = 2. Performance of the two

D-Markov representations for each partition, corresponding

to different values of the parameter α, is compared in terms

of the mutual information [11] and the associated information

gain. The procedure is delineated below.

A. Collection of Time Series Data

The nonlinear active electronic system in the test apparatus

emulates the forced Duffing equation:

d2x

dt2
+ β

dx

dt
+ x(t) + x3(t) = Acos(ωt) (11)

Having the system parameters set to β = 0.24, A = 22.0,

and ω = 5.0, time series data of the variable x(t) were

collected from the electronic system apparatus. These data

sets do not contain any substantial noise because the labora-

tory apparatus is carefully designed to shield spurious signals

and noise. Therefore, to emulate the effects of noise in the

time series data, additive first-order colored Gaussian noise

was injected to the collected time series data to investigate

the effects of signal-to-noise ratio (SNR). The profile of a

typical signal, contaminated with 10 db additive Gaussian

noise (i.e., SNR = 10), is shown in Fig. 3.
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Fig. 3. Signal contaminated with 10 db additive colored Gaussian noise

B. Construction of the Transformed Phase Space

Let the real-valued noisy time-series data x(t) contain N

data points. Upon generalized Hilbert transformation of this

data sequence, a complex-valued generalized analytic signal

Xα(t) is constructed. Similar to the procedure described

in [3], Xα(t) is represented as a one-dimensional trajectory

in the two-dimensional pseudo-phase space. Let Ω be a

compact region in the pseudo-phase space, which encloses

the trajectory of N such data points.

C. Partitioning and Symbol Generation

The next task is to partition Ω into finitely many mutually

exclusive and exhaustive segments, where each segment is

labelled with a symbol or letter. The partitioning is based

on the magnitude and phase of the complex-valued signal

Xα(t) as well as the density of data points in these segments,

following the procedure described in [3]. Each point in the

partitioned data set is represented by a pair of symbols; one

belonging to the alphabet ΣR based on the magnitude (i.e., in

the radial direction) and the other belonging to the alphabet

ΣA based on the phase (i.e., in the angular direction). In this

way, the complex-valued signal Xα(t) is partitioned into a

symbol sequence by associating each pair of symbols to a

single symbol belonging to an alphabet Σ that is defined as:

Σ ,
{
(σi, σj) ∈ ΣR × ΣA

}
and |Σ| = |ΣR||ΣA| (12)
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The results presented in this paper are generated with

—ΣR| = 8 in the radial direction and |ΣA| = 5 in the

angular direction, i.e., |Σ| = 40.

D. State Transition Matrices

The symbol sequence is now used to construct D-Markov

machine models [6]. The assumption of statistical stationarity

of the symbol sequence is implicit in the construction of

Markov models. In this paper, Markov chain models of depth

D = 1 and D = 2 have been constructed.

Modeling of the symbolic process as a (D = 1) Markov

chain involves evaluation of the Π1 matrix, where the ijth

matrix element π1
ij is defined as the probability that (n+1)th

state is i given that the nth state was j, i.e.,

π1
ij , P

(
q1
n+1 = i | q1

n = j
)

(13)

where qk is the state at discrete time instant k. Evidently, the

size of the Π matrix is |Σ| × |Σ|, where |Σ| is the number

of symbols in the alphabet Σ.

Modeling the symbolic process as a (D = 2) Markov

chain involves evaluation of a 3-dimensional matrix, where

the ijkth matrix element π2
ijk is defined as:

π2
ijk , P

(
q2
n+2 = i|q2

n+1 = j, q2
n = k

)
(14)

and size of the (sparse) Π2 matrix is |Σ| × |Σ| × |Σ|.
Remark 3.1: Elements of both Π1 and Π2 matrices are

estimated by conditional frequency count and their con-

vergence requires a symbol sequence of sufficient length.

This aspect has been discussed in [12][7] and is referred

to as the stopping rule that assigns a bound on the length

of the symbol sequence for parameter identification of the

stochastic matrices Π1 and Π2.

E. Computation of Mutual Information

Effectiveness of generalized Hilbert transform for Markov

model construction has been examined from an information

theoretic perspective [11]. The rationale is that, in a noise-

corrupted system, higher values of mutual information im-

ply less uncertainties in the symbol sequence. The mutual

information I is expressed in terms of entropy S for both

(D = 1) and (D = 2) Markov chains in the following set of

equations:

I (qn+3; qn+2) , S (qn+3) − S (qn+3|qn+2) (15)

S (qn+3) , −

|Σ|∑

ℓ=1

P (qn+3 = ℓ) logP (qn+3 = ℓ) (16)

Usage of maximum entropy partitioning [5] for symbol

generation yields: S (qn+3) = log (|Σ|).

S (qn+3|qn+2) ,

|Σ|∑

ℓ=1

P (qn+2 = ℓ) S (qn+3|qn+2 = ℓ) (17)

where

S (qn+3|qn+2 = ℓ) = −

|Σ|∑

j=1

P (qn+3 = j | qn+2 = ℓ) ·

logP (qn+3 = j|qn+2 = ℓ) (18)

I (qn+3; qn+2, qn+1)

, S (qn+3) − S (qn+3|qn+2, qn+1) (19)

S (qn+3|qn+2, qn+1)

, −

|Σ|∑

i=1

|Σ|∑

j=1

P (qn+2 = i, qn+2 = j) ·

S (qn+3|qn+2 = i, qn+1 = j) (20)

where
S (qn+3|qn+2 = i, qn+1 = j)

= −

|Σ|∑

ℓ=1

P (qn+3 = ℓ|qn+2 = i, qn+1 = j) ·

logP (qn+3 = ℓ|qn+2 = i, qn+j = j) (21)

Based on Eq. (13) and Eqs. (15) to (18), the mutual

information I (qn+3; qn+2) is calculated from the Π1 ma-

trix. Similarly, based on Eq. (14) and Eqs. (19) to (21),

I (qn+3; qn+2, qn+1) is calculated from the Π2 matrix. Then,

information gain (abbreviated as IG) with D = 2 instead of

D = 1 in the Markov chain construction is defined as:

IG , I (qn+3; qn+2, qn+1) − I (qn+3; qn+2) (22)

F. Pertinent Results

This subsection presents test and validation of the concept

of generalized Hilbert transform based on the time series data

collected from a laboratory apparatus of nonlinear electronic

systems. The test results are interpreted in terms of mutual

information for (D = 1) and (D = 2) Markov chains

for noise-contaminated data for different values of SNR

and the parameter α (see Eq. (5)). The pertinent results on

mutual information and information gain are presented in

Fig. 4 and Fig. 5, respectively. Although results are shown

only for SNR = ∞, 10, 4 and 0, several other experiments

with intermediate values of SNR between ∞ and 0 were

performed, which show the same trend.

The information gain is always a positive quantity as seen

in Eq. (22). In other words, there is always a non-negative

gain in information upon increasing the depth of the Markov

chain model. Pertinent inferences, drawn from these results,

are presented below.

1) Mutual information increases with decrease in α irre-

spective of D and SNR as seen in Fig. 4.

2) Information gain IG (see Eq. (22) and Fig. 5) is

minimal for SNR → ∞ (i.e., for the signal with no
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noise injection). Therefore, D=1 Markov chain should

be adequate with ASSP using conventional Hilbert

transform (see Eq. 1) for low-noise signals.

3) As SNR is decreased (i.e., percentage of additive

noise is increased), information gain IG increases for

all values of α in the range of 1.0 down to about 0.2.

As α is decreased, information gain decreases as seen

in Fig. 5. Therefore, even for a considerable amount of

noise, a smaller value of α should be able to achieve

noise attenuation and thus allow usage of D = 1 in

D-Markov machines.

4) Results for a pathological case with SNR → 0, (i.e.,

complete noise capture of the signal) in Fig. 4 and

Fig. 5 show similar trends as above. The crossing of

the information gain curves in Fig. 5 at low values

of α (e.g., α ≤ 0.2) could possibly be attributed

to the effects of coarse graining [13] due to symbol

generation.
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4. SUMMARY, CONCLUSION AND FUTURE WORK

This section summarizes the specific contributions of the

paper highlighting the pertinent conclusions. Future research

in several ares has also been recommended.

A. Summary

This paper formulates a generalization of the classical

Hilbert transform along with mathematical proofs. The pro-

posed scheme of generalized Hilbert transform is shown to

be potentially useful for symbolic time series analysis of

noise-corrupted dynamical systems. The proposed concept

of noise reduction via generalization of Hilbert transform is

tested and validated on experimental data collected from a

laboratory test apparatus.
B. Pertinent Conclusions

The following conclusions are drawn from the test and

validation results presented in the previous section.

• Generalized Hilbert transform with a smaller value of

parameter α is capable of extracting more information

from a data sequence irrespective of the depth of the

D-Markov machine chosen for modeling.

• Information gain for a larger depth D reduces with

smaller values of the parameter α.

• By selecting small values of the parameter α in the gen-

eralized Hilbert transform, it is possible to avoid using a

computationally expensive larger depth D without loss

of significant information.
C. Recommendations for Future Research

The proposed method of noise attenuation via generaliza-

tion of Hilbert transform is potentially useful for symbolic

time series analysis of noise-corrupted dynamical systems.

The future work should be directed toward advancement

of the theory of partitioning as well as on application to

different real-life uncertain systems. Examples include sensor

networks that require on-board real-time analysis of noisy

signals with very low computation capacity.

APPENDIX A.

PROOFS OF LEMMAS

This appendix presents the proofs of Lemma 2.1 and

Lemma 2.2 that are stated in Section 2.

A. Proof of Lemma 2.1

(a) 0 < α < 1 (b) α = 1

Fig. 6. Contours of integration paths for generalized Hilbert transform
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Proof: The lemma is proved by integration around a

quarter circular contour as shown in Fig. 6(a). Following

Cauchy residual theorem, if z is a complex number, then
∫

Γ

eiz

zα
dz = 0 (23)

where the closed contour Γ contains no residues and consists

of the paths Γ1, Γ2, Γ3, and Γ4. As R → ∞ and r → 0,

the integral around Γ2 and the integral around Γ4 goes to 0,

respectively. Therefore,
∫

Γ1

eiz

zα
dz +

∫

Γ3

eiz

zα
dz = 0 (24)

⇒

∫ ∞

0

eix

xα
dx +

∫ 0

∞

e−y

(iy)α
dy = 0 (25)

The following two equations are derived from Eq. (25).
∫ ∞

0

eix

xα
dx = ei π

2
(1−α)Γ(1 − α) (26)

∫ ∞

0

e−ix

xα
dx = e−i π

2
(1−α)Γ(1 − α) (27)

Now,
∫ ∞

∞

e−iωt

|t|α
sgn(t)dt =

∫ ∞

0

e−iωt

tα
dt −

∫ 0

−∞

e−iωt

|t|α
dt (28)

For ω > 0, it follows from Eq. (27) that
∫ ∞

0

e−iωt

tα
dt =

Γ(1 − α)

|ω|1−α
e−i π

2
(1−α) (29)

and using Eq. (26)
∫ 0

−∞

e−iωt

|t|α
dt =

Γ(1 − α)

|ω|1−α
ei π

2
(1−α) (30)

Similarly, for ω < 0
∫ ∞

0

e−iωt

tα
dt =

Γ(1 − α)

|ω|1−α
ei π

2
(1−α) (31)

∫ 0

−∞

e−iωt

|t|α
dt =

Γ(1 − α)

|ω|1−α
e−i π

2
(1−α) (32)

It follows from Eqs. (29), (30), (31), and (32) that
∫ ∞

−∞

e(−iωt)

|t|α
sgn(t)dt

=

{
Γ(1−α)
|ω|1−α [e−i π

2
(1−α) − ei π

2
(1−α)] if ω > 0

Γ(1−α)
|ω|1−α [ei π

2
(1−α) − e−i π

2
(1−α)] if ω < 0

(33)

⇒

∫ ∞

−∞

e(−iωt)

π|t|α
sgn(t)dt

= −i
2

π
sgn(ω)

Γ(1 − α)

|ω|1−α
sin

(π

2
(1 − α)

)
(34)

Given Γ(z) =
∫ ∞

0
t(z−1)e−tdt for Re(z) > 0, it follows

that 0 < Γ(1 − α) < ∞ for α ∈ (0, 1).

B. Proof of Lemma 2.2

Proof: Let θ , (1−α) and Z , 2
π
sin

(
πθ
2

)
Γ(θ). Then,

for θ ∈ (0, 1), it follows that

lim
θ→0

Z = lim
θ→0

Γ(θ)2sinπθ
2 cosπθ

2

πcosπθ
2

=
limθ→0 Γ(θ)sin(πθ)

π limθ→0 cosπθ
2

=
limθ→0

π
Γ(1−θ)

π
= 1 (35)

because ∀z ∈ C, Γ(z)Γ(1 − z) = π
sin(πz) and Γ(1) = 1.

It follows from the proofs of the two lemmas that the

integration path changes from a quarter circular contour to

a half circular contour, as seen in Fig. 6(a) and Fig. 6(b), as

α ↑ 1.
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