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ABSTRACT
The concepts of symbolic dynamics and data set partition-

ing have been used for feature extraction and classification of
time series data. Although modeling of state machines from sym-
bol sequences has been widely reported, similar efforts have not
been expended to investigate partitioning of time series data to
optimally generate symbol sequences for classification.The pa-
per proposes a partitioning procedure to optimally extract fea-
tures from time series data and enhance classification accuracy.
A multi-objective cost function is constructed for optimization
to handle multi-class classification problems in general. Perfor-
mance comparison of the optimal partitioning is done with the
other traditional partitioning schemes, e.g. uniform and maxi-
mum entropy, etc. The multi-class classification is used here to
identify ranges of multiple parameters of a well-known chaotic
nonlinear dynamical system, namely the Duffing Equation.

INTRODUCTION
Accuracy in parameter identification for a dynamical sys-

tem is crucial from various perspectives, such as, system identi-
fication, fault detection and performance monitoring. In human
engineered complex systems, inherent nonlinearity and lack of
model reliability often make the problem of parameter identifi-
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cation extremely challenging. Therefore, data-driven parameter
identification in nonlinear dynamical systems is of paramount
importance. In general, data-driven techniques either use snap-
shots of data from multiple sensors or sensor observation over
a certain time window. While the use of snapshots reduces the
data volume and computational expense, it fails to capture the
statistical characteristics in the data (especially in noisy environ-
ment). The resulting misclassification of parameter range of the
system can be often avoided by using a window of time series
data. The problem with handling time series data is its volume
and the associated computational complexity. Unless the data
is compressed intelligently into low dimensional features, it is
almost impractical to use any pattern matching algorithm. In
general, feature extraction is considered as the process of trans-
forming high dimensional data into a low dimensional feature
space with minimal loss of class separability. To this end, sev-
eral tools of feature extraction tools, such as principal component
analysis (PCA) [1], independent component analysis (ICA) [2],
kernel PCA [3], and semidefinite embedding [4], have been re-
ported in literature. Recent literature [5] has developed a data-
driven tool for nonlinear feature extraction, namely the Symbolic
Dynamic Filtering (SDF) that is built upon the concepts of sym-
bolic dynamics. The feature extraction procedure is shown to
be particularly useful for time-series data that involves partition-
ing of the data space to generate symbol sequences. Single and



multi-Parameter estimation algorithms, based on symbolic dy-
namic filtering (SDF), have been developed and experimentally
validated for real-time execution in different applications, such
as degradation monitoring in electronic circuits [6] [7], fatigue
damage monitoring in polycrystalline alloys [8], etc.

Properties of various transformations from symbol space to
feature space have been thoroughly studied in mathematics, com-
puter science and especially data mining literature. However,
similar efforts have not been expended to investigate partitioning
of time series data to optimally generate symbol sequences for
classification. Stauer et al. [9] reported a comparison of the max-
imum entropy partitioning (MEP) and the uniform partitioning
(UP) schemes; it was concluded that maximum entropy partition-
ing is a better tool for change detection in symbol sequences than
uniform partitioning. Symbolic false nearest neighbor partition-
ing (SFNNP) [10] optimizes a generating partition by avoiding
topological degeneracy. However, a shortcoming of SFNNP is
that it may become extremely computation intensive if the di-
mension of the phase space of the underlying dynamical sys-
tem is large. Furthermore, if the time series data become noise-
corrupted, the symbolic false neighbors rapidly grow in num-
ber and may erroneously require a large number of symbols to
capture pertinent information on the system dynamics [11]. Use
of wavelet transform [12] and Hilbert transform [11, 13] before
partitioning largely alleviates the above limitations. Neverthe-
less, these partitioning techniques primarily attempts to provide
an accurate symbolic representation of the underlying dynami-
cal system under a given quasistationary condition, rather than
trying to capture the data-evolution characteristics. This paper
tries to overcome this difficulty of the above mentioned tradi-
tional partitioning methods to make SDF, a robust data-driven
feature extraction tool to enhance classification rate [14]. To this
end, the problem of multiple parameter identification in nonlin-
ear dynamical systems is formulated as a multi-class classifica-
tion problem and a framework is presented toward optimization
of the partitioning scheme to increase the accuracy of parameter
identification. In the subsequent sections the resulting algorithms
are developed and validated on a nonlinear Duffing system.

REVIEW AND PERFORMANCE EVALUATION OF SDF
This section presents a brief outline of the Symbolic Dy-

namic Filtering (SDF) technique for feature extraction from time
series data and the performance of classical partitioning schemes
for the current problem described below.

Problem Description
The externally excited Duffing system [15] which is a non-

linear system with chaotic properties, is considered here for val-
idation. The system equation is as follows:

d2y(t)
dt2 +β

dy
dt

+α1y(t)+ y3(t) = Acos(Ωt) (1)
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Figure 1. PARAMETER SPACE WITH CLASS LABELS

where the amplitude A = 22.0, excitation frequency Ω = 5.0, and
reference values of the remaining parameters, to be identified,
are: α1 = 1.0 and β = 0.1. It is known that system goes through a
bifurcation at different combinations of α1 and β [7], which can
be identified easily by standard feature extraction procedures.
However, the challenge remains in accurately identifying α1
and β parameter ranges when the system has not undergone any
bifurcation. In this paper, multiple classes are defined based on
the combination of approximate ranges of α1 and β values as
described below.

Parameter α1 Values
Range

Range 1 0.800 to 0.934
Range 2 0.934 to 1.067
Range 3 1.067 to 1.200

Parameter β Values
Range

Range 1 0.100 to 0.147
Range 2 0.147 to 0.194
Range 3 0.194 to 0.240

In this study, classes are defined as cartesian products of
ranges of α1 and β. Thus, there are 9 (3× 3) classes of data
that can be obtained when a class is uniquely defined by a range
of α1 and a range of β. Two hundred simulation runs of the
Duffing system are conducted for each class to generate data set
for analysis among which 100 samples are chosen as training set
and the rest of the 100 samples are kept as testing set. α1 and β
parameters are chosen randomly from independent Gaussian dis-
tributions for both parameters, such that almost all the parameter
values are within the prescribed ranges given in tables above.
In other words, the mean of the Gaussian distribution used for
a particular parameter range is taken as the central value of the
range and the standard deviation is taken such that the bound-
ary values of the parameter range are 3σ distance away from the
central value. Figure 1 plots the training samples generated using
the above logic in the two dimensional parametric space. Differ-
ent classes of samples are shown in different colors and as well
as marked with the class number in the figure. For each sam-
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Figure 2. REPRESENTATIVE PHASE SPACE PLOTS FOR DIFFER-
ENT CLASSES

ple point in the parameter space, time series has been collected
for state y, the length of the simulation time window being 80
seconds (sampled at 100 Hz), that generates 8,000 data points.
Figure 2 shows representative phase plots of the system from
each of the nine classes, where the data sets are generated using
the mean parametric values for each class. Although details of
SDF methodology can be found in literature, the following sec-
tion succinctly describes it before evaluating the performances of
the classical partitioning schemes.

Partitioning: A Nonlinear Feature Extraction Tech-
nique

Symbolic feature extraction from time series data is posed
as a two-scale problem. The fast scale is related to the response
time of the process dynamics. Over the span of data acquisition,
dynamic behavior of the system is assumed to remain invariant,
i.e., the process is quasi-stationary at the fast scale. On the other
hand, the slow scale is related to the time span over which non-
stationary evolution of the system dynamics may occur. It is ex-
pected that the features extracted from the fast-scale data will de-
pict statistical changes between two different slow-scale epochs
if the underlying system has undergone a change. The method of
extracting features from stationary time series data is comprised
of the following steps.

1. Let Ω ∈ Rn, where n ∈ N, be a compact (i.e., closed and
bounded) region within which the stationary time series (ob-
tained from the dynamical System) is circumscribed. The
space of time series data set is represented as Q ⊆ Rn×N ,
where N ∈ N is sufficiently large for convergence of statis-
tical properties within a specified threshold. Then, {q} ∈ Q
denotes a time series at the slow-scale epoch of data collec-
tion.

2. Encoding of Ω is accomplished by introducing a partition
B ≡ {B0, ...,B(m−1)} consisting of m mutually exclusive

(i.e., B j∩Bk = /0 ∀ j 6= k), and exhaustive (i.e., ∪m−1
j=0 B j = Ω)

cells. Let, each cell be labeled by symbols s j ∈ Σ where
Σ = {s0, ...,sm−1} is called the alphabet. This process of
coarse graining can be executed by uniform, maximum en-
tropy, or any other scheme of partitioning. In fact, subse-
quent parts of the paper deals with finding an optimal parti-
tioning scheme. The time series data points {q} that visit the
cell B j are denoted as s j ∀ j = 0,1, ...,m− 1. This step en-
ables transformation of the time series data {q} to a symbol
sequence {s}.

3. A probabilistic finite state machine (PFSA) is then con-
structed with a chosen depth, and the symbol sequence {s}
is run through it. Thus a state transition matrix Π = [π jk],
where j,k ∈ {1,2, ...,r} are the states of the PFSA with an
(r× r) state transition matrix, is obtained at the slow-scale
epoch. Since π jk ≥ 0 is the transition probability from state
j to state k, Π is a stochastic matrix, i.e., ∑k π jk = 1. To
compress the information further, the state probability vec-
tor p = [p1 · · · pr] that is the left eigenvector corresponding
to the (unique) unity eigenvalue of the irreducible stochastic
matrix Π is calculated. The vector p is the extracted feature
vector and is a relatively low-dimensional representation of
the long time series data (dynamical system) at the slow-
scale epoch.

The following subsection applies the classical partitioning
schemes, e.g., the Uniform and the Maximum Entropy Partition-
ing to extract such low dimensional features for classification for
the problem formulated earlier.

Performance of Classical Partitioning Schemes
In the usual setting of anomaly detection using SDF, the

reference time series data space is partitioned using either Uni-
form Partitioning (UP) or Maximum Entropy partitioning (MEP)
scheme In brief, Uniform Partitioning refers to dividing the range
of the signal into partition of equal size, while Maximum En-
tropy partitioning refers to creating a partition that transforms the
signal into a symbol sequence with maximum entropy (please
see [5, 16] for details of these partitioning schemes). In the
present problem of multi-class classification, the partitioning is
constructed based on a reference time series chosen from data set
for Class 5 (the reference class comprised of ranges α1=0.934 to
1.067 and β=0.147 to 0.194) using an alphabet size (number of
partition cells) m=4. The obtained symbol sequence is then com-
pressed to a PFSA with depth equal to 1 (please see [5] for the
general logic behind choice of alphabet size and PFSA depth).
The stationary distribution of the PSFA, p is chosen as the low-
dimensional feature vector. Being a probability mass function,
the sum of the elements of p always be equal to 1. Hence, among
its 4 elements only 3 will be linearly independent. The partition-
ing obtained for the reference class 5 is kept the same while an-
alyzing other classes too. Using the same partitioning and struc-
ture of the PFSA, feature vectors are generated for the training
data sets for all classes. Figure 3 and 4 show the location of each
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training time series in the three dimensional (using first three lin-
early independent elements of the feature vectors) feature space
plot using the Uniform and Maximum Entropy partitioning, re-
spectively.

The next step is to classify the data in the low dimensional
feature space. In literature, plenty of choices for parametric and
non-parametric classifiers exist. Among the parametric type of
classifiers, one of the most common techniques is to consider up
to two orders of statistics in the feature space. In other words,
mean feature can be calculated for every class along with the
variance of the feature space distribution in each of the classes
in the training set. Then a test feature vector can be classified
by using the Mahalnobis distance [17] or the Bhattacharya dis-
tance [18] of the test vector from the mean feature vector of each
class. However, these methods are extremely inefficient when
the feature space distributions are too complex to be described
by second order statistics (i.e., non-Gaussian in nature), which
seems to be the case here (see Fig. 3 and Fig. 4). Therefore,

Table 1. CLASSIFICATION RESULTS USING CLASSICAL PARTITION-
ING SCHEMES

Partitioning Classification Error %

Scheme (Testing Set)

UP 11.33

MEP 14.67

a non-parametric classifier, such as the k-NN classifier may a
better candidate for this study. However, in general, any other
suitable classifier, such as the Support Vector Machines (SVM)
or the Gaussian Mixture Models (GMM) may also be used. To
classify the test data set, the time series from the set are con-
verted to feature vectors using the same partitioning and PFSA
that have been used to generate the training features. Then us-
ing the labeled training features, the test features are classified
by a k-NN classifier with k = 5 and the Euclidean distance met-
ric (after several trials, the neighborhood size and the distance
metric are chosen to obtain good classification rate). The classi-
fication results are given in Table 1 for both classical partitioning
schemes. The classification error % is defined as the percentage
of total number of misclassifications made by the classification
process for the test data set. At this point, it should be noted
that in the current SDF methodology, partitioning is done based
on nominal data. In such cases, even if the partitioning is opti-
mal (e.g., in terms of maximum entropy or some other criteria)
under reference conditions, it may not be an optimal feature ex-
traction tool for classification. Hence, it may be advantageous
to take non-stationary dynamics into consideration and optimize
the partitioning process based on changes of time series data over
some the training data sets of different classes. This is the key
idea of the current study. The following section outlines the opti-
mization of partitioning methodology and relevant results for the
current application.

OPTIMIZATION OF PARTITIONING
In literature, many optimization criteria can be found for fea-

ture extraction in a multi-class classification problem. However,
none can be more fundamental than minimization of classifica-
tion error. Although, there have been attempts to approximate
the classification error as the Bayes error using pairwise weight-
ing functions for multi-class problems [19], the Bayes error itself
cannot be expressed analytically except few special cases. On the
other hand, the Fisher criteria is very useful for binary classifica-
tion problems, especially when the samples are distributed in a
Gaussian manner in the feature space. Therefore, for multi-class
problems, in [20] a criteria has been proposed based on the mini-
mum classification error (MCE), where the classification error is
calculated by the misclassification rate over the training samples.
Formally, these two fundamentally different optimization criteria
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Figure 5. GENERAL FRAMEWORK FOR OPTIMIZATION OF FEATURE EXTRACTION

are known as the i) Filter method and the ii) Wrapper method.
The filter methods use information content feedback, e.g. Fisher
criteria, Statistical Dependence, Information Theoretic measures
etc. as optimization criteria for feature extraction whereas, the
wrapper methods include the classifier inside the optimization
loop, and try to maximize the predictive accuracy, e.g. classifi-
cation rate using statistical re-sampling or cross-validation [21].
In the present study, the wrapper method is adopted, i.e. mini-
mization of the classification error on the training set is used for
optimization, primarily because of the non-binary nature of the
problem at hand and the possible non-Gaussian distribution of
training samples in the feature space.

In a multi-class problem, ideally one should jointly mini-
mize every off-diagonal element of the confusion matrix (i.e.
misclassified samples). However, in that case, the dimension
of the objective space blows up with increase in the number of
classes which is obviously impractical. Therefore, in the present
work, two costs have been defined on the confusion matrix by
using another weighting matrix, elements of which denote the
relative penalty values for different confusions in the classifica-
tion process. Formally, let there be Cl1, · · · ,Cln classes of labeled
time-series data given as the training set. A partitioning B is em-
ployed to extract features from each sample and a k-NN classifier
K is used to classify them. After the classification process, the
confusion matrix C is obtained, where the value of its element
ci j denotes the frequency of data from class Cli being classified
as Cl j. Let, W be the weighting matrix, where the value of its el-
ement wi j denotes the penalty incurred by the classification pro-
cess for classifying a data set from Cli as a data set from class
Cl j (usually wii = 0, so as to not penalize correct classifications).
With these definitions, two costs that are to be minimized can be
defined as follows. The cost due to expected classification error,
CostE can be defined as:

CostE =
1
Ns

(
∑

i
∑

j
wi jci j

)
(2)

where, Ns is the total number training samples including all
classes. The outer sum in the above equation sums the total

penalty values for misclassifying each class Cli. Thus CostE is
related to the expected classification error. Although, in the cur-
rent formulation, the total penalty values are equally weighted
for all classes, that can be changed based on prior knowledge
about the data and the user requirements.

It is implicitly assumed in many supervised learning algo-
rithms that the training data set is a statistically similar repre-
sentation of the whole data set. However, this assumption may
not be very accurate in practice. A natural solution to this prob-
lem is to choose a feature extractor that minimizes the worst-case
classification error [22]. In the present setting, that cost due to
worst-case classification error, CostW can be defined as:

CostW = max
i

(
1
Ni

∑
j

wi jci j

)
(3)

where, Ni is the number of training samples in class Cli. Note,
that in the present construction of the objective space is two di-
mensional for a multi-class classification problem and the dimen-
sion is not a function of the number of classes, which makes it
useful for classification with large number classes. As described
earlier, classification needs to be performed on the training data
set to calculate the costs during optimization of the feature ex-
tractor, i.e., the partitioning. Figure 5 depicts the general outline
of the classification process. Labeled time series data from the
training set are partitioned and the generated (by symbolization
and PFSA construction) low-dimensional feature vectors are fed
to the classifier. After classification, the two training error costs
defined as above are computed and fed back to the feature extrac-
tion block. During classification, the classifier may be tuned to
the obtain better classification rates. For example, for k-NN clas-
sifiers, choice of neighborhood size or the distance metric can be
tuned. For support vector machines, identification of the best hy-
perplane can be made for better classification rate. Upon getting
the feedback of the costs, the partitioning is updated to reduce the
costs. The iteration goes on until the set of optimal partitionings
(as it is a multi-objective scenario) and the correspondingly tuned
classifier are obtained. Choice of the optimal partitioning is done
using the Neyman-Pearson criterion as described later. After the



choice is made, the optimal partitioning and the tuned classifier
are used to classify the test data set. Although this is the general
framework that is being proposed for the optimization methodol-
ogy, tuning of the classifier has not been performed in this paper
as the main focus here is to choose the optimal partitioning to
minimize the classification error related costs.

Similar to the classical partitioning cases, the value of k is
chosen to be 5 and the distance metric is chosen as the Euclidean
distance. For partitioning optimization, at first, the number of
cells m of the partitioning B should be chosen (m = 4 in this case,
same as it was for the classical partitioning schemes). Then the
region Ω ∈ R1 that circumscribes the one dimensional times se-
ries data space, is identified. For computation purpose, a suitably
fine grid size depending on the data characteristics is then as-
sumed. It should be clear that each of the grid boundaries denote
a possible position of a partitioning cell boundary. In this paper,
the data space region Ω is divided into 32 grid cells, i.e., 31 grid
boundaries excluding the boundaries of Ω and there are 4 par-
titioning cells, i.e., 3 partitioning boundaries to choose. Hence,
the number of elements in the space of all possible partitionings
P is: 31C3 = 4495

As the cardinality of P is computationally tractable, a
straight forward search based Pareto optimization procedure is
followed in this paper. By searching the space P , the positions
of its elements (the partitionings) are located in the two dimen-
sional objective space. The Pareto front is generated by identify-
ing the non-dominated points [23] in the objective space. In the
present case, a non-dominated point (or partitioning) is such that
no other partitioning has lower values of both CostE and CostW
compared to that. Finally, the Neyman-Pearson criterion [23] is
applied to choose the optimal partitioning B∗ to have minimum
CostE , while not allowing CostW to exceed a certain value, say
ε. In other words, the optimal partitioning B∗ according to the
Neyman-Pearson criterion is the solution to the following con-
strained optimization problem:

B∗ = argmin
B

CostE(B), such that, CostW (B)≤ ε (4)

The optimization results for the current problem and the perfor-
mance of the optimal partitioning is discussed in the following
subsection.

Results and Discussion
Given the confusion matrix obtained by using a partitioning

and a classifier on the training set, a weighting matrix W needs to
be defined to calculate the costs CostE and CostW . In the present
case, W is defined according to the adjacency properties of
classes in the parameter space, i.e. wii = 0, ∀i ∈ {1,2,3,4}, i.e.
there is no penalty when Cli is classified as Cli. However, in gen-
eral wi j = |Rα1(i)−Rα1( j)|+ |Rβ(i)−Rβ( j)|, ∀i ∈ {1,2,3,4},
where Rγ(k) denotes the range number (see Problem Descrip-
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Figure 6. TWO DIMENSIONAL OBJECTIVE SPACE FOR PARTITION-
ING OPTIMIZATION

tion) for parameter γ in class k. Thus, W can be written as,

W =




0 1 2 1 2 3 2 3 4
1 0 1 2 1 2 3 2 3
2 1 0 3 2 1 4 3 2
1 2 3 0 1 2 1 2 3
2 1 2 1 0 1 2 1 2
3 2 1 2 1 0 3 2 1
2 3 4 1 2 3 0 1 2
3 2 3 2 1 2 1 0 1
4 3 2 3 2 1 2 1 0




All the partitionings in space P are evaluated by calculating
the costs CostE and CostW . Figure 6 shows a portion of the two-
dimensional objective space where the elements of space P are
located. The location of the classical partitionings (i.e., UP and
MEP) are also plotted along with the elements of P in the figure
for comparative evaluation. The Pareto front is also generated
by identifying the non dominated points in the objective space.
The threshold ε, i.e., the maximum CostW allowable is taken to
be 0.025 in this case and the optimal partitioning (OptP) is cho-
sen by the Neyman-Pearson criterion as described in the previous
subsection. Figure 7 shows the location of the training features in
the three dimensional plot using the first three linearly indepen-
dent elements of the feature vectors obtained by using the chosen
optimal partitioning OptP. Note that the class separability is re-
tained by the feature extraction (partitioning) process even after
compressing a time series data (with 8,000 data points) into 3
numbers.

Finally, the confusion matrices for Uniform, Maximum En-
tropy and the chosen optimal partitioning on the testing data set
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are given by CUP
test , CMEP

test and COptP
test respectively.

CUP
test =




94 5 1 0 0 0 0 0 0
8 84 8 0 0 0 0 0 0
3 12 83 1 1 0 0 0 0
0 0 0 80 20 0 0 0 0
0 0 0 5 95 0 0 0 0
0 0 0 0 3 95 2 0 0
0 0 0 0 1 2 87 9 1
0 0 0 0 0 0 19 80 1
0 0 0 0 0 0 0 0 100




CMEP
test =




94 2 4 0 0 0 0 0 0
3 91 6 0 0 0 0 0 0
6 4 85 5 0 0 0 0 0
0 0 2 85 5 8 0 0 0
0 0 0 0 95 1 4 0 0
0 0 0 4 6 86 4 0 0
0 0 0 0 0 7 81 8 4
0 0 0 0 0 0 15 70 15
0 0 0 0 0 0 0 19 81




COptP
test =




99 1 0 0 0 0 0 0 0
1 95 4 0 0 0 0 0 0
0 1 98 0 0 1 0 0 0
0 0 0 98 1 0 1 0 0
0 0 0 4 96 0 0 0 0
0 0 0 0 1 99 0 0 0
0 0 0 1 0 0 99 0 0
0 0 0 0 0 0 0 99 1
0 0 0 0 0 0 0 0 100




Table 2 presents the comparison of all the classification perfor-
mance related quantities, that are CostE , CostW and the Classifi-
cation error % for UP, MEP and OptP on the test set.

Table 2. COMPARISON OF CLASSIFICATION PERFORMANCES OF
DIFFERENT PARTITIONING SCHEMES ON TEST DATA SET (100×9
samples)

Partitioning CostE CostW Classification Error %

UP 0.1322 0.2300 11.33

MEP 0.2200 0.3700 14.67

OptP 0.0189 0.0500 1.89

The observations made from these results indicate that the
classification performance may be improved compared to that of
the classical partitioning schemes by optimizing the partitioning
process over a representative training set for the particular prob-
lem at hand. Finally, although the construction of the cost func-
tions theoretically allow problems with large number of classes,
in practice it should be understood that its upper limit will be
constrained by the alphabet size used for partitioning which is
also the dimension of the feature space. Also note that the model
complexity of a probabilistic finite state automaton (PSFA), as
obtained from time series data, is related to the number of states
(or the number of partitions) in the PSFA. In our approach, dur-
ing the process of optimization of the partitioning scheme, the
number of partitions is kept constant. This, to a degree, alle-
viates the issue of over-training that could arise as a result of
optimization performed on training set.

Summary, Conclusions and Future work
This article presents a data driven parameter identification

technique in nonlinear dynamical systems using the concepts
of nonlinear symbolic feature extraction from time series data.
The problem has been formulated as a multi-class classification
problem and optimization of feature extraction (i.e. partition-
ing) has been performed to enhance the classification rate. A
multi-objective cost function has been constructed based on the
classification error and it has been shown that using partition-
ing optimization, the classification rate can be improved beyond
the performance of classical partitioning techniques. Moreover,
it should be noted, that the success of the partitioning optimiza-
tion process relies on the very nature of the slowly varying non-
stationary evolution characteristics of the time series data over
different classes. Suppose the evolution characteristics have very
minimal signature in the time series space, then that will result
in indistinguishability in the low dimensional feature space, in-
herently making the detection tool less efficient. However, an
ill-posed problem like that may become a well-posed one when
the data is transformed into another domain, such as wavelet



space or analytic signal space. Identification of suitable data pre-
processing methods from the training data set is an important
aspect, that will be investigated in future. Apart from this, the
following research topics are currently being pursued as well.

1. Optimization of partitioning increases the sensitivity to-
wards change in data characteristics, therefore, a compre-
hensive robustness analysis is required to make the classifi-
cation process stable;

2. Use of other classifiers (e.g., Support Vector Machines) and
comparison of performances among different classifiers;

3. Inclusion of the step of tuning the classifier inside the opti-
mization loop as described in the general framework;

4. Use of other suitable cost functions and comparison of per-
formances among them;

5. Extension of the optimization of partitioning methodology
from classification to estimation perspective;

6. Application of the methodology to real life problems, e.g.,
fault level detection in complex human engineered systems,
robotic type and gait classification from suitable sensor ob-
servation etc.
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