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ABSTRACT

Combustion instability has many detrimental effects on flight-
propulsion dynamics and structural integrity of gas turbine
engines and its early detection is one of the important tasksin
engine health monitoring and prognostics. Combustion in-
stability is characterized by self-sustained, large-amplitude
pressure oscillations and periodic shedding of coherent vor-
tex structures at varied spatial scales. It is caused when lo-
calized hydrodynamic perturbations in fluid flow fluctuations
are augmented by heat release, coupled with acoustics of the
combustion chamber. This paper proposes a dynamic data-
driven approach, where a large volume of sequential hi-speed
(greyscale) images is used to analyze the temporal evolution
of coherent structures in combustion chamber for early detec-
tion of combustion instability at various operating conditions.
The lower layer of the proposed hierarchical approach ex-
tracts low-dimensional semantic features from images using
Deep Neural Networks. The upper layer captures the tem-
poral evolution of the extracted features with a probabilis-
tic graphical modeling scheme called Symbolic Time Series
Analysis (STSA). Extensive experimental data have been col-
lected in a swirl-stabilized dump combustor at various oper-
ating conditions (e.g., premixing level and flow velocity) for
validation of the proposed approach. Intermediate layer vi-
sualization of deep learning reveals that meaningful shape-
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features from the flame images are extracted, which enables
the temporal modeling layer to enhance the class separabil-
ity between stable and unstable regions. At the same time,
the semantic nature of intermediate features enables expert-
guided data exploration that can lead to better understanding
of the underlying physics. To the best of the authors knowl-
edge, this paper presents one of the early applications of the
recently reported Deep Learning tools in the area of prognos-
tics and health management (PHM).

1. INTRODUCTION

Combustion instability is a very undesirable phenomenon
characterized by high-amplitude flame oscillations at discrete
frequencies. These frequencies typically represent the natu-
ral duct/resonator acoustic modes. Combustion instability, in
its most basic form arises when there is a positive coupling
between the heat release rate oscillations and the pressureos-
cillations, provided this driving force is higher than the damp-
ing present in the system. The mechanisms of pressure-heat
release rate coupling are system dependent and thus, the prob-
lem of combustion instability becomes very system specific.

The underlying principle of heat release rate oscillations, that
drives the pressure oscillations-which result in velocityos-
cillations and in turn modulate heat release rate oscillations-
all in a turbulent background in case of actual gas turbine
combustors pose significant complexities in determining the
mechanisms of combustion instability. Crocco (Mcmanus,
Poinsot, & Candel, 1993) modeled unsteady heat release rate
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as a function of unsteady velocity to determine stability ofa
ducted zero-mean flow flame. Subsequently, a whole class
of reduced order modeling-Flame Transfer/Describing func-
tions were theoretically and experimentally (Palies, Schuller,
Durox, & Candel, 2011; Noiray, Durox, Schuller, & Candel,
2008; Bellows, Bobba, Forte, Seitzman, & Lieuwen, 2007)
formulated to understand the stability of the system by means
of solving the dispersion relation. In addition, flame oscil-
lation saturation mechanisms were also experimentally diag-
nosed which in addition to experiments based on turbulent
non reacting and reacting flows led to the universal feature
of combustion instability- heat release rate oscillationsdriven
by coherent structures.

Coherent structures are fluid mechanical structures associ-
ated with coherent phase of vorticity, high levels of vortic-
ity among other definitions (Hussain, 1983). These struc-
tures, whose generation mechanisms vary system wise, cause
large scale velocity oscillations and overall flame shape os-
cillations by curling and stretching. These structures canbe
caused to shed/generated at the duct acoustic modes when the
forcing (pressure) amplitudes are high. The interesting case
of the natural shedding frequency of these structures, causing
acoustic oscillations, has been observed by Chakravarthy et
al. (Chakravarthy, Shreenivasan, Bhm, Dreizler, & Janicka,
2007).

Recently, a swirl combustor has been characterized and
a wide range of experiments relating swirl flows and co-
herent structures associated with swirl flows has been re-
ported (Syred, 2006; Paschereit, Gutmark, , & Weisenstein,
1998). The presence of Precessing vortex core as the domi-
nant coherent structure has been reported and non linear inter-
actions between heat release rate oscillations and PVC as the
cause of superposed frequencies in time series data has also
been reported (Moeck, Bourgouin, Durox, Schuller, & Can-
del, 2012). Much of the literature is dedicated to detection
and correlation of these coherent structures to heat release
rate and unsteady pressure. The popular methods resorted
for detection of coherent structures are proper orthogonalde-
composition (POD) (Berkooz, Holmes, & Lumley, 1993) and
dynamic mode decomposition (DMD) (Schmid, 2010), which
use tools from spectral theory to derive spatial coherent struc-
ture modes. DMD has been used to estimate the growth rates
and frequencies from experimental data and thus offered to
perform stability analysis on experimental data.

This paper proposes a data-driven hierarchical framework
for early detection of thermo-acoustic instability from hi-
speed greyscale images. In the lower layer, large volume
of hi-speed sequential images are used to train a deep neu-
ral network model that extracts hierarchical features from
the training data (G. E. Hinton & Salakhutdinov, 2006)
through the use of multiple layers of latent variables. An un-
supervised pre-training approach with deep-belief networks

(DBN) (G. E. Hinton, 2009) is used in particular to auto-
matically learn the coherent structures while reducing the
dimension of the images for temporal modeling at the top
layer (Erhan, Bengio, et al., 2010). Symbolic time series anal-
ysis (STSA) (Ray, 2004), a fast probabilistic graphical model
is placed at the top layer to extract temporal feature from
the output of deep learning model. The concept of STSA
has been used for anomaly detection in physical systems as
reported in (Ray, 2004; Rao, Ray, Sarkar, & Yasar, 2009;
Sarkar, Jin, & Ray, August, 2011). Recently, STSA is applied
on pressure and chemiluminescence time series for early de-
tection of Lean-blow out (Mukhopadhyay, Chaudhari, Paul,
Sen, & Ray, 2013; Sarkar, Ray, Mukhopadhyay, Chaud-
hari, & Sen, 2014) and thermo-acoustic instability (Ramanan,
Chakravarthy, Sarkar, & Ray, 2014).

From the above perspectives major contributions of the paper
are delineated below.

• A novel data-driven framework, with DBN at lower layer
and STSA at upper layer, is proposed for early detection
of thermo-acoustic instability from hi-speed images.

• In the above framework, the DBN layers extract mean-
ingful shape-features to represent the coherent structures
in the flame images. This phenomenon enables STSA at
the temporal modeling layer to enhance the class separa-
bility between stable and unstable modes of combustion,
which implies higher precision for early detection of the
onset of combustion instability.

• The proposed theory and the associated algorithms have
been experimentally validated at multiple operating con-
ditions in a swirl-stabilized combustor by characterizing
the stable and unstable states of combustion.

• Training and testing of the proposed framework have
been performed on different operating conditions (e.g.,
Reynolds number (Re), fuel flow rate, and air-fuel pre-
mixing level) of the combustion process to test the trans-
ferability of the approach. Performance of the proposed
framework (DBN+STSA) have been evaluated by com-
parison with that of a framework, where DBN is re-
placed by another extensively used dimensionality reduc-
tion tool, principal component analysis (PCA) (Bishop,
2006).

The paper is organized in five sections, including the present
one. Section 2 describes a laboratory-scale swirl-stabilized
combustor, which serves as a test apparatus for experimental
validation of the proposed architecture for early detection of
thermo-acoustic instability. Section 3 describes the proposed
framework along with its building blocks via explaining the
concepts of DBN and STSA. Section 4 presents the capability
and advantages of the proposed approach along with the fea-
ture visualization at intermediate layers of DBN. Finally,the
paper is summarized and concluded in Section 5 with selected
recommendations for future research.
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(a) (b)

Figure 1. (a)Schematic of the experimental setup. 1 - settling chamber, 2 - inlet duct, 3 - IOAM, 4 - test section, 5 - big extension
duct, 6 - small extension ducts, 7 - pressure transducers,Xs - swirler location measured downstream from settling chamber exit,
Xp - transducer port location measured downstream from settling chamber exit,Xi - fuel injection location measured upstream
from swirler exit, (b) Swirler assembly used in the combustor

2. EXPERIMENTAL SETUP

The swirl combustor test bed used in this study has a swirler
of diameter 30 mm with 60 degree vane angles, thus yield-
ing a geometric swirl number of 1.28. Air to the combustor
is fed through a settling chamber of diameter 280 mm with a
sudden contraction leading to a square cross section of side
60 mm. This provides an area ratio of around 17, which thus
acts as an acoustically open condition at the contraction. A
mesh and honeycomb are mounted in immediate downstream
of the contraction to provide uniform flow to the swirler. The
combustor, shown in figure 1(a) consists of an inlet section
of length 200 mm, an inlet optical access module(IOAM) of
length 100 mm to provide optical access to the fuel tube, a pri-
mary combustion chamber of length 370 mm, and secondary
duct of the same length. Extension ducts of the same cross
section are added to provide length flexibility. The overall
length of the constant area ducts was chosen to be 1340 mm.

The fuel injection is done by injecting it coaxially with the
air in a fuel injection tube with slots on the surface as shown
in Figure 1(b). The fuel injection tube is coaxial to a mixing
tube which has the same diameter as that of the swirler. The
bypass air that does not enter the mixing tube passes through
slots on the swirl plate. The slots on the fuel injection tube
are drilled at designated distance upstream of the swirler.The
larger this distance, more fuel mixes with the primary air in
the mixing tube thus leading to more premixedness. Two up-
stream distances ofX1 = 90mm andX2 = 120mm were
chosen for this work. The upstream distance of 120 mm pro-
vides for full premixing of the fuel with the air thus hence-
forth, it will be referred to as the premixed case. The 90 mm
upstream injection case causes partial premixing of the fuel
with air and thus will be referred to as the partially premixed
case. The images were acquired at 3 kHz using Photron High
speed star with a spatial resolution of1024×1024pixels. The
data acquisition was triggered simultaneously using NI card
and taken for a duration of3s yielding in a sequence of 9,000
images for every operating condition.

Table 1. Description of operating conditions along with re-
spective ground truth (stable or unstable) for hi-speed image
data collection.3s of greyscale image sequence at3kHz is
collected for each condition

Premixing FFR (g/s) Re Ground truth

7,971 Stable

Partial
0.495

15,942 Unstable

(X1 = 90mm) 0.308 Unstable

0.66
10, 628

Stable

7,971 Stable

Full
0.495

15,942 Unstable

0.308 Unstable

(X2 = 120mm) 0.66
10, 628

Stable

0.083 1,771 Relatively stable

Two inlet Reynolds numbers (Re), based on the swirler di-
ameter were chosen, the lower Re having stable combustion
behavior and higher Re having exhibiting unstable behavior.
The Re’s were chosen to be 7,971 and the higher Re being
15,942 for a fuel flow rate (FFR) of 0.495 g/s. Another proto-
col followed was keeping the inlet Re constant at 10,628 and
having two different fuel flow rates. The higher FFRs exhib-
ited stable combustion, whereas the leaner configuration was
unstable. The two FFRs were chosen to be 0.66 g/s and 0.308
g/s. These corresponded to equivalence ratios of 0.955 and
0.445 respectively. Besides these conditions, 3 seconds of
images are also collected forRe = 1, 771 andFFR = 0.083
at relatively stable state of combustion. The details of theop-
erating conditions along with their ground truth (e.g., stable
or unstable) are presented in table 1.

Figure 2 presents sequences of images of dimension392 ×
1000 pixels for both stable (Re = 7, 971, FFR = 0.495g/s
and full premixing) and unstable (Re = 15, 942, FFR =
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t = 0 t = 0.001 s t = 0.002 s t = 0.003 s t = 0.004 s

t = 0 t = 0.001 s t = 0.002 s t = 0.003 s t = 0.004 s

Figure 2. Top: greyscale images atRe = 7, 971 and full premixing for a fuel flow rate of 0.495 g/s, bottom: greyscale images
atRe = 15, 942 and full premixing for a fuel flow rate of 0.495 g/s

0.495g/s and full premixing) states. The flame inlet is on
the right side of each image and the flame flows downstream
to the left. It can be observed that the flame does not have
any prominent coherent structure when the combustion is sta-
ble. While the combustion is unstable, vortex shedding along
the flow is observed. Bottom segment of the figure 2 shows
formation of mushroom-shaped vortex att = 0, 0.001s and
the shedding of that towards downstream fromt = 0.002s to
t = 0.004s.

3. DECISION FRAMEWORK AND TOOLS

This section describes the proposed architecture for earlyde-
tection of thermo-acoustic instability in a combustor via an-
alyzing a sequence of hi-speed images. Figure 3 presents
the schematics of the framework where a deep belief net-
work (DBN) is stacked with symbolic time series analysis
(STSA). In the training phase, images (or a segment of the
images) from both stable and unstable states for various op-
erating conditions are used as the visible layerV of a DBN.
Multiple hidden layers (i.e.,h1 to hn) with reducing dimen-
sions (G. E. Hinton & Salakhutdinov, 2006) are stacked after
the visible layer.The weights (i.e.,W1 toWn), connecting ad-
jacent layers, are learned first via greedy layer-wise pretrain-
ing (G. E. Hinton & Salakhutdinov, 2009) and then they are
fine-tuned in a supervised manner. In this paper, unsupervised
pre-training step is emphasized more for capturing the coher-
ent structures in flame images at unstable state. The vector
of activation probabilities of the hidden units at the topmost
hidden layer is used as input to the STSA module.

While testing, sequence of images are passed through the
learned DBN and a time series ofl2 norm (equivalent to
signal energy) of the activation probability vectors is ob-
tained. In STSA module, the time-series is symbolized via
partitioning the signal space and a symbol sequence is cre-
ated as shown in the figure 3. A probabilistic finite state
automata (PFSA) (Ray, 2004) is constructed from the sym-
bol sequence, which models the transition from one state to
another as state transition matrix. State transition matrix is
the extracted feature which represents the sequence of im-
ages, essentially capturing the temporal evolution of coherent

structures in the flame. DBN and STSA are explained in de-
tail later in this section.

3.1. Deep Learning techniques

Deep Learning is an emerging branch of machine learning
with a strong emphasis on modeling multiple levels of ab-
straction (from low-level features to higher-order represen-
tations, i.e., features of features) from data (Deng & Dong,
2014; Bengio, Courville, & Vincent, 2013). For example, in a
typical image processing application while low-level features
can be partial edges and corners, high-level features may be
combination of edges and corners to form parts of an image.

Among various deep learning techniques, Deep Belief Net-
works (DBNs) have become an attractive option for data
dimensionality reduction (G. E. Hinton & Salakhutdinov,
2006), collaborative filtering (Salakhutdinov, Mnih, & Hin-
ton, 2007), feature learning (Coates, Ng, & Lee, 2011), topic
modeling (G. E. Hinton & Salakhutdinov, 2009), and solving
classification problems (Larochelle & Bengio, 2008). Several
other deep learning architectures such as Convolutional Neu-
ral Networks, Stacked Denoising Autoencoders, and Deep
Recurrent Neural Networks have also gained immense trac-
tion recently as they have been shown to outperform all other
state-of-the-art machine learning tools for handling verylarge
dimensional data spaces to learn features in order to perform
detection, classification and prediction. The basic building
block of DBN is the Restricted Boltzmann Machine (RBM),
where multiple RBMs are stacked on top of another to form a
deep network. An RBM is essentially a generative probabilis-
tic graphical model that is capable of learning a probability
distribution over the inputs to best explain the observed data.
Individual RBMs consists of visible units (the inputs) which
are connected to latent variables in the hidden units. Note
that connections exist only between the visible layer and the
hidden layer but not among visible units and hidden units–
hence termedRestricted. While a single layer of RBM is al-
ready quite powerful to represent complex distributions, in-
creasing the number of hidden layers greatly improves mod-
eling capacity where the output of one hidden layer becomes
the input of another placed over it.
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State transition matrix
Symbol sequence

Figure 3. Framework for early detection of combustion instability from hi-speed flame images via semantic feature extraction
using deep belief network (DBN) followed by symbolic time series analysis (STSA)

Deep Belief Networks can be trained in an unsupervised
greedy layer-wise manner. In simpler terms, the first RBM
layer is trained with the raw input as the visible layer. During
training, the first layer acquires a representation of the input
by updating its weights and biases between the visible and
hidden layers (usually through computing the mean activa-
tions or by sampling) which in turn becomes the input of the
second layer (G. Hinton, Osindero, & Teh, 2006). The objec-
tive during layer-wise training is to find the weight vectorW

(and biases for both visible and hidden units) that maximizes
the expected log likelihood of the training dataV (Fischer &
Igel, 2014). More formally, the optimization problem can be
represented (ignoring the biases) as:

argmax
W

E

[

∑

v∈V

logP (v)

]

Typically, the optimization is solved in a gradient descent
manner. Keeping the weights and biases of the first layer con-
stant after it is trained, the transformed input from the layer
is utilized to train the next layer. This process is repeatedfor
the desired number of layers in the network with each iter-
ation propagating either the samples or mean activations to
higher levels. As training continues, the product of probabil-
ities assigned to the input is maximized. Once all the layers
are trained, thepre-trainedmodel is finetuned via supervised
backpropagation. It is important to note that layer-wise train-
ing helps with initializing weights and biases in the network
prior to the actual supervised training. Taking classification
as an example, a logistic classifier is used to classify the input

based on the output of the final hidden layer of the DBN. A
predefined error metric is computed between the class labels
and the resultant output of the DBN (after applying the logis-
tic classifier) and then the error is backpropagated down the
network to further adjust and optimize the weights and biases.

Visualization of Learned Features

One of the main claim of a hierarchical semantic feature ex-
traction tool such as DBN is that it learns meaningful pat-
terns in the data that can signify the underlying characteristics
of the process. Therefore, visualizing the learned features is
crucial to both understand and verify the performance of the
feature extractor. Furthermore, intermediate feature visual-
ization may lead domain experts to scientific discoveries that
are not easy to figure out via manual exploration of large vol-
ume of data.

For the lowest RBM layer, simply plotting the weight matrix
may be sufficient to visualize the features learned by the first
hidden layer. Since the dimensionality of the input and the
weights are in the same order, the vectors of weights for each
input can be reshaped into the dimension equal to the reso-
lution of the input image. Thus, the visualizations are usu-
ally intelligible. Complexity arises for visualizing features
learnt at deeper layers because they lie in a different space
from the visible data space. At the same time, the dimen-
sion of weight matrix depends on the number of hidden units
between the layer and the layer before. Thus, plotting the
weight matrix will result in an incomprehensible visualization
which typically resembles the appearance of white noise. To
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obtain filter-like representations of hidden units in the DBN,
a recent technique known as Activation Maximization (AM)
is used (Erhan, Courville, & Bengio, 2010). This technique
seeks to find inputs that maximize the activation of a specific
hidden unit in a particular layer and the technique is treated
as an optimization problem. Letθ denote the parameters of
the network (weights and biases) andhij(θ,x) be the value
of the activation functionhij(·) (usually the logistic sigmoid
function) of hidden uniti in layerj on inputx. Assuming the
network has been trained,θ remains constant. Therefore, the
optimization process aims to find

x
∗ = argmax

xs.t.||x||=ρ

hij(θ,x)

wherex∗ denotes the inputs that maximizes the hidden unit
activation. Although the problem is a non-convex optimiza-
tion problem, it is still useful to find the local optimum by
performing a simple gradient ascent along the gradient of
hij(θ,x) because in many cases, the solutions after conver-
gence are able to visualize the patterns of the inputs that are
being learned by the hidden units.

3.2. Symbolic Time Series Analysis (STSA)

STSA is a fast time series feature extraction tool that mod-
els the temporal evolution of a quasi-stationary time series
via symbolization (Ray, 2004).The algorithms of STSA are
formulated via symbolization of the time series generated
from dynamical systems along with subsequent state machine
construction. First, the time series data are partitioned by
maximum-entropy partitioning (MEP) (Rajagopalan & Ray,
2006) to construct the symbol alphabetΣ for generating sym-
bol sequences. MEP maximizes the Shannon entropy (Cover
& Thomas, 2006) of the symbol sequence via generating
more partitions at the information-dense zones in the range
domain than information-sparse zones. Once the partitions
are obtained, each data point of the time series is assigned
a symbolsi ∈ Σ same as the partition it belongs to.Then, a
D-Markov machine, based on the algebraic structure of prob-
abilistic finite state automata (PFSA) (Ray, 2004), is con-
structed from the symbol sequence.D-Markov machine is
defined as follows.

Definition 3.1 (Ray, 2004; Sarkar et al., 2014) (D-Markov)
A D-Markov machine is a 4-tuple PFSA (K = (Σ, Q, δ, π)),
in which each state is represented by a finite history ofD
symbols as defined by:

• Σ is a non-empty finite set, called the symbol alphabet,
with cardinality|Σ| < ∞;

• Q is the finite set of states with cardinality|Q| ≤ |Σ|D,
i.e., the states are represented by equivalence classes of
symbol strings of maximum lengthD where each symbol
belongs to the alphabetΣ; D is the depth of the Markov
machine;

• δ : Q × Σ → Q is the state transition function that
satisfies the following condition if|Q| = |Σ|D, then there
existα, β ∈ Σ andx ∈ Σ⋆ such thatδ(αx, β) = xβ and
αx, xβ ∈ Q.

• π̃ : Q × Σ → [0, 1] is the symbol generation function
(also called probability morph matrix) that satisfies the
condition

∑

σ∈Σ
π̃(q, σ) = 1 ∀q ∈ Q, andπij is the

probability of occurrence of a symbolσj ∈ Σ at the state
qi ∈ Q.

State transition matrix, denoted byΠ (Π , [πij ], i =
1, 2, · · · , |Q|, j = 1, 2, · · · , |Q|), is obtained via combin-
ing π̃ and δ. Each element ofΠ, πij is the probability of
moving from stateqi to qj upon occurrence of a symbol at
the next time step.In this paper, depth of theD-Markov ma-
chine is chosen to be one and it results in the equality of
state transition matix (Π) and probability morph matrix̃π.
Depth greater than one can also be chosen via applying gen-
eralizedD-Markov machine construction (Sarkar et al., 2014;
Mukherjee & Ray, 2014).Π is considered as the output fea-
ture of theD-Markov machine, which represents the time-
series in reduced dimension. More details on STSA can be
found in (Ray, 2004; Sarkar et al., 2014).

4. RESULTS AND DISCUSSIONS

The DBN used for the study is comprised of three hidden lay-
ers with 1000, 100, and 10 hidden units for the first, second,
and third hidden layer respectively. The input image has a di-
mension of56× 98 pixels flattened to a1× 5488 row vector.
The input image segments are taken from respective images
at the flame entry (right end of the images) zone after scaling
the original images down by 4 times.

4.1. DBN feature visualization

For visualization, the training set consists of 54,000 train-
ing images containing 6,000 images each from 9 conditions,
9,000 validation images containing 1,000 images each from 9
conditions, and 18,000 test images containing 2,000 images
each from 9 conditions. A learning rate of 0.01 is used for the
gradient descent algorithm for both pre-training and super-
vised finetuning. Pre-training is performed in batches of 50
samples and each layer undergoes 30 complete iterations of
pre-training before moving onto the next layer. During super-
vised finetuning, classification errors on the validation images
is compared against the errors from training set as a measure
to prevent overtraining the network and consequently overfit-
ting the data. The optimized model is obtained prior to the
point when the validation error becomes consistently higher
than the training error in subsequent training iterations.

Figure 4 (d) shows the visualization of weights from the first
layer with each tile representing a hidden unit in the layer
immediately after pre-training. Values of weights connecting
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(a)

(b)

(c)

(d)

Figure 4. (d) Visualization of weights from the first layer and
inputs that maximizes the hidden unit activations for the (c)
1st layer, (b) 2nd layer, and (a) 3rd layer after pre-training
and prior to supervised finetuning.

from all visible units to this single hidden unit are represented
as pixel intensities. Panels (c), (b), and (a) visualize theinput
that maximizes the activation of the hidden units in the first,
second, and third hidden layers respectively. As expected,the
weights and the inputs that maximizes the activation of the
first hidden layer are similar except that the pixel intensities
are inverted. For higher layers, the network is able to capture
the whole mushroom-shaped features from the input images.
However, visualization for the third hidden layer (with only
10 hidden units) is not as clear due to the activation maxi-
mization algorithm converging to a non-ideal local optimum.
A faint mushroom shape is still visible, however. In general,
the pretrained model acquires a good representation of the in-
put. Prominent features serving as the key to distinguishing

between stable and unstable flames can clearly be seen in the
visualized weight matrices.

(a)

(b)

(c)

(d)

Figure 5. (d) Visualization of weights from 1st layer and in-
puts that maximizes the hidden unit activations for the (c) 1st
layer, (b) 2nd layer, and (a) 3rd layer after supervised finetun-
ing.

In Figure 5, visualization of weights from the first layer and
inputs that maximizes activations for all hidden layers af-
ter supervised finetuning are shown. An immediate differ-
ence can be clearly observed: visualized weights are now less
noisy, whereas the third hidden layer is able to produce a vi-
sualization with more clarity compared to the weights prior
to finetuning.

For both cases, the learning rate used in the AM algorithm
is 0.01. Results have also indicated that depending on the
initial value of the input vector, the resulting visualization
from solving the optimization problem will be very different
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Figure 6.0.2s long time series ofl2 norms of (i) 10 largest variance components of PCA performedon images at (a) stable and
(b) unstable states and (ii) activation probabilities of last hidden layer after pre-training a DBN on images at (c) stable and (d)
unstable states

in terms of clarity. Thus, initial values of the input vectors are
manually tuned by trial-and-error in order to obtain the best
result. However, random initialization of the input vectors
over a uniform distribution yielded undesirable results most
of the time, showing images that are completely noisy with-
out any perceivable features. Even if the results do converge,
there are no significant differences between the solution from
random initialization compared to the solution from tuning
the initial values manually.

Remark: It is observed from the feature visualization that,
though the DBN is trained on both stable and unstable flame
images, the features gravitate more towards the coherent
structure which is a characteristic of thermo-acoustic insta-
bility. An expert can use this feature visualization as an im-
portant tool to choose templates for unstable combustion, es-
pecially from the higher layer features. Those templates can
be applied in post-processing of images to calculate the ex-
tent of instability via appropriate metrics that can effectively
replace the age-old need for hand-crafted visual feature.

4.2. Performance of STSA module

In this subsection, DBN is pre-trained with 36,000 training
images coming from 4 different operating conditions (see ta-
ble 1) at partial premixing. Half of the training data is col-
lected during stable combustion and other half during un-
stable combustion. Two sequences of images, consisting of
one at stable (Re = 7, 971, FFR = 0.495g/s and full pre-
mixing) and another at unstable (Re = 15, 942, FFR =
0.495g/s and full premixing) combustion states, are reduced
dimensionally via DBN with the parameters learned at pre-
training phase. It is to be noted that, pre-training and testing
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Figure 7. Variation of Euclidean distance between STSA fea-
tures of image sequences from stable and unstable combus-
tion as a function of alphabet size for STSA

of DBN are done on data at different levels of premixing to
test the transferability of the proposed architecture.

Time series ofl2 norm of 10 dimensional activation proba-
bility vectors from each image are obtained as shown in fig-
ure 6(c) and (d). For comparison,l2 norm of 10 largest vari-
ance components of those images, based on principal com-
ponent analysis (PCA) (Bishop, 2006) coefficients learned on
same training images, are constructed as presented in the top
half of the figure 6. It is observed that the difference in tex-
tures of thel2 time series between stable and unstable com-
bustion is amplified in the case of DBN feature learning.

STSA is performed with increasing alphabet size on thel2
time series that are mentioned above. Time series for stable
and unstable combustion are partitioned separately via MEP

8
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and respective state transition matrices are calculated bythe
method explained in subsection 3.2. Euclidean distance be-
tween state transition matrices of stable and unstable com-
bustion is a measure of class separability between those. The
more the class separability is the more would be the precision
of detecting the intermediate states of the combustion while
shifting from stable to unstable state. Therefore, this frame-
work is better suited for early detection of onset of instabil-
ity. It is presented in figure 7 that the class separability is
much higher when STSA is applied on pre-trained DBN fea-
tures than the PCA features. A probable rationale behind this
observation is that, while PCA is averaging the image vec-
tor based on just maximum spatial variance, DBN is learning
semantic features based on the coherent structures seen dur-
ing unstable combustion. This rationale is also supported by
the DBN feature visualizations that are shown in the subsec-
tion 4.1.

In a PHM context, the state transition matrix emerging from
STSA module at the top can be used in supervised man-
ner to detect instability from hi-speed image data. As the
‘DBN+STSA’ architecture provides a large class-separability
between stable and unstable conditions, the state transition
matrix can help in early prediction of thermo-acoustic insta-
bility. While the training of the proposed architecture is car-
ried out offline in a GPU, the testing in a PHM application
can be performed online with a processing power of a regular
CPU. This is possible because the feed-forward computation
of DBN along with STSA is feasible in real-time.

5. CONCLUSION AND FUTURE WORK

The paper proposes a framework that synergistically com-
bines the recently introduced concepts of DBN and STSA for
early detection of thermo-acoustic instability in gas turbine
engines. Extensive set of experiments have been conducted
on a swirl-stabilized combustor for validation of the proposed
method. Sequences of hi-speed greyscale images are fed into
a multi-layered DBN to model the fluctuating coherent struc-
tures in the flame, which are dominant during unstable com-
bustion. DBN hidden layers along with bottom layer weight
matrix are visualized via activation maximization method and
mushroom-shaped vortex are demonstrated by higher layers
after, both, pre-training and finetuning stages. Although vi-
sualization after fine tuning is less noisy, it may lead to over-
fitting due to limitation of the data volume. Therefore, an
ensemble of time series data is constructed from sequence
of images based on thel2 norm of the activation probabil-
ity vectors of last hidden layer at the DBN. Then, STSA
is applied on the time series that is generated from an im-
age sequence and ‘DBN pre-training+STSA’ is found to ex-
hibit more class separability with varying alphabet size than
‘PCA+STSA’. More class separability between stable and un-
stable combustion implies more precision at detecting early
onset of thermo-acoustic instability. In summary, while DBN

captures the sematic features (i.e., coherent structures)of the
combustion flames, STSA models the temporal fluctuation of
those features at a reduced dimension.

One of the primary advantages of the proposed semantic di-
mensionality reduction (as opposed to abstract dimensional-
ity reduction, e.g., using PCA) would be seamless involve-
ment of domain experts into the data analytics framework for
expert-guided data exploration activities. Developing novel
use-cases in this context will be a key future work. Some
other near-term research tasks are:

• Application of deep convolutional network on entire
(large) flame images to model coherent structure at vary-
ing scales and orientations.

• Dynamically tracking multiple coherent structures in the
flame to characterize the extent of instability.

• Multi-dimensional partitioning for direct usage of the
last hidden layers for the sequence of images to the STSA
module without converting it to time series ofl2 norm.
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