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ABSTRACT features from the flame images are extracted, which enables

the temporal modeling layer to enhance the class separabil-

propulsion dynamics and structural integrity of gas tuebin ity between_ stable and _unstable_ regions. At the same time,
the semantic nature of intermediate features enablestexper

engines and ts earl_y dgtecuon is one of t_he |mportantt_msk_s guided data exploration that can lead to better understgndi
engine health monitoring and prognostics. Combustion in=

stability is characterized by self-sustained, large-atonghé of the underly|ng physics. To the best of the aqthors knowl-
o o : edge, this paper presents one of the early applicationseof th

pressure oscillations and periodic shedding of coherent vo recently reported Deep Learning tools in the area of brodnos

tex structures at varied spatial scales. It is caused when | yrep P 9 prog

calized hydrodynamic perturbations in fluid flow fluctuason fics and health management (PHM).

are augmented by heat release, coupled with acoustics of thje_ INTRODUCTION

combustion chamber. This paper proposes a dynamic data-"

driven approach, where a large volume of sequential hicspeeCombustion instability is a very undesirable phenomenon
(greyscale) images is used to analyze the temporal evolutiocharacterized by high-amplitude flame oscillations atreisc

of coherent structures in combustion chamber for earlyodete frequencies. These frequencies typically represent the na
tion of combustion instability at various operating corais.  ral duct/resonator acoustic modes. Combustion instgkitit
The lower layer of the proposed hierarchical approach exits most basic form arises when there is a positive coupling
tracts low-dimensional semantic features from imagesgusinbetween the heat release rate oscillations and the pressure
Deep Neural Networks. The upper layer captures the temeillations, provided this driving force is higher than trenap-
poral evolution of the extracted features with a probabilis ing present in the system. The mechanisms of pressure-heat
tic graphical modeling scheme called Symbolic Time Serieselease rate coupling are system dependentand thus, the pro
Analysis (STSA). Extensive experimental data have been colem of combustion instability becomes very system specific.

lected in a swirl-stabilized dump combustor at various eper . - —_—
. " L ) The underlying principle of heat release rate oscillatjoimat
ating conditions (€.g., premixing level and flow velocitg) f .drives the pressure oscillations-which result in velocisy

validation of the proposed approach. Intermediate layer VI illations and in turn modulate heat release rate osaitati

sualization of deep learning reveals that meaningful shapea“ in a turbulent background in case of actual gas turbine

Soumalya Sarkar et al. This is an open-access articlehligdd under the CombUSt,ors pose Slgmflc,ant _Complg)(ltles in determinirg th
terms of the Creative Commons Attribution 3.0 United Stafesnse, which ~Mechanisms of combustion instability. Crocco (Mcmanus,

permits unrestricted use, distribution, and reproduciioany medium, pro-  Poinsot, & Candel, 1993) modeled unsteady heat release rate
vided the original author and source are credited.

Combustion instability has many detrimental effects orntlig
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as a function of unsteady velocity to determine stabilitaof (DBN) (G. E. Hinton, 2009) is used in particular to auto-
ducted zero-mean flow flame. Subsequently, a whole clagsatically learn the coherent structures while reducing the
of reduced order modeling-Flame Transfer/Describing funcdimension of the images for temporal modeling at the top
tions were theoretically and experimentally (Palies, $ehu  layer (Erhan, Bengio, etal., 2010). Symbolic time seried-an
Durox, & Candel, 2011; Noiray, Durox, Schuller, & Candel, ysis (STSA) (Ray, 2004), a fast probabilistic graphical lod
2008; Bellows, Bobba, Forte, Seitzman, & Lieuwen, 2007)is placed at the top layer to extract temporal feature from
formulated to understand the stability of the system by reeanthe output of deep learning model. The concept of STSA
of solving the dispersion relation. In addition, flame oscil has been used for anomaly detection in physical systems as
lation saturation mechanisms were also experimentally-dia reported in (Ray, 2004; Rao, Ray, Sarkar, & Yasar, 2009;
nosed which in addition to experiments based on turbulen®arkar, Jin, & Ray, August, 2011). Recently, STSA is applied
non reacting and reacting flows led to the universal featur®n pressure and chemiluminescence time series for early de-
of combustion instability- heat release rate oscillatidrigen  tection of Lean-blow out (Mukhopadhyay, Chaudhari, Paul,
by coherent structures. Sen, & Ray, 2013; Sarkar, Ray, Mukhopadhyay, Chaud-
hari, & Sen, 2014) and thermo-acoustic instability (Ranmana

Coherent structures are fluid mechanical structures assocd:hakravarthy Sarkar, & Ray, 2014)

ated with coherent phase of vorticity, high levels of vortic
ity among other definitions (Hussain, 1983). These structrom the above perspectives major contributions of thepape
tures, whose generation mechanisms vary system wise, cauaee delineated below.

large scale velocity oscillations and overall flame shape os
cillations by curling and stretching. These structures lzan . .
caused to shed/generated at the duct acoustic modes when the and STSA at upp_er_layer,_|_s propose_zd for ea_rly detection
forcing (pressure) amplitudes are high. The interestirsg ca of thermo-acoustic instability from hi-speed images.

gp p 9 rege

of the natural shedding frequency of these structuresjmgus © In the above framework, the DBN layers extract mean-
acoustic oscillations, has been observed by Chakravatthy e  ingful shape-features to represent the coherent struture

al. (Chakravarthy, Shreenivasan, Bhm, Dreizler, & Janicka  in the flame images. This phenomenon enables STSA at
2007). the temporal modeling layer to enhance the class separa-

) ) bility between stable and unstable modes of combustion,
Recently, a swirl combustor has been characterized and \yhich implies higher precision for early detection of the
a wide range of experiments relating swirl flows and co- onset of combustion instability.

herent structures associated with swirl flows has been re-
ported (Syred, 2006; Paschereit, Gutmark, , & Weisenstein,”
1998). The presence of Precessing vortex core as the domi-
nant coherent structure has been reported and non linear int
actions between heat release rate oscillations and PV(&as th
cause of superposed frequencies in time series data has al#o Training and testing of the proposed framework have
been reported (Moeck, Bourgouin, Durox, Schuller, & Can- ~ been performed on different operating conditions (e.g.,
del, 2012). Much of the literature is dedicated to detection ~ Reynolds numberKe), fuel flow rate, and air-fuel pre-
and correlation of these coherent structures to heat eleas ~ Mixing level) of the combustion process to test the trans-
rate and unsteady pressure. The popular methods resorted ferability of the approach. Performance of the proposed
for detection of coherent structures are proper orthogdeal framework (DBN+STSA) have been evaluated by com-
composition (POD) (Berkooz, Holmes, & Lumley, 1993)and  parison with that of a framework, where DBN is re-
dynamic mode decomposition (DMD) (Schmid, 2010), which placed by another extensively used dimensionality reduc-
use tools from spectral theory to derive spatial coherentst tion tool, principal component analysis (PCA) (Bishop,
ture modes. DMD has been used to estimate the growth rates 2006).

and frequencies from experimental data and thus offered tg,o haner is organized in five sections, including the priesen
perform stability analysis on experimental data. one. Section 2 describes a laboratory-scale swirl-stuili

This paper proposes a data-driven hierarchical frameworRombustor, which serves as a test apparatus for experimenta
for early detection of thermo-acoustic instability from hi Vvalidation of the proposed architecture for early detectid
speed greyscale images. In the lower layer, large voluméhermo-acoustic instability. Section 3 describes the psepl

of hi-speed sequential images are used to train a deep nefiamework along with its building blocks via explaining the
ral network model that extracts hierarchical features fromconcepts of DBN and STSA. Section 4 presents the capability
the training data (G. E. Hinton & Salakhutdinov, 2006) and advantages of the proposed approach along with the fea-
through the use of multiple layers of latent variables. An un ture visualization at intermediate layers of DBN. Finattye

supervised pre-training approach with deep-belief netaior paper is summarized and concluded in Section 5 with selected
recommendations for future research.

A novel data-driven framework, with DBN at lower layer

The proposed theory and the associated algorithms have
been experimentally validated at multiple operating con-
ditions in a swirl-stabilized combustor by characterizing
the stable and unstable states of combustion.
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Figure 1. (a)Schematic of the experimental setup. 1 - sgtthamber, 2 - inlet duct, 3 - IOAM, 4 - test section, 5 - bigeerdion
duct, 6 - small extension ducts, 7 - pressure transdugersswirler location measured downstream from settling chamekit,
X, - transducer port location measured downstream frommsgitlhamber exitX; - fuel injection location measured upstream
from swirler exit, (b) Swirler assembly used in the combusto

2. EXPERIMENTAL SETUP Table 1. Description of operating conditions along with re-
spective ground truth (stable or unstable) for hi-speedjgna

The swirl combustor test bed used in this study has a swirledata collection.3s of greyscale image sequencesatt » is

of diameter 30 mm with 60 degree vane angles, thus yieldcollected for each condition

ing a geometric swirl number of 1.28. Air to the combustor Premixin FFR (a/s Re Ground truth

is fed through a settling chamber of diameter 280 mm with & g (g/s)

sudden contraction leading to a square cross section of side 7,971 Stable

i i i i . 0.495
60 mm. This prov@es an area rath gf around 17, Whlch thus Partial 15,942 Unstable
acts as an acoustically open condition at the contraction. A
mesh and honeycomb are mounted in immediate downstream(X; = 90mm) 0.308 Unstable
of the contraction to provide uniform flow to the swirler. The 10,628

T : : . 0.66 Stable
combustor, shown in figure 1(a) consists of an inlet section
of length 200 mm, an inlet optical access module(IOAM) of 7,971 Stable
length 100 mm to provide optical access to the fuel tube,-a pri 0.495
mary combustion chamber of length 370 mm, and secondary Full 15,942 Unstable
duct of the same length. Extension ducts of the same cross 0.308 Unstable
i i ibility. 10,62

section are added to provide length flexibility. The overall (X5 = 120mm) 066 0,628 Stable

length of the constant area ducts was chosen to be 1340 mm.

The fuel injection is done by injecting it coaxially with the 0.083 | 1,771 | Relatively stable

air in a fuel injection tube with slots on the surface as shown

in Figure 1(b). The fuel injection tube is coaxial to a mixing

tube which has the same diameter as that of the swirler. Th&wo inlet Reynolds numbers (Re), based on the swirler di-
bypass air that does not enter the mixing tube passes througfneter were chosen, the lower Re having stable combustion
slots on the swirl plate. The slots on the fuel injection tubebehavior and higher Re having exhibiting unstable behavior
are drilled at designated distance upstream of the swiflee.  The Re’s were chosen to be 7,971 and the higher Re being
larger this distance, more fuel mixes with the primary air in15,942 for a fuel flow rate (FFR) of 0.495 g/s. Another proto-
the mixing tube thus |eading to more premixedness_ Two upCOl followed was keeping the inlet Re constant at 10,628 and
stream distances of; = 90mm and X, = 120mm were  having two different fuel flow rates. The higher FFRs exhib-

chosen for this work. The upstream distance of 120 mm prolted stable combustion, whereas the leaner configuratien wa
vides for full premixing of the fuel with the air thus hence- unstable. The two FFRs were chosen to be 0.66 g/s and 0.308
forth, it will be referred to as the premixed case. The 90 mm@/s. These corresponded to equivalence ratios of 0.955 and
upstream injection case causes partial premixing of the fued-445 respectively. Besides these conditions, 3 seconds of
with air and thus will be referred to as the partially prentixe images are also collected f& = 1,771 and"F'R = 0.083

case. The images were acquired at 3 kHz using Photron Higt relatively stable state of combustion. The details obie
speed star with a spatial resolutionloR4 x 1024 pixels. The ~ erating conditions along with their ground truth (e.g. bita
data acquisition was triggered simultaneously using Ndl car OF unstable) are presented in table 1.

and taken for a duration & yielding in a sequence of 9,000 Figure 2 presents sequences of images of dimertianx

images for every operating condition. 1000 pixels for both stableRe = 7,971, FFR = 0.495g/s
and full premixing) and unstableRe = 15,942, FFR =
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t=0 t=0.001s t=0.002s t=0.003s t=0.004s

Figure 2. Top: greyscale imagest = 7,971 and full premixing for a fuel flow rate of 0.495 g/s, bottomeygscale images
at Re = 15,942 and full premixing for a fuel flow rate of 0.495 g/s

0.495¢/s and full premixing) states. The flame inlet is on structures in the flame. DBN and STSA are explained in de-
the right side of each image and the flame flows downstreartail later in this section.
to the left. It can be observed that the flame does not have
any prominent coherent structure when the combustion-s sta3.1. Deep Learning techniques
ble. While the combustion is unstable, vortex sheddingglon S . . .

. ' Deep Learning is an emerging branch of machine learning
the flow is observed. Bottom segment of the figure 2 Show‘?’/vith a strona emphasis on modelina multiple levels of ab-
formation of mushroom-shaped vortextat 0,0.001s and g P g P

the shedding of that towards downstream from 0.002s to strchoq (from low-level features to higher-order repres
¢ — 0.004s tations, i.e., features of features) from data (Deng & Dong,

2014; Bengio, Courville, & Vincent, 2013). For example, in a
typical image processing application while low-level feais
can be partial edges and corners, high-level features may be
This section describes the proposed architecture for darly combination of edges and corners to form parts of an image.
tection of thermo-acoustic instability in a combustor via a . . . .

. . . . Among various deep learning techniques, Deep Belief Net-
alyzing a sequence of hi-speed images. Figure 3 presents ; .

. . works (DBNs) have become an attractive option for data

the schematics of the framework where a deep belief net-

. . o : ._dimensionality reduction (G. E. Hinton & Salakhutdinov,
work (DBN) is stacked with symbolic time series analysis , ) o 1aporative filtering (Salakhutdinov, Mnih, & Hin

images) from both stable and unstable states for various o?gn’ 2007), feature learning (Coates, Ng, & Lee, 2011) dopi

erating conditions are used as the visible layeof a DBN. modeling (G. E. Hinton & Salakhutdinov, 2009), and solving

Multiple hidden layers (i.e; to h,) with reducing dimen- classification problems (Larochelle & Bengio, 2008). Saver

sions (G. E. Hinton & Salakhutdinov, 2006) are stacked afterOther deep learning architectures such as Convolutional Ne

the visible layer.The weights (i.64/; to 1,,), connecting ad- ral Networks, Stacked Denoising Autoer?codgrs, and Deep
: . . . . Recurrent Neural Networks have also gained immense trac-
jacentlayers, are learned first via greedy layer-wise piretr tion recently as they have been shown to outperform all other
ing (G. E. Hinton & Salakhutdinov, 2009) and then they are Y y P

fine-tuned in a supervised manner. In this paper, unsuetvis state-of-the-art machine learning tools for handling Varge

L : . . dimensional data spaces to learn features in order to perfor
pre-training step is emphasized more for capturing thereohe . o . . -
. . detection, classification and prediction. The basic boddi
ent structures in flame images at unstable state. The vect

of activation probabilities of the hidden units at the tomino ?vfﬁgl:eor;aﬁh:;?g;?gfggaegksgtznr?gngf'\gig:]r"r; t(oREJ I:/ln)q,a
hidden layer is used as input to the STSA module. P P

deep network. An RBM is essentially a generative probabilis
While testing, sequence of images are passed through thie graphical model that is capable of learning a probapbilit
learned DBN and a time series &f norm (equivalent to distribution over the inputs to best explain the observed.da
signal energy) of the activation probability vectors is ob-Individual RBMs consists of visible units (the inputs) whic
tained. In STSA module, the time-series is symbolized viaare connected to latent variables in the hidden units. Note
partitioning the signal space and a symbol sequence is créhat connections exist only between the visible layer aed th
ated as shown in the figure 3. A probabilistic finite statehidden layer but not among visible units and hidden units—
automata (PFSA) (Ray, 2004) is constructed from the symhence termedRestricted While a single layer of RBM is al-
bol sequence, which models the transition from one state toeady quite powerful to represent complex distributions, i
another as state transition matrix. State transition madri creasing the number of hidden layers greatly improves mod-
the extracted feature which represents the sequence of ineling capacity where the output of one hidden layer becomes
ages, essentially capturing the temporal evolution of partite  the input of another placed over it.

3. DECISION FRAMEWORK AND TOOLS
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Figure 3. Framework for early detection of combustion ib#ity from hi-speed flame images via semantic feature etia
using deep belief network (DBN) followed by symbolic timeies analysis (STSA)

Deep Belief Networks can be trained in an unsupervisedbased on the output of the final hidden layer of the DBN. A
greedy layer-wise manner. In simpler terms, the first RBMpredefined error metric is computed between the class labels
layer is trained with the raw input as the visible layer. Digri  and the resultant output of the DBN (after applying the logis
training, the first layer acquires a representation of tipeiin  tic classifier) and then the error is backpropagated down the
by updating its weights and biases between the visible andetwork to further adjust and optimize the weights and lsase
hidden layers (usually through computing the mean aCtlvaV|suaI|zat|on of Learned Eeatures

tions or by sampling) which in turn becomes the input of the
second layer (G. Hinton, Osindero, & Teh, 2006). The objec-
tive during layer-wise training is to find the weight veciéf
(and biases for both visible and hidden units) that maxisize
the expected log likelihood of the training data(Fischer &
Igel, 2014). More formally, the optimization problem can be
represented (ignoring the biases) as:

Z log P(v)

veV

One of the main claim of a hierarchical semantic feature ex-
traction tool such as DBN is that it learns meaningful pat-
terns in the data that can signify the underlying charasties

of the process. Therefore, visualizing the learned featigre
crucial to both understand and verify the performance of the
feature extractor. Furthermore, intermediate featuraalis
ization may lead domain experts to scientific discoverias th
are not easy to figure out via manual exploration of large vol-

arg max [E
w ume of data.

Typically, the optimization is solved in a gradient descentFor the lowest RBM layer, simply plotting the weight matrix
manner. Keeping the weights and biases of the first layer cormay be sufficient to visualize the features learned by the firs
stant after it is trained, the transformed input from theetay hidden layer. Since the dimensionality of the input and the
is utilized to train the next layer. This process is repefbed weights are in the same order, the vectors of weights for each
the desired number of layers in the network with each iterinput can be reshaped into the dimension equal to the reso-
ation propagating either the samples or mean activations tlution of the input image. Thus, the visualizations are usu-
higher levels. As training continues, the product of prabab ally intelligible. Complexity arises for visualizing faaes

ities assigned to the input is maximized. Once all the layerdearnt at deeper layers because they lie in a different space
are trained, th@re-trainedmodel is finetuned via supervised from the visible data space. At the same time, the dimen-
backpropagation. It is important to note that layer-wiséntr ~ sion of weight matrix depends on the number of hidden units
ing helps with initializing weights and biases in the netvor between the layer and the layer before. Thus, plotting the
prior to the actual supervised training. Taking classif@at weight matrix will resultin an incomprehensible visuatipa

as an example, a logistic classifier is used to classify thetin which typically resembles the appearance of white noise. To
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obtain filter-like representations of hidden unitsintheNDB e § : @ x X — (@ is the state transition function that
a recent technique known as Activation Maximization (AM) satisfies the following condition|if)| = ||, then there
is used (Erhan, Courville, & Bengio, 2010). This technique exista, 8 € ¥ andx € ¥* such thav(az, §) = =5 and
seeks to find inputs that maximize the activation of a specific oz, z € Q.

hidden unit in a particular layer and the technique is trbate |
as an optimization problem. Létdenote the parameters of
the network (weights and biases) albgd (¢, ) be the value

of the activation functiorh;; (-) (usually the logistic sigmoid
function) of hidden unit in layerj on inputx. Assuming the
network has been traine@ remains constant. Therefore, the
optimization process aims to find

7 Q x X — [0,1] is the symbol generation function
(also called probability morph matrix) that satisfies the
condition} .y 7(q,0) = 1 Vq € Q, andry; is the
probability of occurrence of a symbe} < X at the state

7 € Q.

State transition matrix, denoted 0y (Il £ [m;;], i =
x" = argmax h;;(0, ) 1,2,--,1Ql, 7 = 1,2,---,|Q|), is obtained via combin-
@s.t.[[2]|=p ing 7 and§. Each element ofl, 7;; is the probability of
wherex* denotes the inputs that maximizes the hidden uniinoving from statey; to ¢; upon occurrence of a symbol at
activation. Although the problem is a non-convex optimiza-the next time step.In this paper, depth of theMarkov ma-
tion problem, it is still useful to find the local optimum by chine is chosen to be one and it results in the equality of
performing a simple gradient ascent along the gradient o$tate transition matixI{) and probability morph matrix.
hi; (0, x) because in many cases, the solutions after convefepth greater than one can also be chosen via applying gen-
gence are able to visualize the patterns of the inputs tieat a€ralizedD-Markov machine construction (Sarkar etal., 2014;

being learned by the hidden units. Mukherjee & Ray, 2014)I1 is considered as the output fea-
ture of the D-Markov machine, which represents the time-
3.2. Symbolic Time Series Analysis (STSA) series in reduced dimension. More details on STSA can be

) i i i found in (Ray, 2004; Sarkar et al., 2014).
STSA is a fast time series feature extraction tool that mod-

e_Is the tem_por_al evolution of a quasi—ste_ltionary time serie 4 ReESULTS AND DISCUSSIONS

via symbolization (Ray, 2004).The algorithms of STSA are

formulated via symbolization of the time series generated he DBN used for the study is comprised of three hidden lay-
from dynamical systems along with subsequent state machir@'s with 1000, 100, and 10 hidden units for the first, second,
construction. First, the time series data are partitiongd band third hidden layer respectively. The inputimage has a di
maximum-entropy partitioning (MEP) (Rajagopalan & Ray, mension of56 x 98 pixels flattened to & x 5488 row vector.
2006) to construct the symbol alphabetor generating sym-  The input image segments are taken from respective images
bol sequences. MEP maximizes the Shannon entropy (Covét the flame entry (right end of the images) zone after scaling
& Thomas, 2006) of the symbol sequence via generatinghe original images down by 4 times.

more partitions at the information-dense zones in the range

domain than information-sparse zones. Once the partitioné-1. DBN feature visualization

are obtained, each data point of the time series is assigngg,; s alization, the training set consists of 54,000ntrai
a symbols; € 3 same as the partition it belongs to.Then, aj, images containing 6,000 images each from 9 conditions,
D-Markov machine, based on the algebraic structure of probg o yajidation images containing 1,000 images each from 9
abilistic finite state automata (PFSA) (Ray, 2004), is con-,ngitions, and 18,000 test images containing 2,000 images
structed from the symbol sequencé-Markov machine is  ¢4ch from 9 conditions. A learning rate of 0.01 is used for the
defined as follows. gradient descent algorithm for both pre-training and super
o vised finetuning. Pre-training is performed in batches of 50
Definition 3.1  (Ray, 2004; Sarkar etal., 2014)xMarkov)  samples and each layer undergoes 30 complete iterations of
A D-Markov machine is a 4-tuple PFSK(= (%,Q,6,7)),  pre-training before moving onto the next layer. During supe
in which each state is represented by a finite historylof \jsed finetuning, classification errors on the validatioages
symbols as defined by: is compared against the errors from training set as a measure
e Y is a non-empty finite set, called the symbol alphabet0 Prevent overtraining the network and consequently averfi
with cardinality |S| < oo; ting the data. The optimized model is obtained prior to the
point when the validation error becomes consistently highe

[ ini i inalit| < |2|” . . S .
* Qs the finite set of states with cardinalif| < ||, toqan the training error in subsequent training iterations.

i.e., the states are represented by equivalence classes
symbol strings of maximum lengthwhere each symbol Figure 4 (d) shows the visualization of weights from the first
belongs to the alphabét; D is the depth of the Markov layer with each tile representing a hidden unit in the layer
machine; immediately after pre-training. Values of weights coniregt
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between stable and unstable flames can clearly be seen in the
visualized weight matrices.

(b)

(d)

Figure 4. (d) Visualization of weights from the first layeidan

inputs that maximizes the hidden unit activations for the (c
1st layer, (b) 2nd layer, and (a) 3rd layer after pre-trajnin (d)
and prior to supervised finetuning.

Figure 5. (d) Visualization of weights from 1st layer and in-
puts that maximizes the hidden unit activations for the &t) 1

from all visible units to this single hidden unit are represel ; .
as pixel intensities. Panels (c), (b), and (a) visualizeérpat :ﬁy(.er, (b) 2nd layer, and () 3rd layer after supervisedinet

that maximizes the activation of the hidden units in the first

second, and third hidden layers respectively. As expetied, In Figure 5, visualization of weights from the first layer and

X . - . inputs that maximizes activations for all hidden layers af-
weights and the inputs that maximizes the activation of theter supervised finetuning are shown. An immediate differ-

first hidden layer are similar except that the pixel intdéasit T . .
are inverted. For higher layers, the network is able to aaptu ence can be clearly opseryed. V|suaI|z_ed weights are ncw Ie§
‘ i noisy, whereas the third hidden layer is able to produce a vi-

the whole mushroom-shaped features from the input imagess'ualization with more clarity compared to the weights prior
However, visualization for the third hidden layer (with gnl y P ghis p

10 hidden units) is not as clear due to the activation maxi—to finetuning.

mization algorithm converging to a non-ideal local optimum For both cases, the learning rate used in the AM algorithm
A faint mushroom shape is still visible, however. In generalis 0.01. Results have also indicated that depending on the
the pretrained model acquires a good representation ofithe iinitial value of the input vector, the resulting visualimat

put. Prominent features serving as the key to distingugshin from solving the optimization problem will be very differien
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Figure 6.0.2s long time series of; norms of (i) 10 largest variance components of PCA perfororeithages at (a) stable and
(b) unstable states and (ii) activation probabilities ot lidden layer after pre-training a DBN on images at (c)lstabd (d)
unstable states

in terms of clarity. Thus, initial values of the input vedare

11
manually tuned by trial-and-error in order to obtain thetbes n
result. However, random initialization of the input ve&or I 1
over a uniform distribution yielded undesirable resultssino o9l —©— STSA on Largest 10

components from PCA
STSA on Last hidden
layer after pretraining

of the time, showing images that are completely noisy with-
out any perceivable features. Even if the results do comyerg
there are no significant differences between the solutiom fr
random initialization compared to the solution from tuning
the initial values manually.

o
o)

Distance

o ©
o

o
w

Remark: It is observed from the feature visualization that,
though the DBN is trained on both stable and unstable flame 4 ‘ ‘ ‘ ‘ ‘ ‘ ‘
images, the features gravitate more towards the coherent 4 6 8 i?phabéfsize 14 16 18 20

structure which is a characteristic of thermo-acoustitains

bility. An expert can use this feature visualization as an im Figure 7. Variation of Euclidean distance between STSA fea-
portant tool to choose templates for unstable combustien, e tures of image sequences from stable and unstable combus-
pecially from the higher layer features. Those templates calion as a function of alphabet size for STSA

be applied in post-processing of images to calculate the ex-

tent of instability via appropriate metrics that can effesly ~ of DBN are done on data at different levels of premixing to
replace the age-old need for hand-crafted visual feature.  test the transferability of the proposed architecture.

Time series of; norm of 10 dimensional activation proba-
bility vectors from each image are obtained as shown in fig-
In this subsection, DBN is pre-trained with 36,000 trainingure 6(c) and (d). For comparisofa,norm of 10 largest vari-
images coming from 4 different operating conditions (see taance components of those images, based on principal com-
ble 1) at partial premixing. Half of the training data is col- ponent analysis (PCA) (Bishop, 2006) coefficients learrmed o
lected during stable combustion and other half during unsame training images, are constructed as presented inghe to
stable combustion. Two sequences of images, consisting dfalf of the figure 6. It is observed that the difference in tex-
one at stableRe = 7,971, FFR = 0.495¢g/s and full pre-  tures of thel, time series between stable and unstable com-
mixing) and another at unstabl&{ = 15,942, FFR = bustion is amplified in the case of DBN feature learning.

0.495¢/s and full premixing) combustion states, are reducedSTSA is performed with increasing alphabet size onithe

dmgnsmnally V'a.DBN with the parameters_ Igarned at pre'time series that are mentioned above. Time series for stable
training phase. It is to be noted that, pre-training andngst

and unstable combustion are partitioned separately via MEP

4.2. Performance of STSA module
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and respective state transition matrices are calculatdtidoy captures the sematic features (i.e., coherent structoféisg
method explained in subsection 3.2. Euclidean distance besombustion flames, STSA models the temporal fluctuation of
tween state transition matrices of stable and unstable conthose features at a reduced dimension.

bustion is a measure of class separability between those. Trbne of the primary advantages of the proposed semantic di-

more the class separability is the more would be the pratisio . : . . .
. . : . -‘mensionality reduction (as opposed to abstract dimenkiona
of detecting the intermediate states of the combustionewhil . . . .
- ! ity reduction, e.g., using PCA) would be seamless involve-
shifting from stable to unstable state. Therefore, thimfra : ; .
. . : : . ment of domain experts into the data analytics framework for
work is better suited for early detection of onset of indtabi : . L .
. . L ... expert-guided data exploration activities. Developingeio
ity. It is presented in figure 7 that the class separability is : . .
. . : ; use-cases in this context will be a key future work. Some
much higher when STSA is applied on pre-trained DBN fea-Other near-term research tasks are-
tures than the PCA features. A probable rationale behirsd thi '
observation is that, while PCA is averaging the image vec-e Application of deep convolutional network on entire
tor based on just maximum spatial variance, DBN is learning  (large) flame images to model coherent structure at vary-
semantic features based on the coherent structures seen dur ing scales and orientations.
ing unstable combustion. This rationale is also supporjed b 4  pynamically tracking multiple coherent structures in the
the DBN feature visualizations that are shown in the subsec-  fi3me to characterize the extent of instability.

ion 4.1. - . e .
tion e Multi-dimensional partitioning for direct usage of the

In a PHM context, the state transition matrix emerging from  last hidden layers for the sequence of images to the STSA
STSA module at the top can be used in supervised man- module without converting it to time seriesgfnorm.

ner to detect instability from hi-speed image data. As the

‘DBN+STSA architecture provides a large class-sepaitgbil ACKNOWLEDGMENT

between stable and unstable conditions, the state tramsiti
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bility. While the training of the proposed architecture &-c 1-0270. Any opinions, findings and conclusions or recom-
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