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Abstract— Detection and prediction of combustion instabili-
ties are of interest to the gas turbine engine community with
many practical applications. This paper presents a dynamic
data-driven approach to accurately detect precursors to the
combustion instability phenomena. In particular, grey-scale
images of combustion flames have been used in combina-
tion with pressure time-series data for information fusion
to detect and predict flame instabilities in the combustion
process. These grey-scale images are analyzed using deep belief
network (DBN). The cross-dependencies between the features
extracted by the DBN and the symbolic sequences generated
from pressure time-series are then analyzed using×D-Markov
(pronounced cross D-Markov) models that are constructed by
a combination of state-splitting and cross-entropy rate; this
leads to the development of a variable-memory cross-model
as a representation of the underlying physical process. These
cross-models are then used for detection and prediction of
combustion instability phenomena. The proposed concept is
validated on experimental data collected from a laboratory-
scale swirl-stabilized combustor apparatus, where the instability
phenomena are induced by typical protocols leading to unstable
flames.

I. I NTRODUCTION

Strict emission regulation has initiated a paradigm shift
in the nominal operating conditions of gas turbine en-
gines. Consequently, the technology of gas turbine engines
has gradually adapted to low equivalence ratio combus-
tion to suppress emissions of nitrogen oxides (NOx), in-
stead of combustion at near-stoichiometric conditions. Ultra-
lean premixed and pre-vaporized combustors, while being
environment-friendly, is susceptible to combustion instabili-
ties that are typically characterized by pressure waves with
sharp tones and high amplitudes. The complexity of such
an instability problem accrues from the mutual interac-
tions among the unsteady heat release rate, flow fields and
acoustics, which outline the general features of combus-
tion instability [1], [2], [3]. Combustion instabilities have
many detrimental effects on flight-propulsion dynamics and
structural integrity of gas turbine engines. In this paper,
we propose a data-driven approach to detect precursors to
instability of the combustion process using sequential hi-
speed images and pressure time-series. These two types
of data are pre-processed and then combined together as
a Probabilistic Finite State Automaton (PFSA) within the
framework of×D-Markov machines [4], [5], [6].

The complexity of combustion instability phenomena has

drawn a lot of attention in the research community, which
has resulted in a broad spectrum of activities ranging from
model-based to data-driven analyses. Several reduced-order
modeling-based approaches are presented in [7], [8]. Most of
these works emphasize understanding of the system stability
by means of solving the dispersion relation. More recently,a
swirl combustor has been characterized and a wide range of
experiments relating swirl flows. The presence of precessing
vortex core (PVC) as the dominant coherent structure has
been reported, where nonlinear interactions between heat
release rate oscillations and PVC as the cause of super-
posed frequencies in time series data has been pointed
out [9]. Much of the literature is dedicated to detection
and correlation of these coherent structures to heat release
rate and unsteady pressure oscillations. Popular methods for
detection of coherent structures include proper orthogonal
decomposition (POD) [10] and dynamic mode decompo-
sition (DMD) [11], which use tools of spectral theory to
derive spatial coherent structure modes. Specifically, DMD
has been used to estimate the growth rates and frequencies
from experimental data and also for stability analysis of the
experimental data. More recently, a deep-learning [12] and
symbolic time series analysis (STSA) [13]-based approach
has been presented in [14] for early detection of combustion
instabilities. Recently, detection of lean blowout in combus-
tors have also been reported in [15], [16].

This paper presents a sensor-fusion-based approach for
early detection of instability phenomena in combustors. Sen-
sors of different modalities (e.g., hi-speed grey-scale images
and pressure time-series data) have been used to observe
the same physical process that can capture the expected
outcome of one modality based on the state of the other
modality. To develop cross-models for multimodal sensor
fusion, first a deep belief network (DBN) [17] is used to
process the hi-speed grey-scale images for dimensionality
reduction and automatically learning the features from the
combustion images. Then, the cross-models of the features
from images and pressure time-series data are represented
as a×D-Markov machine [4], [5], [6] that is capable of
capturing the behavior of a symbolic process conditioned
on another symbolic process. These×D-Markov machine
models are then used to detect and predict combustion insta-
bilities. The proposed approach offers the benefit that data
from two different sensor modalities can be used to arrive
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Fig. 1: Visible coherent structure in greyscale images atRe = 15, 942 and full
premixing for a fuel flow rate of 0.495 g/s

at more robust and accurate prediction of the underlying
physical process, and its efficacy has been validated using
experimental data of combustion from a laboratory-scale
swirl combustor apparatus [18]; in particular, hi-speed grey-
scale images and pressure time-series data have been used
for detection and prediction of combustion instabilities in a
laboratory-scale swirl combustor apparatus [18]. To the best
of authors’ knowledge, such a symbolic causal modeling-
based approach of images with time-series data has not been
proposed before in open literature.

II. EXPERIMENTAL DESCRIPTION

The experimental apparatus is a laboratory-scale combus-
tor with a swirler of diameter 30 mm with 60 degree vane
angles (i.e., geometric swirl number of 1.28). Air is fed
into the combustor through a settling chamber of diameter
280 mm with a sudden contraction leading to a square
cross section of side 60 mm, providing an acoustically open
condition with area ratio of 17. A mesh and honeycomb
structure at the immediate downstream of the contraction
assures uniform flow to the swirler. The combustorconsists
of a 200 mm long inlet section, an inlet optical access module
(IOAM) of length 100 mm, a primary combustion chamber
of length 370 mm, and secondary duct of the same length.
The overall length of the constant area ducts was chosen to
be 1340 mm. The fuel injection tube is coaxial to a mixing
tube which has the same diameter as that of the swirler. The
bypass air that does not enter the mixing tube passes through
slots on the swirl plate. The slots on the fuel injection tube
are drilled at designated distance upstream of the swirler,
which dictates the extent of premixing between fuel and
air. The larger this distance, more homogeneous the air-fuel
mixture is. Two upstream distances of90mm and 120mm
were chosen for fuel injections during the experiments, where
the former of the two denotes partial premixing and the later
provides full premixing. The hi-speed images were collected
through IOAM at 3 kHz using Photron High speed star with
a spatial resolution of1024 × 1024 pixels. Synchronized
pressure data was acquired using piezoelectric transducers
(PCB make) with resolution 225 mV/ kPa at a location
downstream of the IOAM. The data acquisition was triggered
simultaneously using NI card and taken for a duration of3s
yielding in a sequence of 9,000 images for every operating
condition. More details of the combustor and the performed
experiments can be found in [14].

Figure 1 presents sequences of images of dimension392×
1000 pixels for unstable (Re = 15, 942, FFR = 0.495g/s
and full premixing) state. The flame inlet is on the right side
of each image and the flame flows downstream to the left.
As the combustion is unstable, coherent structure formation
along the flow is observed. Figure 1 shows formation of

mushroom-shaped vortex att = 0, 0.001s and the shedding
of that towards downstream fromt = 0.002s to t = 0.004s.

III. I NFORMATION FUSION FRAMEWORK AND TOOLS

This section delineates the proposed framework for early
detection of combustion instability via fusing multi-modal
data arriving from hi-speed camera and pressure transducer
that are spatially apart. In the framework of analysis adopted
in this paper, a deep belief network (DBN) is followed by a
symbolic time series analysis (STSA) module. During train-
ing, hi-speed images from both stable and unstable states for
various operating conditions are used as the visible layerV
of a DBN. Multiple hidden layers (i.e.,h1 to hn) with reduc-
ing dimensions [19] are cascaded after the visible layer.The
weights (i.e.,W1 to Wn), connecting adjacent layers, are
learned first via greedy layer-wise pretraining [20]. The
weights can be fine-tuned in a supervised manner. However,
this paper concentrates more on unsupervised pre-trainingfor
capturing the coherent structures in flame images at unstable
state. Multi-variate time series of activation probabilities
emanating from the hidden units of the bottleneck (last
layer) hidden layer is fed into the STSA module as input.
Synchronized pressure time series is also directed to STSA
module for sensor fusion.

STSA learns D-Markov machines via symbolization and
probabilistic finite state automata (PFSA) [13] generation
from pressure data and individual time series arising from
DBN bottleneck hidden units. It also models variable depth
×D-Markov machines which captures the cross-dependences
among DBN hidden layer temporal output and pressure
time series. This paper proposes to exploit this×D-Markov
machine construction for early detection of thermo-acoustic
instability via spatiotemporal fusion. While the DBN ef-
ficiently reduces the dimension of the hi-speed video by
preserving the semantic feature (continuing presence of co-
herent structures [14] in hidden layer visualization), STSA
models temporal evolution of that feature via constructing
×D-Markov machine that considers heterogeneous sensors
spatially dislocated. Elements of the proposed tool chain are
explained in detail later in the sequel.

A. Deep Belief Network

Deep Belief Networks (DBN) is a type of deep neural
networks consisting of multiple hidden layers of latent
variables. They are constructed by stacking multiple layers
of Restricted Boltzmann Machines (RBM) on top of each
other, which are generative probabilistic graphical models
with the capability to learn a probability distribution over the
inputs to best explain the observed data. Individual RBMs
are composed of visible units (the inputs) and hidden units
that are interconnected but not among the same type of units.
Due to the connections to latent variables, a single layer of
RBM is powerful enough to represent complex distributions.
The nonlinear modeling capacity is further increased when
multiple hidden layers are stacked on top of each other, with
the outputs of one becoming the input of another.



Multi-layered deep neural networks are notoriously dif-
ficult to train as the parameter optimization process can
often get caught in poor local minima due to the large
number of parameters in the model. However, it has been
discovered that DBNs can be trained in an unsupervised
manner to help initializing better weights as opposed to
using randomized weights, therefore leading to a superior
generalization performance.

Pretraining is performed in a greedy layer-wise manner.
The weights and biases of the first RBM stack is updated
iteratively based on an unsupervised training criterion. After
a user-defined stopping condition (e.g. maximum number of
iterations), the parameters from this layer is fixed and the
outputs of the layer (a new representation for the raw input)
becomes the input of another layer for pretraining in a similar
fashion. Essentially, the objective is to find the hidden unit
features that are more common in the training inputs than in
the random inputs, such that the pretrained weights may help
to guide the parameters of that later towards better regions
in the parameter space.

Consider a single RBM stack with hidden unitsh. The
probability of observing a samplev is

Pr(v) =
e−F (v)
∫
e−F (v)

where
F(v) = − log

∑

h

e−E(v,h)

and
E(v, h) = −bT v − cT h − hWT v

Pretraining seeks to find the set of parameters{Ŵ, b̂, ĉ} (i.e.,
layer weights, visible unit biases and the hidden unit biases,
respectively) that maximizes the expected log-likelihoodof
the training dataV. Thus, the optimization problem can be
formally represented as:

{Ŵ, b̂, ĉ} = argmax
W,b,c

E

[
∑

v∈V

logPr(v)

]

and the problem is typically solved via stochastic gradient
descent. In addition, each newly pretrained layer guarantees
an increase on the lower-bound of the log-likelihood of the
data, hence improving the model.

The whole pretrained network is finetuned using an error
backpropagation algorithm. For a classification problem, the
class labels are compared against the neural net outputs based
on an input vector via an error metric that becomes the cost
function of the algorithm. Specifically, the loss functionℓ to
be minimized for a datasetV, parametrized byθ is:

ℓ(θ = {W, b, c},V) = −

|V|∑

i=0

[
log

(
Pr(Y = y(i)|v(i),W, b, c)

)]

wherey(i) denotes the class index. All weights and biases
in the network are then optimized by the algorithm to
produce a fully trained model that is capable of making class
predictions based on a certain input.

B. Cross-Modeling of Symbolic Processes for Sensor Fusion

In this section, first we very briefly introduce some basic
concepts of symbolic time series analysis followed by the
×D-Markov modeling framework for inferring the causal-
cross dependence between two observed symbol sequences
which we use for fusion. Interested readers are referred to [6],
[13] for detailed discussion.

Symbolic time-series analysis (STSA) is a non-linear
technique for modeling temporal patterns in sequential data.
Symbolic analysis of time-series data for precise modelingof
the underlying dynamics needs two challenges to be satisfied
simultaneously.

1) Symbolization: The process of projecting continuous
time-series data onto a symbolic domain.

2) Depth Estimation:The task of estimating the temporal
memory of the system.

Once the data has been symbolized and the depth for the
symbol sequence been estimated, the symbol stream can be
compressed into generative models as Probabilistic Finite
State Automata (PFSA). Next we present some relevant
definitions to present things more clearly.

Definition III.1 (D-Markov [13]) A D-Markov machine
is a statistically stationary stochastic processS =
· · · s−1s0s1 · · · (modeled by a PFSA in which each state
is represented by a finite history ofD symbols), where the
probability of occurrence of a new symbol depends only on
the lastD symbols, i.e.,

P [sn | · · · sn−D · · · sn−1] = P [sn | sn−D · · · sn−1] (1)

where,D is called the depth of the Markov machine.

Definition III.2 (Entropy Rate [6]) The entropy rate of a
PFSA (Σ, Q, δ, π) is defined in terms of the conditional
entropy as follows.

H(Σ|Q) ,
∑

q∈Q

P (q)H(Σ|q)

= −
∑

q∈Q

∑

σ∈Σ

P (q)P (σ|q) logP (σ|q) (2)

whereP (q) is the probability of a PFSA stateq ∈ Q.

In ×D-Markov machines, the Markov assumption is made
on the expected outcome of a symbolic process conditioned
on the states of another symbolic process (instead of states
of the same symbolic process). In×D-Markov machines, we
assume that a symbol block of (finite) lengthD is sufficient
to describe the current state for the PFSA constructed from
the symbol stream{s1}. In other words, the symbols that
occur prior to the lastD symbols do not affect the subsequent
symbols observed in symbol stream{s2}. We define a×D-
Markov machine next.

Definition III.3 ( ×D-Markov) Let K1 andK2 be the PF-
SAs corresponding to symbol streams{s1} and{s2}, respec-
tively. Then, an×D-Markov machine (from{s1} to {s2}) is



defined as a 5-tupleM1→2 , (Q1,Σ1,Σ2, δ1,Π12) such
that:

1) Q1 = {q1, q2, . . . , q|Q1|} is the state set corresponding
to symbol sequence{s1}

2) Σ1 = {σ1
0 , ..., σ

1
|Σ1|−1} is the alphabet set of symbol

sequence{s1}
3) Σ2 = {σ2

0 , ..., σ
2
|Σ2|−1} is the alphabet set of symbol

sequence{s2}
4) δ1 : Q1×Σ1 → Q1 is the state transition mapping for

M1

5) Π12 is the cross morph matrix of size|Q1| × |Σ2|;
the ijth element (π12(qi, σ

2
j )) of Π12 denotes the

probability of finding the symbolσ2
j in the symbol

string {s2} at next time step while making a transition
from the stateqi of the PFSA constructed from the
symbol sequence{s1}.

Analogous to entropy-rate of a PFSA, we define a cross-
entropy rate for acrossedPFSA which we will use as a
metric for constructing the states of the cross-PFSA model
for two observed symbolic processes.

Definition III.4 (×D-Markov Entropy Rate [6]) The×D-
Markov entropy rate from a PFSA(Σ1, Q1, δ1, π1) to a
symbol stream (say,{s2} with alphabet setΣ2) is defined
as:

H(Σ2|Q1) ,
∑

q1∈Q1

P (q1)H(Σ2|q1)

= −
∑

q1∈Q1

∑

σ2

1
∈Σ2

P (q1)P (σ2
1 |q1) logP (σ2

1 |q1)

(3)

whereP (q1) is the probability of a PFSA stateq1 ∈ Q1

andP (σ2
1 |q1) is the conditional probability of a symbolσ2

1 ∈
Σ2 given that a PFSA stateq1 ∈ Q1 is observed.

The number of states of a×D-Markov machine of depthD
is bounded above by|Σ1|

D, where|Σ1| is the cardinality of
the alphabetΣ1. However, from the perspective of modeling
the cross-dependance from{s1} to {s2}, some states may
be more important than others in terms of their embedded
causal information contents. Thus it might be redundant to
keep all states of different depths in the cross-PFSA model.
Instead it might be advantageous to keep a set of states
that correspond to symbol blocks of different lengths i.e.,
make a system where different states have different memory
or depthD. This is accomplished by starting off with the
simplest set of states (i.e.,Q1 = Σ1 for D = 1) and
subsequently splitting the current state that results in the
largest decrease of the×D-Markov entropy rateH(Σ2|Q1)
(see Eq. (3)). Thus we can restrict the exponential growth
of states with increasing depthD without compromising the
details of symbolic dynamics. At each step of state splitting,
each elementπ12(σ2, q1) of the cross morph matrixΠ12 is
estimated numerically by frequency counting as the ratio of
the number of times,N(q1σ2), the stateq1 from {s1} is fol-
lowed by the symbolσ2 from {s2} and the number of times,

N(q1), the stateq1 occurs. A stopping rule for state splitting
is constructed by specifying the threshold parameterηspl on
the rate of decrease of×D-Markov entropy rate.The final
estimated morph matrix̂Π12 can then used as representative
feature of causality from the first to second symbolic process.
This can then be used to perform various machine learning
operations like pattern matching, classification, regression,
clustering etc.

IV. RESULTS AND DISCUSSION

This section discusses the results that are exhibited when
the proposed framework is applied on the experimental
data for early detection of thermo-acoustic instability via
spatiotemporal fusion of hi-speed video and pressure data.
For learning the DBN from video data, a network with
three hidden layers of size 1000, 100 and 10 respectively
is chosen while keeping the volume of training data under
consideration. After scaling down by 4, the56 × 98 pixels
frame at the entry of the flame serves as the input vector
(1 × 5488 after flattening) which is fed into the DBN at
each time instant. Data from all four conditions at partial
premixing (X1 = 90mm) and two conditions at full premix-
ing (X1 = 90mm, FFR = 0.495g/s,Re = 7, 971; 15, 942)
containing54000 images in total are used for training the
DBN via stochastic gradient descent method as explained
in Subsection III-A. For both pre-training and supervised
finetuning, learning rate of 0.01 is used for the gradient
descent algorithm. This study mainly emphasizes on the last
hidden layer output after pretraining because previous work
by the authors [14] suggested that even pretrained hidden
layers capture significant amount of coherent structures in
the flame without supervised learning. Eventually, successful
modeling of flame coherent structure is important during
dimensionality reduction of images for constructing a scaler
measure that detects instability early.

Once the DBN is learned via layer-wise pretraining, test
video data containing three operating conditions at full pre-
mixing are fed into the network to obtain the last hidden layer
representation by feed-forward operation. The details of the
three conditions are as follows:(i) FFR = 0.66g/s, Re =
10, 628 at stable state,(ii) FFR = 0.083g/s, Re = 1, 771
at relatively stable state and(iii) FFR = 0.308g/s, Re =
10, 628 at thermo-acoustically unstable state. During the
testing phase, temporal sequence of high dimensional images
(i.e., 5488 pixels) generates multi-variate time series with
few hidden unit (= 10) activation probabilities at bottleneck
hidden layer of the DBN. Thus, fusion of large dimensional
hi-speed video and pressure time series is reduced to a
problem of fusing the DBN bottleneck layer time series and
pressure time series.

The STSA module constructs generalized D-Markov ma-
chine [21] from individual time series and models the cross-
dependence from one time series to another by constructing
×D-Markov machine.×D-Markov machines from bottle-
neck layer time series (for each hidden unit) to synchronized
pressure time series are obtained by the process explained
in Subsection III-B. The direction of×D-Markov machine
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Fig. 2: Variation of×D-Markov entropy rate directed from time-series of DBN hidden units (output of hi-speed video) to pressure time series asa function of number of state
splitting at a symbol size|Σ| = 3 for (a)stable combustion, (b) thermo-acoustically unstable combustion

construction is identified to be from hi-speed video bot-
tleneck layer to pressure data because pressure sensor is
located downstream of the imaging sensor according the
flow. The time series for both modalities are symbolized by
maximum entropy partitioning (MEP) [13] with an alphabet
size of |Σ| = 3. Figure 2 shows the drop of×D-Markov
entropy rates with increasing number of state splitting while
constructing the×D-Markov machines directed from bot-
tleneck layer hidden units to pressure time series. For stable
state,×D-Markov entropy rate doesn’t decrease significantly
to a definite knee point as the time series itself is highly
chaotic [7]. Based onηspl, a cross-PFSA model can be
selected in this scenario. Right half of Figure 2 shows that
×D-Markov entropy rate for 10th hidden unit to pressure
time series converges earliest among others after 12 splits
(i.e., 27 state×D-Markov machine). Based on this analysis,
the×D-Markov machine directed from 10th hidden unit to
pressure data can be chosen for further fusion operations.

When stable combustion becomes thermo-acoustically un-
stable, chaotic pressure time series becomes hi-amplitude
periodic tones and phase differences among spatially apart
sensors reduces drastically [18]. To capture this variation of
temporal complexity and spatial dynamics among combustor
sensors during the onset of instability,×D-Markov entropy
rate is proven to be a good candidate for constructing a sen-
sitive and robust measure [12]. As instability creeps in,×D-
Markov entropy rate reduces because temporal complexity
and phase difference deteriorate. Entropy rates are calculated
on every 0.3 seconds window with 0.2 overlap based on
the model learned via state splitting. There are 3 sec long
temporal data coming from each bottleneck hidden unit and
pressure time series for either of stable, relatively stable and
unstable states. Computational complexity of the proposed
approach is adequate to meet the requirement for com-
bustion instability control, which is10Hz response speed.
Figure 3(a) presents a boxplot exhibiting a premature drop of
pressure entropy rate along with a high variance over multi-
ple time windows. Thus, entropy rate based on only pressure
data may cause severe false alarm while detecting early onset
of instability. This observation motivates the requirement of
multi-modal fusion for this purpose. To compare with the
proposed approach, Principal Component Analysis (PCA), a

well-known dimensionality reduction technique is used as
a replacement of DBN module. Aggregate time series of
10 largest variance components of test images are extracted
based on PCA coefficients learned on same training images.
It is observed in the boxplot of Figure 3(b) that×D-Markov
entropy rate directed from video generated PCA-aggregate
time series to pressure time series is performing better than
pressure entropy rate. However, it still has a high variance
and low median at relatively stable state, which might cause
false alarm in online prediction. Figures 3(c), (d) show the
boxplots of×D-Markov entropy rate directed to pressure
time series from hi-speed video bottleneck layer 5th hidden
unit and 10th hidden unit respectively. It is observed that
the variance over time window is lower (especially for 10th
hidden unit) compared to top half of the figure, making this
measure more robust for real-time instability control. Overall,
the negative slope of entropy rate drop for ’DBN+STSA’
is higher than that of pressure or ’PCA+STSA’ approaches.
These observations denote that the×D-Markov rate obtained
via proposed ’DBN+STSA’ fusion approach is a sensitive
and robust measure for early detection instability.

V. CONCLUSIONS ANDFUTURE WORK

Combustion instability is undesirable and needs to be
detected as early as possible for decision & control of gas
turbine engines. This paper presents a dynamic data-driven
approach for early detection of precursors to the instability
phenomena using multimodal sensors and a combination of
neural network and symbolic dynamic tools. Hi-speed images
are first analyzed through deep belief networks (DBN) and
then low-dimensional features are extracted in an unsuper-
vised fashion. The temporal features obtained from the hi-
speed images are combined with pressure time-series data by
creating a variable-memory×D-Markov model. The cross-
entropy obtained from the×D-Markov models of image with
pressure data is used as the anomaly measure for detecting
departure from stable operation in the combustion process.
The proposed sensor-fusion approach has been validated on
experimental data obtained from a laboratory-scale swirl-
stabilized combustor apparatus. Usage of the sensor fusion
algorithm for calibration of low-fidelity sensors by hi-fidelity
sensors like video is recommended as a future work.
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Fig. 3: Entropy rate as an instability measure at stable, relatively stable and unstable states for (a) D-Markov machineon pressure time series, (b)×D-Markov machine directed
from hi-speed video dominant-PCA-feature-aggregate timeseries to pressure time series, (c)×D-Markov machine directed from hi-speed video bottleneck layer 5th hidden unit
to pressure time series and (d) 10th hidden unit to pressure time series
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