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Abstract— Detection and prediction of combustion instabili- drawn a lot of attention in the research community, which
ties are of interest to the gas turbine engine community with has resulted in a broad spectrum of activities ranging from
many practical applications. This paper presents a dynamic o4e|-pased to data-driven analyses. Several reduces-ord
data-driven approach to accurately detect precursors to tle . .
combustion instability phenomena. In particular, grey-sale modeling-based appr.oaches are pre_sented in [7], [8]. MOSPO
images of combustion flames have been used in combina- these works emphasize understanding of the system syabilit
tion with pressure time-series data for information fusion by means of solving the dispersion relation. More receatly,
to detect and predict flame instabilities in the combustion swirl combustor has been characterized and a wide range of
process. These grey-scale images are analyzed using deepebe oy ariments relating swirl flows. The presence of precegssin
network (DBN). The cross-dependencies between the featwe .
extracted by the DBN and the symbolic sequences generated vortex core (PVC) as the dlomlna.nt cohgrent structure has
from pressure time-series are then ana|yzed using D-Markov been reported, Where non“near Interactions betWeen heat
(pronounced cross D-Markov) models that are constructed by release rate oscillations and PVC as the cause of super-
a combination of state-splitting and cross-entropy rate; his  posed frequencies in time series data has been pointed
leads to the development of a variable-memory cross-model i 9], Much of the literature is dedicated to detection

i f the underlying physical process. The .
eclrsosas_r;%rgggn;artéor:hzn used for ydegt;erc)tign anclio prediction of and correlation of these coherent structures to heat eleas

combustion instability phenomena. The proposed concept is rate and unsteady pressure oscillations. Popular metioods f
validated on experimental data collected from a laboratory  detection of coherent structures include proper orthogona

scale swirl-stabilized combustor apparatus, where the irtability decomposition (POD) [10] and dynamic mode decompo-
phenomena are induced by typical protocols leading to unstde  gjtion (DMD) [11], which use tools of spectral theory to
flames. derive spatial coherent structure modes. Specifically, DMD
has been used to estimate the growth rates and frequencies
from experimental data and also for stability analysis @ th
Strict emission regulation has initiated a paradigm shiféxperimental data. More recently, a deep-learning [12] and
in the nominal operating conditions of gas turbine ensymbolic time series analysis (STSA) [13]-based approach
gines. Consequently, the technology of gas turbine enginbaas been presented in [14] for early detection of combustion
has gradually adapted to low equivalence ratio combunstabilities. Recently, detection of lean blowout in carsb
tion to suppress emissions of nitrogen oxides (NOXx), intors have also been reported in [15], [16].
stead of combustion at near-stoichiometric conditiontradl  This paper presents a sensor-fusion-based approach for
lean premixed and pre-vaporized combustors, while beirgarly detection of instability phenomena in combustors.-Se
environment-friendly, is susceptible to combustion ib#ta  sors of different modalities (e.g., hi-speed grey-scaleges
ties that are typically characterized by pressure wavels wiand pressure time-series data) have been used to observe
sharp tones and high amplitudes. The complexity of suaihe same physical process that can capture the expected
an instability problem accrues from the mutual interaceutcome of one modality based on the state of the other
tions among the unsteady heat release rate, flow fields anthdality. To develop cross-models for multimodal sensor
acoustics, which outline the general features of combufusion, first a deep belief network (DBN) [17] is used to
tion instability [1], [2], [3]. Combustion instabilitiesdve process the hi-speed grey-scale images for dimensionality
many detrimental effects on flight-propulsion dynamics angeduction and automatically learning the features from the
structural integrity of gas turbine engines. In this papegombustion images. Then, the cross-models of the features
we propose a data-driven approach to detect precursorsftom images and pressure time-series data are represented
instability of the combustion process using sequential has a x D-Markov machine [4], [5], [6] that is capable of
speed images and pressure time-series. These two typepturing the behavior of a symbolic process conditioned
of data are pre-processed and then combined together ars another symbolic process. Thesé)-Markov machine
a Probabilistic Finite State Automaton (PFSA) within themodels are then used to detect and predict combustion insta-
framework of x D-Markov machines [4], [5], [6]. bilities. The proposed approach offers the benefit that data
The complexity of combustion instability phenomena hagrom two different sensor modalities can be used to arrive

I. INTRODUCTION



mushroom-shaped vortex ait= 0,0.001s and the shedding
n n n _ m of that towards downstream from= 0.002s to ¢ = 0.004s.

Fig. 1: Visible coherent structure in greyscale imageskat = 15,942 and full "

premixing for a fuel flow rate of 0.495 g/s . | NFORMATION FUSION FRAMEWORK AND TOOLS

This section delineates the proposed framework for early

- . detection of combustion instability via fusing multi-madda
at more robust and accurate prediction of the underlyin

hvsical d its eff has b lidated Yata arriving from hi-speed camera and pressure transducer
physical process, and Its eflicacy has been validated Ustijgy 5o spatially apart. In the framework of analysis a€ldpt

experimental data of combustiqn "0’.“ a Iab_oratory—scalﬁl this paper, a deep belief network (DBN) is followed by a
SW':' cpmbustor a(ljpparatus [15_3]‘ n pa_rtlc%llatr, hrll—spe%elygr sg/r(qbolic time series analysis (STSA) module. During train-
Scale Images and pressure ime-series data have been y % hi-speed images from both stable and unstable states fo

{Ol; dettect|on alnd pfeld'c“og‘ OI combustlfn 'nlséab_;_l't'?ﬁzb various operating conditions are used as the visible 1&yer
aboratory-scale swirl combustor apparatus [18]. To €of a DBN. Multiple hidden layers (i.eh; to h,,) with reduc-

of authors’ knowInge, SUCh. a ;ymbohp causal modellnqh dimensions [19] are cascaded after the visible layer.Th
based approach of images with time-series data has not bqﬁ ghts (i.e., WV, to W,), connecting adjacent layers, are

proposed before in open literature. learned first via greedy layer-wise pretraining [20]. The
Il. EXPERIMENTAL DESCRIPTION weights can be fine-tuned in a supervised manner. However,

The experimental apparatus is a laboratory-scale combl.}lsj-IS paper concentrates more on unsupervised pre-trafiing

tor with a swirler of diameter 30 mm with 60 degree Vanecapturlng the therem structl_Jres n f'a”_“e Images at u!e_stabl
tate. Multi-variate time series of activation probalskt

angles (i.e., geometric swirl number of 1.28). Air is fed® . ) .
into the combustor through a settling chamber of diamet Imanan.ng from thg h|dd§n units of the bottleneck_ (last
280 mm with a sudden contraction leading to a squa yer) hidden layer is fed into the STSA module as input.

cross section of side 60 mm, providing an acoustically ope ynchronized pressure time series is also directed to STSA
condition with area ratio of 17. A mesh and honeycomlSnOSqI%i\fcl)r sensgrl\f/lu3||i)n. hi . bolizati d
structure at the immediate downstream of the contraction earns D-Markov machines via symbolization an

assures uniform flow to the swirler. The combustorconsis obabilistic finite state automata (PFSA) [13] generation

of a 200 mm long inlet section, an inlet optical access modu gom pressure da’Fa and |n_d|V|duaI time series arsing from
BN bottleneck hidden units. It also models variable depth

(IOAM) of length 100 mm, a primary combustion chambe D-Mark hi hich h d d
of length 370 mm, and secondary duct of the same lengtf.” " arkov machines which captures the cross-dependences

The overall length of the constant area ducts was chosen38'°"9 DBN _hidden layer temporal output and pressure

be 1340 mm. The fuel injection tube is coaxial to a mixin IME Series. This Paper proposes to e_pr0|t bhl@-Markc_)v
tube which has the same diameter as that of the swirler. Tt achine consiruction for early detection of thermo-adoust

byvpass air that does not enter the mixing tube passes thro ﬁtability via spatiotemporal fusion. While the DBN ef-
yb ! bing tbe p ciently reduces the dimension of the hi-speed video by

slots on the swirl plate. The slots on the fuel injection tub . . -
are drilled at designated distance upstream of the Swirlﬁ’reservmg the semantic feature (continuing presence of co

which dictates the extent of premixing between fuel an erent structures [14] in hidden layer visualization), 8TS

air. The larger this distance, more homogeneous the aIir-fu'@Odels temporal (_avolution of that feature via constructing
mixture is. Two upstream distances @mm and 120mm xD-_Markqv machine that considers heterogeneous sensors
were chosen for fuel injections during the experiments,rvs'/heSpat"”.‘IIy d|§|ocate_d. Elements of the proposed tool cheen a
the former of the two denotes partial premixing and the IateerXplalned in detail later in the sequel.
provides full premixing. The hi-speed images were collécte
through IOAM at 3 kHz using Photron High speed star witHA'
a spatial resolution ofl024 x 1024 pixels. Synchronized  Deep Belief Networks (DBN) is a type of deep neural
pressure data was acquired using piezoelectric transslucaetworks consisting of multiple hidden layers of latent
(PCB make) with resolution 225 mV/ kPa at a locatiorvariables. They are constructed by stacking multiple layer
downstream of the IOAM. The data acquisition was triggeredf Restricted Boltzmann Machines (RBM) on top of each
simultaneously using NI card and taken for a duratio3©f other, which are generative probabilistic graphical msdel
yielding in a sequence of 9,000 images for every operatingith the capability to learn a probability distribution awvtbe
condition. More details of the combustor and the performeihputs to best explain the observed data. Individual RBMs
experiments can be found in [14]. are composed of visible units (the inputs) and hidden units
Figure 1 presents sequences of images of dimers§idixr ~ that are interconnected but not among the same type of units.
1000 pixels for unstable Re = 15,942, FFR = 0.495¢g/s  Due to the connections to latent variables, a single layer of
and full premixing) state. The flame inlet is on the right siddRBM is powerful enough to represent complex distributions.
of each image and the flame flows downstream to the leffthe nonlinear modeling capacity is further increased when
As the combustion is unstable, coherent structure formationultiple hidden layers are stacked on top of each other, with
along the flow is observed. Figure 1 shows formation ofhe outputs of one becoming the input of another.

Deep Belief Network



Multi-layered deep neural networks are notoriously difB. Cross-Modeling of Symbolic Processes for Sensor Fusion
ficult to train as the parameter optimization process can |, this section, first we very briefly introduce some basic
often get caught in poor local minima due to the larg@oncepts of symbolic time series analysis followed by the
number of parameters in the model. However, it has beepp)_\arkov modeling framework for inferring the causal-
discovered that DBNs can be trained in an unsupervisgdoss dependence between two observed symbol sequences
manner to help initializing better weights as opposed tQhich we use for fusion. Interested readers are referreglto [
using randomized weights, therefore leading to a superi?j:g] for detailed discussion.
generalization performance. . Symbolic time-series analysis (STSA) is a non-linear

Pretraining is performed in a greedy layer-wise mannefechnique for modeling temporal patterns in sequential.dat
The weights and biases of the first RBM stack is updategymnolic analysis of time-series data for precise modeding

iteratively based on an unsupervised training criteriofie’ e ynderlying dynamics needs two challenges to be satisfied
a user-defined stopping condition (e.g. maximum number %fmultaneously.

iterations), the parameters from this layer is fixed and the
outputs of the layer (a new representation for the raw input)
becomes the input of another layer for pretraining in a simil o S
fashion. Essentially, the objective is to find the hiddent uni 2) Depth EstimationThe task of estimating the temporal

features that are more common in the training inputs than in memory of the system. .
the random inputs, such that the pretrained weights may heffj’ce the data has been symbolized and the depth for the

to guide the parameters of that later towards better regiog¥MP0! sequence been estimated, the symbol stream can be
in the parameter space. compressed into generative models as Probabilistic Finite

Consider a single RBM stack with hidden unts The State Automata (PFSA). Next we present some relevant
probability of observing a sampleis definitions to present things more clearly.

1) Symbolization The process of projecting continuous
time-series data onto a symbolic domain.

Pr(v) = ﬁ_F(V) Definition 11l.1  (D-Markov [13]) A D-Markov machine
[e FW is a statistically stationary stochastic proces§ =
where -+-5_180s1--- (modeled by a PFSA in which each state
F(v) = _1ngefE(v,h) is represented by a finite history @ symbols), where the
- probability of occurrence of a new symbol depends only on
and the lastD symbols, i.e.,
E(v,h) = —bTv—c’h—hw'v Plsp | Sn-pD " 8Sn-1] = P[sn | $Sn—p - $n-1] (1)

Pretraining seeks to find the set of paramef&is b, €} (i.e., where, D is called the depth of the Markov machine.
layer weights, visible unit biases and the hidden unit lsase

respectively) that maximizes the expected log-likelih@éd Definition 111.2 (Entropy Rate [6]) The entropy rate of a
the training datav. Thus, the optimization problem can bePFSA (3, Q, 6, ) is defined in terms of the conditional

formally represented as: entropy as follows.
VOB el H(Z|Q) £ ) P(a)H(Slq)
{W,b, ¢} = argw%iE Zlog Pr(v)] =
veVv
and the problem is typically solved via stochastic gradient - Z Z P(q)P(alq)log P(olg)  (2)
qeEQ oeX

descent. In addition, each newly pretrained layer guaeante
an increase on the lower-bound of the log-likelihood of thevhere P(q) is the probability of a PFSA state € Q.
data, hence improving the model. _ o

The whole pretrained network is finetuned using an error N X D-Markov machines, the Markov assumption is made
backpropagation algorithm. For a classification problére, t ©" the expected outcome of a symbohc process conditioned
class labels are compared against the neural net outpud ba@n the states of another symbolic process (instead of states
on an input vector via an error metric that becomes the coSf the same symbolic process). nD-Markov machines, we

function of the algorithm. Specifically, the loss functibo ~ @Ssume that a symbol block of (finite) lengthis sufficient
be minimized for a datasaf, parametrized by is: to describe the current state for the PFSA constructed from

the symbol strean{s; }. In other words, the symbols that
Vi @D10) occur prior to the lasD symbols do not affect the subsequent
(0 ={W,b,c},V) = -3 [IOg (Pr(Y =y, Wb, C))} symbols observed in symbol stregis }. We define ax D-
=0 Markov machine next.
wherey (") denotes the class index. All weights and biases
in the network are then optimized by the algorithm taDefinition 111.3 ( x D-Markov) Let K; and K5 be the PF-
produce a fully trained model that is capable of making clasSAs corresponding to symbol streafiss} and{s;}, respec-
predictions based on a certain input. tively. Then, anx D-Markov machine (fron{s, } to {s;}) is



defined as a 5-tupleM; ., £ (Q1,%;,%,61,1015) such  N(q), the state;; occurs. A stopping rule for state splitting
that: is constructed by specifying the threshold paramgggr on
1) Q1 ={q1.42,-..,q0,} is the state set correspondingthe_ rate of decrease .ojD—Markov entropy rate.The fina]
to symbol sequencgs; } estimated morph matrikl;> can then used as representative
2) ¥ = {0}, ___70‘121‘71} is the alphabet set of symbol feature of causality from the first to second symbolic preces
sequencegs; } This can thgn be used to perfprm vario_u§ machinellearning
3) ¥y = {02, .“70‘222‘_1} is the alphabet set of symbol Operations like pattern matching, classification, redoess
sequences; } clustering etc.
4) 4, : Q1 x X1 — Q; is the state transition mapping for

My
5) TI,5 is the cross morph matrix of siz&;| x |Z; This section discusses the results that are exhibited when

the ijt" element (m12(q;,02)) of Il denotes the the proposed framework is applied on the experimental

probability of finding the symbob? in the symbol data for early detection of thermo-acoustic instabilitya vi
string {s;} at next time step while rjnaking a transition SPatiotemporal fusion of hi-speed video and pressure data.

from the stateg; of the PFSA constructed from the For learning the DBN from video data, a network with
symbol sequences; }. three hidden layers of size 1000, 100 and 10 respectively

is chosen while keeping the volume of training data under
Analogous to entropy-rate of a PFSA, we define a crosgonsideration. After scaling down by 4, ti36 x 98 pixels
entropy rate for acrossedPFSA which we will use as a frame at the entry of the flame serves as the input vector
metric for constructing the states of the cross-PFSA mod¢l x 5488 after flattening) which is fed into the DBN at
for two observed symbolic processes. each time instant. Data from all four conditions at partial
premixing (X1 = 90mm) and two conditions at full premix-
Definition 1ll.4 (xD-Markov Entropy Rate [6]) ThexD- ing (X; = 90mm, FFR = 0.495g/s, Re = 7,971; 15, 942)
Markov entropy rate from a PFSAX;,@1,0:,m) to a containing54000 images in total are used for training the
symbol stream (say;s;} with alphabet set,) is defined DBN via stochastic gradient descent method as explained
as: in Subsection IlI-A. For both pre-training and supervised
A finetuning, learning rate of 0.01 is used for the gradient
H(%2|Q1) = Z P(g)H (X2lq1) descent algorithm. This study mainly emphasizes on the last
ne hidden layer output after pretraining because previoukwor
=— > > Plq)P(otlm)log P(c?|q1) by the authors [14] suggested that even pretrained hidden
N1€Q1 07D, layers capture significant amount of coherent structures in
(3)  the flame without supervised learning. Eventually, sudoéss

where P(q;) is the probability of a PFSA statg € Q; modeling of flame coherent structure is important during
and P(o2|q, ) is the conditional probability of a symbef & dimensionality reduction of images for constructing a scal

3, given that a PFSA state; € Q, is observed. measure that detects instability early.
Once the DBN is learned via layer-wise pretraining, test

The number of states of a D-Markov machine of depttD  video data containing three operating conditions at fud-pr

is bounded above by, |7, where|¥ | is the cardinality of mixing are fed into the network to obtain the last hidden taye
the alphabek;. However, from the perspective of modelingrepresentation by feed-forward operation. The detailhef t
the cross-dependance frofs; } to {s;}, some states may three conditions are as followsi) FFFFR = 0.66g/s, Re =

be more important than others in terms of their embeddeld), 628 at stable state(ii;) FFR = 0.083¢g/s, Re = 1,771
causal information contents. Thus it might be redundant tat relatively stable state andii) FFR = 0.308¢g/s, Re =

keep all states of different depths in the cross-PFSA moddl0, 628 at thermo-acoustically unstable state. During the
Instead it might be advantageous to keep a set of stateEsting phase, temporal sequence of high dimensional isnage
that correspond to symbol blocks of different lengths i.e(j.e., 5488 pixels) generates multi-variate time seriethwi
make a system where different states have different memdigw hidden unit (= 10) activation probabilities at bottleke

or depth D. This is accomplished by starting off with the hidden layer of the DBN. Thus, fusion of large dimensional
simplest set of states (i.eQ; = X; for D = 1) and hi-speed video and pressure time series is reduced to a
subsequently splitting the current state that results @ thproblem of fusing the DBN bottleneck layer time series and
largest decrease of theD-Markov entropy rateff (33]@Q1)  pressure time series.

(see Eg. (3)). Thus we can restrict the exponential growth The STSA module constructs generalized D-Markov ma-
of states with increasing depfh without compromising the chine [21] from individual time series and models the cross-
details of symbolic dynamics. At each step of state sptjitin dependence from one time series to another by constructing
each elementri3(o2, ¢1) of the cross morph matrixl;» is  xD-Markov machine.x D-Markov machines from bottle-
estimated numerically by frequency counting as the ratio afeck layer time series (for each hidden unit) to synchrahize
the number of timesN (¢102), the statey; from {s,} is fol-  pressure time series are obtained by the process explained
lowed by the symbok, from {s,} and the number of times, in Subsection IlI-B. The direction ok D-Markov machine

IV. RESULTS ANDDISCUSSION
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Fig. 2: Variation of x D-Markov entropy rate directed from time-series of DBN hiddenits (output of hi-speed video) to pressure time series famiction of number of state
splitting at a symbol siz¢>| = 3 for (a)stable combustion, (b) thermo-acoustically uristaiombustion

construction is identified to be from hi-speed video botwell-known dimensionality reduction technique is used as
tleneck layer to pressure data because pressure sensoa ieeplacement of DBN module. Aggregate time series of
located downstream of the imaging sensor according tHe largest variance components of test images are extracted
flow. The time series for both modalities are symbolized byased on PCA coefficients learned on same training images.
maximum entropy partitioning (MEP) [13] with an alphabetlt is observed in the boxplot of Figure 3(b) that)-Markov
size of |X| = 3. Figure 2 shows the drop ot D-Markov entropy rate directed from video generated PCA-aggregate
entropy rates with increasing number of state splittinglevhi time series to pressure time series is performing better tha
constructing thex D-Markov machines directed from bot- pressure entropy rate. However, it still has a high variance
tleneck layer hidden units to pressure time series. Fotestaland low median at relatively stable state, which might cause
state,x D-Markov entropy rate doesn’t decrease significantlyalse alarm in online prediction. Figures 3(c), (d) show the
to a definite knee point as the time series itself is highlpoxplots of x D-Markov entropy rate directed to pressure
chaotic [7]. Based om),;, a cross-PFSA model can betime series from hi-speed video bottleneck layer 5th hidden
selected in this scenario. Right half of Figure 2 shows thatnit and 10th hidden unit respectively. It is observed that
x D-Markov entropy rate for 10th hidden unit to pressurdghe variance over time window is lower (especially for 10th
time series converges earliest among others after 12 splitlden unit) compared to top half of the figure, making this
(i.e., 27 statex D-Markov machine). Based on this analysismeasure more robust for real-time instability control. 2lle
the x D-Markov machine directed from 10th hidden unit tothe negative slope of entropy rate drop for 'DBN+STSA
pressure data can be chosen for further fusion operationsis higher than that of pressure or 'PCA+STSA' approaches.
When stable combustion becomes thermo-acoustically ufthese observations denote that th®-Markov rate obtained
stable, chaotic pressure time series becomes hi-amplitud@ proposed 'DBN+STSA' fusion approach is a sensitive
periodic tones and phase differences among spatially apand robust measure for early detection instability.
sensors reduces drastically [18]. To capture this variatid
temporal complexity and spatial dynamics among combustor
sensors during the onset of instability,D-Markov entropy Combustion instability is undesirable and needs to be
rate is proven to be a good candidate for constructing a setietected as early as possible for decision & control of gas
sitive and robust measure [12]. As instability creeps«i)-  turbine engines. This paper presents a dynamic data-driven
Markov entropy rate reduces because temporal complexi@pproach for early detection of precursors to the instgbili
and phase difference deteriorate. Entropy rates are eadcll phenomena using multimodal sensors and a combination of
on every 0.3 seconds window with 0.2 overlap based omeural network and symbolic dynamic tools. Hi-speed images
the model learned via state splitting. There are 3 sec loraye first analyzed through deep belief networks (DBN) and
temporal data coming from each bottleneck hidden unit arttien low-dimensional features are extracted in an unsuper-
pressure time series for either of stable, relatively stanld vised fashion. The temporal features obtained from the hi-
unstable states. Computational complexity of the proposeppeed images are combined with pressure time-series data by
approach is adequate to meet the requirement for cororeating a variable-memory D-Markov model. The cross-
bustion instability control, which i90H > response speed. entropy obtained from the D-Markov models of image with
Figure 3(a) presents a boxplot exhibiting a premature dfop pressure data is used as the anomaly measure for detecting
pressure entropy rate along with a high variance over multgeparture from stable operation in the combustion process.
ple time windows. Thus, entropy rate based on only pressufd@e proposed sensor-fusion approach has been validated on
data may cause severe false alarm while detecting early onsgperimental data obtained from a laboratory-scale swirl-
of instability. This observation motivates the requiretneh stabilized combustor apparatus. Usage of the sensor fusion
multi-modal fusion for this purpose. To compare with thealgorithm for calibration of low-fidelity sensors by hi-filitg
proposed approach, Principal Component Analysis (PCA),sensors like video is recommended as a future work.

V. CONCLUSIONS ANDFUTURE WORK
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