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ABSTRACT 

Persistent monitoring of Indoor Air Quality (IAQ) within and around buildings and structures is critical to reduce risk of indoor health concerns. 
Specifically, IAQ issues in large integrated buildings may stem from inadequate ventilation and/or faults in the complex HVAC systems that together 
with control and communication systems can be considered as complex Cyber Physical Systems (CPSs). We propose a data-driven framework for 
monitoring distributed complex CPSs that reliably captures cyber and physical sub-system behaviors as well as their interaction characteristics. Using such 
learning methods, we aim to identify the anomalies and faults at an early stage such that necessary mitigation measures can be pursued in time. A fault in 
the HVAC system may be due to both physical and cyber anomalies affecting the operational goals of the building system. The proposed technique 
involves modeling of cyber and physical entities using probabilistic graphical models that capture individual characteristics of the sub-system and causal 
dependencies among different sub-systems. The proposed model can be trained using nominal historical data and then can be used to monitor the HVAC 
system and IAQ during regular operation. We validate our method with a case study on an integrated “zero-energy” (low energy/high performance) 
building, the Interlock House experimental test bed that is developed and maintained by the Center for Building Energy Research (CBER) at Iowa 
State. 

I. INTRODUCTION 

As humans have progressed into the 21st century, there has been a growing trend in people’s daily lives to spend 
more time inside their homes and office spaces rather than being out and about. According to the national human 
activity pattern survey, Americans spent 87% of their time indoors and 6% in vehicles on average (Klepeis et al., 
2001). As such, to help improve the quality of air within closed spaces has always been a subject of extensive studies 
and research since the late 20th century and have continued to this day into the early 21st. Indoor air quality, as the 
term suggests refers to the quality of air indoors or inside closed spaces. HVAC systems are now employed almost in 
every building, be it residential/industrial or commercial to maintain the quality of air inside closed spaces. In highrise 
buildings where such quality control is of utmost importance to maintain proper and healthy environment for the 
large amount of occupants staying inside. Maintaining IAQ involves maintaining the indoor SPM (suspended 



particulate matter) levels, detecting unwanted and foreign substances present in the air that may cause health concerns 
serious or otherwise and also maintaining a comfort zone for the inhabitants, which includes maintaining the proper 
ambient temperature and humidity levels inside the occupied space. Pollutants and potentially harmful substances that 
may be present in air include tobacco smoke (allowed in certain few public places like casinos), CO, NO2 and many 
volatile organic compounds (VOCs), to name a few other than SPM. 

Sometimes, these HVAC systems that maintain IAQ in occupied spaces may malfunction or may deliberately be 
tampered with. In such cases there arises a risk of potential hazard for the inhabitants. Data driven modeling can 
potentially alleviate these issues (Choi et al., 2011). In order to promptly detect such cases and alleviate the risks that 
such events carry by taking prompt action, we propose a method of anomaly detection. In this data-driven framework 
for such a system-wide anomaly detection, we use symbolic dynamics (Rao et al., 2009) to develop a spatiotemporal 
feature extraction scheme for seeking out and representing causal interactions between the different measurements. 
Symbolic Dynamic Filtering (SDF) describes different types of data with a uniform symbolic representation that 
involves pre-processing and data space partitioning for relevant variables (which for our case study are sensor time-
series data). Features captured by SDF are used in formation of spatiotemporal pattern network (STPN), a causal 
graphical modeling concept peoposed only recently (Sarkar et al., 2014) (Jiang et al., 2015). The causal modeling is 
followed by unsupervised learning of various system-level nominal patterns (Fiore et al., 2013). On learning said 
models, inference schemes for detection of low-probability events i.e. anomalies are developed (Liu et al., 2016). 

In this study, for anomaly detection purposes and considering health concerns of the inhabitants, we consider 
the case of excess CO2 generation and build up inside the experimental test space only. Experiments are carried out 
where we recreate a scenario where our algorithm detects the condition inside the closed space as anomalous when 
CO2 concentrations exceed the safe level characterized by nominal historical data. This can be seamlessly extended to 
any other air pollutants (viz. CO or NO2 and/or contaminants) if situations demand that. Apart from CO2 levels, the 
algorithm also takes into account humidity and temperature levels inside the test space and generates a metric that can 
characterize the conditions to be anomalous based on the inputs from all three sensor modalities. 

 

II. BACKGROUND AND PRELIMINARIES 

A. Spatiotemporal pattern network (STPN) 

 
It has been recently shown that symbolic dynamic filtering (SDF) can be extremely effective for extracting 

key textures from timeseries data for anomaly detection and pattern classification (Rao et al., 2009). The core idea is 
that a symbol sequence (i.e., discretized time-series) emanated from a process can be approximated as a Markov chain 
of order D (also called depth), named as D-Markov machine (Sarkar et al., 2014) that captures key behavior of the 
underlying process.  

The discretization or symbolization process is called partitioning. Let  denote a set of partitioning functions,  
, that transforms a general dynamic system (time series X(t)) into a symbol sequence S with an alphabet 

set . There are various approaches proposed in the literature, depending on different objective functions, such as 
uniform partitioning (UP), maximum entropy partitioning (MEP), maximally bijective discretization (MBD) (Sarkar et 
al., 2013) and statistically similar discretization (SSD) (Sarkar et al., 2016). This study uses simple uniform partitioning. 

The D-Markov machine is essentially a probabilistic finite state automaton (PFSA) that can be described by 
states (representing various parts of the data space) and probabilistic transitions among them that can be learnt from 
data. Related definitions of deterministic finite state automaton (DFSA), PFSA, D-Markov machine, xD-Markov 
machine and the learning schemes can be found in (Sarkar et al., 2014).  

With this setup, a spatiotemporal pattern network (STPN) is defined below: 
Definition. A PFSA based STPN is a 4-tuple : (a, b denotes nodes of the STPN) 

(1)  is the state set corresponding to symbol sequences S a; 
(2)  is the alphabet set of symbol sequence S b; 

(3)  is the symbol generation matrix of size , the  element of  denotes the 

probability of finding the symbol in the symbol string sb while making a transition from the state qi in the 



symbol sequence Sa; while self-symbol generation matrices are called atomic patterns (APs) i.e., when a = b, 
crosssymbol generation matrices are called relational patterns (RPs) i.e., when . 

(4) Лab denotes a metric that can represent the importance of the learnt pattern (or degree of 

causality) for  which is a function of . 
Further details and descriptions on STPN can be found in (Liu et al., 2016).  
 

B. Restricted Boltzmann Machine (RBM) – boosting and system-wide learning approach 

RBM has grabbed a lot of recent attention in the Deep Learning community (Hinton et al., 2006), (Roux et 
al., 2008) for unsupervised feature extraction. The basic structure of RBM is shown in an unsupervised learning layer 
in Figure 1. As an energy based model (Hinton et al., 2006), weights and biases are learnt so that the feature 
configurations observed during nominal operation of the system gets low energy (or high probability). Consider a 

system state that is described by a set of visible variables v = (v1, v2, . . ., vD) and a set of hidden (latent) variables h = 
(h1, h2, . . ., hF). The variables can be binary or realvalued depending on the need. Now, each joint configuration of 

these variables determines a particular state of the system and an energy value E (v, h) is associated with it. The 
energy values are functions of the weights of the links between the variables (for RBM, internal links within the visible 
variables and the hidden variables are not considered) and bias terms related to the variables.  

With this setup, the probability of a state P (v, h) depends only on the energy of the configuration (v, h) and 
follows the Boltzmann distribution, 

 

                                                                                               (1)             
 

Typically, during training, weights and biases are obtained via maximizing likelihood of the training data. 
Considering the weak learner with STPN in interpretation of causality in distributed complex systems, RBM 

is applied as a boosting approach to form a strong method in learning characteristics in abundant STPNs. Also, RBM is 
applied in this work with the purpose of capturing multiple operating modes in distributed complex systems. 

   

III. PROPOSED METHODOLOGY 

A. Proposed Framework 

 
      The proposed data-driven framework for system-wide anomaly detection is shown in Figure 1. The general idea is 
to form an unsupervised spatiotemporal graphical modelling approach that can recognize the system-wide anomalous 
patterns in distributed complex systems and detect anomaly only with nominal data. 
      As cycles are included in STPNs, causality reasoning is more difficult. Therefore, the discovered graphs in STPN, 
in representation of continuous time series and discrete event logs, are treated as weak learners. Then, RBM is applied 
as a boosting approach to learn multiple graphs (discovered by STPN with an online approach) for a more accurate 
strong learner. Moreover, multiple nominal operating modes are typically present in distributed complex systems, and as 
such, characteristics of graphical models in these modes (represented by different STPNs) can be effectively captured 
by RBM. With unsupervised learning, the trained RBM is used to detect anomaly via identifying a low probability 
event (in representation of free energy), based on the assumption that the anomaly influences the causality and 
induces different patterns in STPN. The process of discovering graphs with STPN, representing nominal conditions 
with RBM, and detecting anomaly via unsupervised learning is noted as STPN+RBM model. The steps of learning the 
STPN+RBM model are: 

(1) Learn APs and RPs (individual node behaviors and pairwise interaction behaviors) from the multivariate 
training symbol sequences, 

(2) Consider short symbol subsequences from the training sequences and evaluate Лij ∀ i, j for each short 
subsequence, 



(3) For one subsequence, based on a user-defined threshold on Лij, assign state 0 or 1 for each AP and RP; 
thus every subsequence leads to a binary vector of length L, where L = #AP + #RP, 

(4) An RBM is used for modeling system-wide behaviour with nodes in the visible layer corresponding to APs 
and RPs, 

(5) The RBM is trained using binary vectors generated from training subsequences, 
(6) Online anomaly detection is implemented via the anomaly metric obtained with the trained RBM. 
 

 

 

Figure 1 Methodology: A data driven framework for anomaly detection. 

B. Metric for anomaly detection 

       In order to train the system-wide RBM, the causal metrics (Лab) can be further normalized and converted to 
binary states (0 for low values and 1 for high values) for APs and RPs. Note, from each subsequence, all the APs and 
RPs together form a binary vector of length L = f 2 (L = #AP + #RP, where #AP = f, #RP = f × (f − 1)). One such 
binary vector is treated as one training example for the system-wide RBM (with f 2 number of visible units) and many 
such examples are generated from different short subsequences extracted from the overall training sequence. Then a 
maximum likelihood method is used to train the RBM (Liu et al., 2016). Although in this paper we convert the Лi,j 
metrics to binary values for the ease of RBM training, it is not mandatory for this training process. During training, 
weights and biases are obtained such that the training data has low energy. Therefore, during testing, an anomalous 
pattern should manifest itself as a low probability (high energy) configuration which can be used for anomaly 
detection. The energy function for an RBM is defined as: 
 

                                                                                                            (2) 

 
where W are the weights of the hidden units, b and c are the biases of the visible units and hidden units respectively. 
       With the weights and biases of RBM, free energy can be obtained which is the energy that a single visible layer 
pattern would need to have in order to have the same probability as all of the configurations that contain v: 
 

                                                                                                                                     (3) 

 



Another expression for free energy estimation is: 
 

                                                                                      (4) 

 
       By applying the concept of free energy of RBM, the STPN+RBM model is an energy based probabilistic graphical 
model. This is the basic idea of applying STPN+RBM model for anomaly detection.  
       The anomaly metric is defined based on the free energy of the system; the higher is the free energy, higher is the 
probability of anomaly. 
       Anomaly Detection Process: With the defined free energy, a baseline is defined such that 95% of the nominal 
data have their free energy lower than the baseline.  
       The baseline is applied as the anomaly detection threshold in this work. In the case that free energy detected is 
higher than the threshold, the condition will be detected and labeled as an anomaly. 
 

IV. EXPERIMENTAL SETUP, RESULTS AND DISCUSSIONS 

A. EXPERIMENT DESCRIPTION 

A 70m2 NSF community lab called Interlock House is chosen to carry out the experiments. The Interlock House 
was built for the 2009 DoE Solar Decathlon and has been monitored for more than 4 years with the aid of about 120 
sensors installed permanently. A data driven HVAC system control is fed by real time measurements. In the following 
experiments, temporarily mounted sensors are deployed to validate the algorithm which will be used to improve 
HVAC system control in the future. A schematic for the Interlock House (top view) with the temporary sensors in 
place is shown in Figure 2(a). 

To obtain data for nominal and anomalous conditions, CO2 sensors were temporarily placed strategically at three 
locations inside the living space of the Interlock house as shown in Figure 2(a) and Figure 2(b). Sensors chosen for 
gathering both nominal and anomaly data are CM-0210 CO2, Relative Humidity, Temperature dataloggers 
manufactured by CO2Meter.com. Meter specifications for the dataloggers are given as follows: It is a non-dispersive 
infrared (NDIR) sensor with a CO2 measuring range of 0-10,000 ppm with repeatability of ±20 ppm and an accuracy 
of ±30 ppm. The inbuilt temperature sensor has a range of 0-120ºC with repeatability of ±0.1ºC and an accuracy of 
±0.5ºC. Inbuilt RH (relative humidity) sensor has a range of 0-100% with repeatability of ±0.1% and an accuracy of 
±3%. Nominal and anomalous data were collected on two different occasions, described as stated below: 
 

a. Nominal Data: The sensors were configured to record data at every 1-minute interval for a period of 60 hours 
for recording nominal data, as shown in Figure 3. During this period, there were two people present in the 
house and the HVAC system was in operation, thus maintaining the proper air and ventilation requirements 
of the living space. Fresh air intake was maintained properly and adequately all throughout the data logging 
phase. 
 

b. Anomalous Data: The anomaly conditions were simulated for a shorter but sufficient period of time (10 
hours) as required by our algorithm for detection. Excess CO2 concentration was simulated by using a CO2 

fire extinguisher which was used from time to time to increase the CO2 levels inside the living space. Data 
collected during the anomaly conditionis shown in Figure 4. As seen in the figure, the faults were injected 
primarily at time instances of 2, 5, 7 and 8 hours. The CO2 injection was carried out nearer to the sensors 2B 
and 4D than sensor 1A, to study how effectively CO2 is able to dissipate through the entire volume of the 
space inside the Interlock house; resulting in sensor 1A registering very few cases as anomalous. During the 
data collection period, there were also two people present inside the living space and in addition, the HVAC 
system maintaining the ventilation and air-conditioning was turned off to simulate extreme conditions. 



              

      (a) 

  

                                                                           (b1)                                (b2)                               (b3) 
         Figure 2 Location of the sensors (CM-0210 CO2, Temperature, Humidity dataloggers) inside house: (a) 
Schematic showing sensor locations inside the Interlock House (top view); (b1) Sensor 1A located near the entrance; 
(b2) Sensor 2B located in the bedroom; (b3) Sensor 4D located in the kitchen space. 

The collected nominal data is shown in Figure 3. 

 

 
         Figure 3    Data collected in nominal condition. Sensors 1A, 2B, and 4D correspond to the locations label in 
Figure 2. 

B. RESULTS AND DISCUSSIONS 

Using the proposed framework, the model is trained with nominal data, and the anomaly metric in nominal data 
is shown in Figure 5(a). In the nominal condition, although there are fluctuations, the model detects most of them as 
nominal correctly. It validates the robustness of the proposed framework. The abrupt change in humidity around 24th 
and 56th hours cause the increase in the anomaly metric, and the anomaly decreases in a short time. 

 

Figure 4    Data collected in anomalous condition, where CO2 is injected at specific time instances to simulate 
faults in the system. Sensors 1A, 2B, and 4D correspond to the locations label in Figure 2. 



Based on the threshold built in the nominal data, anomaly detection is carried out and the results are shown in 
Figure 5(b). The anomalies detected (with free energy above the baseline) are consistent with the injected faults as 
shown in Figure 4. Therefore, the proposed framework can capture the anomaly correctly. 

 

   (a)                                                                 (b) 
Figure 5    (a) Free energy estimated with trained STPN+RBM model in nominal condition. The baseline in red 

is computed by detecting 95% cases as nominal (the remaining 5% are noted as outliers); (b) Free energy estimated 
with trained STPN+RBM model in anomalous condition. The baseline obtained in Figure 6(a), and can be applied as 
a criterion for anomaly detection. 

  

 

Figure 6 Representing fault diagnosis after anomaly detection with STPN. (S refers to a sensor and M refers to 
a modality, where modality refers to either of humidity, temperature or CO2 concentration) i.e. there are 3 modalities 
within each of the 3 sensors that were temporarily installed in the Interlock House 

 
In Figure 6, interconnectivity between the STPN nodes is shown. Each node corresponds a sensor of a certain 

modality (e.g., temperature, humidity and CO2 concentration). Hence, there are 9 nodes in total (3 sensors each for 
the 3 modalities considered in this case study). When conditions are nominal the links between the nodes are shown 
using green arrows to signify no-fault scenarios. When a fault arises in any of the nodes, as shown in the Anomaly 
scenario in Figure 6, causal relationships between the faulty node and other nodes break down. In this example, S1M1 
(Sensor 1 of Modality 1) is such a node that represents CO2 concentration at a certain location and thus, source of a 
detected anomaly can be isolated using the proposed technique.  

The proposed approach is able to extract features from both types of data and fuse them into one model. This is 
a critical need for a complex system with continuous temporal information from sensors and actuators. The proposed 
framework can effectively capture multiple nominal modes with a unified model, which greatly reduces the complexity 
of the modeling. The approach can correctly detect the anomaly and is also seen to be quite robust as it is designed to 
identify only persistent anomalies. After detection, it can also isolate and diagnose the root-cause as shown in Figure 
6.  

V. CONCLUSION AND FUTURE WORK 

As is evident from the results, the method of anomaly detection discussed in this paper can easily capture faults 
if and when they occur in a complex system, such as a HVAC. Anomalies in distributed complex systems vary in 
mechanisms, feature and duration, which makes anomaly detection difficult, especially when there are multiple faults 



in the system. This method takes care of these multi-fault scenarios and comes up with a single metric to showcase 
such fault for the controller to take appropiate steps as a corrective measure. 

In the case study presented in this paper, we have worked with CO2 as the primary source of air contaminant, 
primarily because of safety concerns for the people living inside the Interlock House. This method can be extended to 
multiple conditions where there might be other contaminants or potential health hazard substances like CO, NO2 
and/or excess SPM present and address a wide range of nominal operating modes and unforeseen anomalous 
situations without comprehensive labeled training data in distributed systems. 

The results show that the proposed framework can capture multiple diverse nominal modes (CO2 level, 
temperature and humidity) within a single probabilistic graphical model, and detect anomalies by identifying low 
probability events. This case study validates the accuracy and robustness of the proposed method. 

Future work will include capturing and detecting multiple fault scenarios, including SPM measurements along 
with presence of another pollutant gas, either CO or NO2 with simulated and real fault data, using the graphical model 
for root-cause analysis for different anomalies, and detection of simultaneous multiple faults in complex HVAC 
systems. 
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