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Abstract— Time-varying network topology plays a key role in a single pass before the new states influence the states
in mobile sensor networks for detection of an event of interst  of the other agents. However, many real-world systems are
and subsequent awareness propagation within a monitoringrad inherently asynchronousThe present work uses a gossip

surveillance framework. While physical space parametersisch . .
as communication range and mobility characteristics diredy ~ Proadcasting algorithm proposed by Sarkar et al. [12] for

drive the network structure, feedback from the information  information consensus (modeled as a wireless proximity
space can be useful to improve network topology and facilit&  network [13]) in an asynchronous manner where each agent
efficient information management. In this context, the pape  performs state updates at different time instants due to the
proposes a feedback control scheme for tuning key network varying lengths of update intervals.

topology parameters, such as average degree and degree . . . .
distribution under the recently proposed generalized gosp Numerous works aim to improve the rate of information

framework for distributed belief/awareness propagation n  dissemination in wireless networks by changing network
mobile sensor networks. The crux of this decentralized comol  topology. Some authors rewired nodes to a random destina-
policy is to modify the timelines of the asynchronous belief tijon node [14] [15]. In the virus model, special agents cointr
update protocol depending on the node-level belieflawar@ss. qgjqy 4| information using control laws involving binatpt

Using a proximity network representation for a mobile senso . o
network, the paper presents both analytic and numerical reslts variables [16]. Predictive control [17] [18] are also used,

associated with topology control scheme as well as its impac ~ @lthough the predictive component may increase overhead of

on belief/awareness propagation characteristics. energy consumption. Another author established a hieyarch
in agent responsibilities [19].
1. INTRODUCTION AND MOTIVATION Frequently, improving topological lifetime of the network

Rapid development in wireless communication, microphysically requires a larger financial investment in addil
electromechanical systems (MEMS) and digital technolnfrastructures. Hierarchical networks demand using &tar
ogy [1] enabled large-scale implementation of wirelessf sensors; more sensors are needed to increase sensor
sensor networks (WSN) into various applications such agfensity in a region. Laying sensors in an optimal format®n i
process monitoring, military reconnaissance, tacticaleils  not conveniently transferable to a different setting, velasr
lance, safety control, and resource operations. A netwbrk increasing the mobility of the agents results in higher gper
sensors can be conveniently deployed in air, underwatdr, anonsumption. We propose a method to improve network
inside buildings for threat detection and threat trackiag( topology without altering the physical aspects of the nekwo
vehicles, personnel, chemical and biological agents)y&fo  In consensus scenarios, a convergence set point can be
a large region. Hence, the dynamics and sensor interactiotesfined and the behavior of the system can be analyzed rather
need to scale well with the physical coverage area. easily. Oftentimes, the state transition matrix is reqiitcebe

Currently, much work has been reported on consensudeubly stochastic (i.e., the rows and columns all sum to one)
based source-seeking methods [3] [4] to identify the sourde order to prove convergence conveniently [20] [21] [22].
of events of an unknown signal field. Authors in [5] [6] [7] However, the set pointin this problem depends on the closed-
present a multi-agent coordination framework where the mdeop proportional controller gain and the update interval
bile agents collectively estimate the peaks of sensor fiettd awhich is time-varying. Hence, the complexity increases
move to the peak according to the estimated gradient. In [@ecause the doubly stochastic properties of the matrix is
the agents need to maintain a formation for accurate gradiemw absent as a consequence of the system Hairgrly
estimation. Authors in [8] [9] [10] [11] present algorithrfts  time-varying We show that the expectation in time of the
estimating the source location by using a stochastic gnadiestate transition matrix is in fact doubly stochastic andkel
descent algorithm based on robot dynamics. proving convergence properties.

Multi-agent consensus problems are traditionally modeled
as a discrete time system with states updatgtthronously Contributions:  The crux of the idea is to change the



topological properties of the mobile sensor network by gising) Zjeiume Hij|Tu§J)|T+9x(i)|T, or more simply, in vector
only the feedback of a node’s belief measure to reactivelprm:

modify its update interval. This technique can be applied Vglrs1 = (1 = O II | vgl + 0x|- (1)
to spatially change network topology to increase the rate of )
con\?ergegce by ?ninimizing thgseggnd-largest eigenvalue Where_ug_e [(_)’ 1] denotes the agent measurebelief of a
the transition matrix without additional energy consuropti hode indicating the level of awarene@sfc@r no awareness, .
Furthermore, the framework uses continuous state variat]ef%r complete awar_eness) regarding the presence ofa lecaliz
for gossip as opposed to binary variables which is potdyltithOtSpOt in the environment. The state characteristic fangct

applicable to a larger variety of problems and focuses onga[ obiervatlr?nﬁ eh {0,1} 'Sh a b|nar)|/| v;lrlabledwnlch
single type of mobile sensor instead of static sensorsadig escribes whether the agent has actually detected thd targe

with different roles or to hierarchy of some kind. (x =1) or not (X =0). The paramete? is_ a_n_other important
parameter which has the following definition:
2. BACKGROUND ON GENERALIZED GOSSIPPROTOCOL
IN PROXIMITY NETWORKS Definition 2.2 (Control parameterf) Parameter to control

This section provides a basic overview of proximityemphasis on either agent belief or the agent state charac-
networks (also referred to as moving neighborhood neteristic function, where) € (0,1]. As¢ — 1, the sensors
works [23]) and the generalized gossip algorithm. In pcadti rely more on its own observation rather than its own belief
applications, long distance communications are prone &ombined with the beliefs of neighboring sensorsdAs 0,
issues such as delayed transmission and data degradatibe. agent updates its belief based solely on other agents in
These issues are detrimental to systems undertaking tintBe neighborhood without considering whether or not it has
critical missions in hostile environments. For this regsoraictually detected the hotspot.
distributed proximity networks are essential when techlnic
limitation restricts the ability of agents to transmit infoa-
tion to a central information sink (e.g., GPS satellite) an
prohibits the agents from executing intelligent decisioks
a matter of clarity, the termshobile sensgrnodeandagent
are used interchangeably.

In the original problem formulation [12], each mobile
sensor establishes a link with proximal agents within
predefined communication range within a fixed update
interval. This update interval is defined below m&ssage
lifetime L.

Note that the subscripf in vy indicates that the agent
(%elief evolution is parametrized by the control paraméter

»(i) in (1) denotes the set of sensors communicating with
the i-th sensor during the communication window between
slow-time instant- and the next instant + 1.

The II term denotes the interaction matrix describing
he connectivity among agents. To compuie the graph
aplacian matrix £ is required and is defined a8 =
D — A where thei-th diagonal element in degree matrix
D corresponds to the degree of the nad&he adjacency
matrix A is defined such that the element in theth and

Definition 2.1 (Message lifetime,L) Agent belief update J¢-th position is unity if two agents and;j have established
interval. WhenL for an agent expires, the agent performs? I|_nk beforeL_ expires. Otherwise, the value is zero. Matrix
an update of its own belief while accounting for the belief! iS also defined where the elementt = 0 for i = j.

of other agents within the neighborhood of the agent. SufNOW: the interaction matridl is I =1 — L where lis the
sequently, all established information links originatifigm  'dentity matrix ands = 1/(d + 1). In the setup, the agent
that particular agent, along with its local message lifegim 19nOres communications with other agents that are beybnd
is reset and the process is repeated. As— 0, the agent 2dents within message lifetime. The value ofd is chosen
could never form links with other agents fast enough. Ofuch that the probability of degre¢ > d for agent is less
the other hand, whe. — oo, the network of agents will than 0.001 (for the study)./I becomes a stochastic matrix
eventually become fully connected. when the producB.L is subtracted from the identity matrix

I. Further details can be found in [12].

Remark 2.1 The physical dynamics of the agents (e.g.,
agent motion, and the ticking of clock that keeps track of

message lifetime.) progress in real time, referred to as o )
the fast time scale. The information space (i.e., network S€NSOr network as proximity network Consider a net-

topology) evolves on a slower time scale where each sIoYXPrk with multiple mobile sensors deployed to detect thgeat

time instantr refers to the moment when agents update thelf® & region (modeled as a hotspot with a given radius).
belief upon the expiration of message lifetithe Sensors move around in a random walk fashion and have

a nonzero probability of detecting threats upon entering

Interaction between agents and the flow of informatiothe hotspot. While threat detection does not influence the
is dictated by thedecentralized generalized gossip algo-mobility of the sensors, all sensors exchange information o
rithm which has the following expressiavé”|,+1 = (1 - what they know from the environment at specific intervals.

3. PROBLEM FORMULATION AND ASYNCHRONOUS
BELIEF UPDATES



Sensor states are updated to reflect the level of awarenessa function of its belief() with the following expression:
towards the threat. The goal is to disseminate information , ,

() — ()
away from the hotspot to the entire sensor population. L = Ly(1+ PvY) @)

Synchronous and asynchronous updatesn the original where L(" is the message lifetime for agent L; is the
formulation with homogeneous message lifetimpresented base message lifetime predetermined off-line #dan be
in [12], all connections are bidirectional at all times; timks  thought as the proportional gain of the closed-loop system.
between two connected sensornd; are mutual. Since the
beliefs of all sensors update synchronously due to hom@efinition 4.1 (Proportional Gain for Message Lifetime
geneousL, the II matrix is stochastic and symmetric, i.e.,Control, P) A tuning parameter that proportionally influersc
doubly stochastic. However, synchronous update requiees tthe new duration of message lifetiniein the next slow time
internal clock of all sensors to be in sync, which is noinstant after the agent performs an update.
achieved easily in reality. For example, sensors resptnsib
for undersea surveillance operations have low power and loRemark 4.1 Varying L does not negatively impact the
fidelity to minimize the frequency of replacing the batteryoverall power consumption as it does not require altering
supplies. Routine maintenance is inevitable; if the irdérn hardware behaviors (e.g., increasing motor speed to move
clocks are not recalibrated upon redeployment, sensorkiwoyaster) in a sensotl at all time instants will only be larger
update their beliefs asynchronously. or equal to the user-predetermined base message lifefine
Similarly, an update rule that modifies a sensor’s upso there will be no additional power consumption due to
date interval based on its own belief measure results increased update frequency.
asynchronous updates. The state transition mdiriis no
longer symmetrical and doubly stochastic at every slow time FOr stochastic analysis performed here, it is impor-
instant. With sufficient randomly-walking mobile sensorsfant to distinguish betweeansemble expectatioB.[x] =
the time-averaged expected value f6f matrix can still be % >_x—1 . that is, the expected value averaged over all
approximated as a doubly stochastic matrix and numericgnSors at a time instant; and timae-averaged expectation
simulations presented later in this paper confirms this cof[#] = limr . 7 3-,— (k). Recall that message lifetime
jecture. L of the i-th sensor updates according to the rule described
The experimental parameters in the setup consist of a 8 (2), which results in nonhomogenoiisand hence asyn-
dimensional operational region of length-= 100 units, area chronqus belief updates. Takmg the ensemble expectation o
A =12 = 10" units and hotspot length scale= /I = 0.1, both sides of (2), the expression becomes:
wherery, is the radius of the hptspot. Agent density is defined Ee[L(i)] — L, + L, PE. [V(i)] 3)
to bep = N/A =0.01 and N is the total number of agents
in the network. The control parameter is fixedéa 0.01  This establishes the basic linear relationship between the
and base message lifetinig, = 15. All sensors move with ensemble expectation of the message lifetimeand the
constant velocity = 10 units in a random walk fashion. ensemble expectation of agent measur&he topology of
the network can be statistically represented by the degree
4. NETWORK TOPOLOGY CONTROL WITH MESSAGE distribution of the network. Under the current problem for-
LIEETIME ACTUATION mulation, degree (denoted &} of a sensor is defined to be
the number of outbound connections with other agents in the
This work proposes a modification to the update rul@etwork, where Rk) for the network is defined to be the
from the generalized gossip algorithm to enable dynamigsrobability distribution of node degrees over the network.
topological evolution for quicker information propagatim Let Pr(k|L,¢) be the distribution of the number of distinct
an asynchronous manner. For this problem, various factone®des that communicate with a given nadeithin message
affecting network connectivity can be considered, suclhes tlife L. The degree distribution can be written agipL) £
communication radius, agent density in the operational fiel ﬁ DoiL()=L Pr(k|L,i), where n(L) is the number of
agent velocity, and the duration of message lifetime. Gfear nodes with message lifetim&. Then, the overall degree
increasing these parameters result in the ability of fogmindistribution of the network is obtained by taking the exgelct

more connections over a set period of time, but some mamlue of P(k|L) to get Ptk) £ £ 3=, n(L)Pr(k|L).
not be necessarily feasible in practical applications. For ensemble analysis, let the message lifetime for node

Recall in section 2 that whel. — oo, the network i (i.e., L(?)) be taken as HL] for all nodes. Assuming
becomes fully connected. Therefore, settin@s a constant independent activities at each fast time instant, the prob-
with high value is undesirable because there would not beadility of two distinct nodes; and j not communicating
localized gradient of belief given a long enough time. Hencevith each other within the expected message lifetimg.E
the paper proposes an algorithm to control informatiors 1 — (agigj)Ee[L}, where« is a parameter describing the
propagation by setting the message lifetififé of a sensoi  spatial information of the network (e.g., sensor density).



= 5 5. CONVERGENCE OFSTATISTICAL MOMENTS

w

o T 1 Convergence of measure averagédue to the stochas-

f';-’a 3// tic nature of the problem, procedures to prove statistical
% 2r T 1 convergence involve instances of taking expected questiti
g . 1 Although xy andv fluctuate in the slow time scale at steady-
g o) - p - - o state, the expected averagg.kl,[-]] and variance BV,[]]

Expected Message Lifetime ~ E_[L ] of v over agents are considered to be at steady-state. Defining

_ T
Fig. 1. Expected degree.F] vs. expected message lifetime [E]: The X as a column vectox = [Il’xQ’ ""xN] , the average can

relationship between these two variables are approxipdieear when —be defined asV,(x) = +1x = x®9 wherel is a row vector

of ones. In addition, withk = x — x*v917 and superscripl’

m

-, 04 . - ] )
w’ o P-0, E[L_J-15.00 denoting the transpose of a matrix, the variance over agents
=~ e m ~T~ . .
§ 03 % P=10, E|L ]-5266 | can be expressed a%,(x) = X" X. Sincev|, is an N x 1
c —*—P=20, E [ ]-86.88 vector, both average and variance values are scalar.
Q@
2 02 To show the convergence nature of the expected average
-‘; o1 measurer over agents with respect to the expected aver-
a age observatiory over agents at steady-state, we take the
5 0 % expectation of (1) in time to obtain:
8 0 5 10 15
Dearee k Eilvo.plria] = (1 = 0)E[Il|rvp pl-] + 0E:[x|-]  (6)
Fig. 2. Plot of degree distribution f4|Ec[L]) of the network for ()P = Since agent measure|, at a slow time instant is not

0,E.[L] = 15; (2) P = 10, Ec[L] = 52.66; (3) P = 20, E.[L] = 86.88.

Degree distribution is found to be Poisson in nature. affected by the interaction matr|ﬂ|7, ’/lT and HlT can

be assumed to be independent. Hence, the equation can be
follows that p;;(E.[L]) = 1 — (1 — ag;g;)F[*]. Termsg; rewritten as:
and g; refers to thegregariousnes®r the tendency of an -
agent to communicate with another [13]. For all agepts, Eilvo.plra] = (1 = O[T |-]B[vs pl-] + 0B [x|-] - (7)
and g; are constant because both agent velocity and thdote, the expectation off |, in time is doubly stochastic as
radius of communication are time invariant. It has beediscussed earlier. Therefore, after pre-multiplying bsittes
shown in [12] that the degrele of nodei has the following by 31, the product involving7 becomed and the following
re(latioghip)m;itha, gi, andg; wherek; h: Z;%lpij(L) o~  expression is obtained:
L(ag; . g;) for aL < 1. Hence, with nonhomogeneous

J avg _ _ avg avg

message lifetime under the current formulation and taking Eclvy plrea] = (1 = O)Eevy pl-] + 0E[x*]]  (8)

the ensemble expectations, the equation becomes: Expanding the equation, one obtains:
Ec[k] ~ Ec[L](ag; Y _ g;) for aE[L] < 1 (4) Eilvg Elria] = (1 — 07 Elrg " Zlo] + OB [x "]
; avg
Therefore, the ensemble '7expectation of degref|Eis a +0( = OB [ plr]
linear function of E[L]. This relationship is validated by +0(1 — 0)*E¢[x"9| 2]
numerical experiments and presented in Fig. 1. 4 01— 0)TE[x™o] 9)

With agentsi and j having the same specifications, . o _
pi; (E.[L]) is written simply asp(E.[L]). The degree dis- AS 7 — o0, the equation simplifies to:
tribution Pi(k|E.[L]) can now be written as: Er2]o] = 0[1 + (1 — 0) + (1 — 0) + .. JE,[x**"]

=601 — (1= )] B
= E/[x*] for 6 € (0, 1] (10)

~ we—&[k] for N> 1 (5) that ultimately yields EM,(vo,p)] = E([Ma(x)]. This
k! equality (whenr — oc) shows that at steady-state, the sum

which takes the form of the equation for a Poisson distribusf  over agents is equal to the sum pfover agents. The
tion. Fig. 2 from numerical simulation shows that the degreeonvergence in values implies that the decision of agents de
distribution P(k|E.[L]) for P = 0,10,20 (which yields tecting the hotspot is being redistributed as awareness@mo
corresponding HL]) is indeed Poisson. Note, in [12], Sarkarother agents and signifies the conservation of total awasene
et al. have validated that the degree distribution is Paissaneasure in the system. Fig. 3 shows the plots obtained from
in nature in the synchronous case. The simulation in thsmulation that validates the above relationship.
paper, on the other hand, confirms the same outcome for theFurthermore, Fig. 4 is a dual-axis plot that shows the
asynchronous case with proportional feedback controtpoli variation of average degree [E] and average belief over

PrkiE. (L) = () )0

4
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Fig. 3. Plots of average agent measureand observationy over time with P = 0, 10 and 20 for panels (a), (b), and (c) respectively, tat= 0.1.
The red curve denoteg and black curve denotes. In all cases, M (vp)] converges to HM,(x)]. Note, 6 is selected to be 0.1 instead of 0.01
during generation of the plot to clearly illustrate conarge between agent measure averages within 400 epochsoiergence behavior in this case

5 0.4
Before, the convergence of measure variance is investigate
This section discusses the impacts of varying proportional
gain P on the topology of the network that is represented
by the degree of agents. As shown in Fig. 3, increadihg
raises both average and y. See Fig. 5 for an illustration

of impact of P on the network topology. To understand
the overall relationship, Fig. 6 from simulation shows how
the ensemble expectation of node degre&:Evaries with

) 500 1000 1500 2000 2500 3008 different values of proportional gai. As shown earlier,

Slow Time (Epoch) the expected degree varies linearly with expected message

Fig. 4. Expected degree.E]| vs time for6 = 0.01. Green dashed line at ¢ et ;
the top is the average belief, blue dashed line in the middtae expected lifetime (See Eqn. (4)) and the eXpeCted message lifetime in

degree, and the solid black line through the middle is the@@d moving  turn follows a linear relationship with the proportionaliga
average of the expected degree. Note that the fluctuatiotiseimoving P (see Eqn. (3)). Therefore, the relationship betweeft|E

2zg:a§]lle;geegr:tese correspond to the fluctuation in averagef iedi., measure) with P is also approximately linear as expected.

IS

w

Expected Degree Ee[k]
Average Belief v

N

Convergence of measure varianceAnalytical results for

IR LA 100] B : 9 . . . . .
HE en? - ' . variance analysis consider two special scenarios under the
e L 7t o k‘; congruous time scale (CTS) and the disparate time scale
: z“:,-gl . (DTS) [12]. In CTS, the time scales for both physical and
™ .,» . + et I,j informational dynamics remain comparable. In this scenari
wp 0L 4w . at every slow timer there exists an independent agent
e . I A

” ‘(Wa) oo (b) e interaction matrix/I and an independent state characteristic
Fig. 5. Simulation to demonstrate effects Bfon agent degree. (a) shows vector x. To phy5|cally realize this scenario, agents must
the case wheré® = 0 and (b) shows the case wheRe = 20. Each dot either have a sufficiently long message lifeor move fast
represents an agent in the field with connecting lines itidigaestablished enough to decay the temporal correlations between the two
connections. Larger red circles surrounding the agenesgmts a relatively .
longer message lifetime compared to other agents on a lass.bNote slow time epochs. In CTS, the upper and lower bounds
that the larger circle size in (a) does not indicate that thessage lifetime Of measure variance are identified in [24] to B& <

is longer than in (b); comparison is performed locally. Ei[Valve.rll where Ao is the second largest

EDValx] — 1- (1 9)[2/\ ’

6 eigenvalue of BI7|,) . On the other hand, the two
time scales in the DTS scenarlo are different enough such
that the network evolution and agent state updates can be
considered independently. Agent measures converge before
there is a change i/ andy. The bounds in the DTS can

. . . . Vo lv 2 .
o 10 20 a0 20 50 be expressed by? < v[ &]P] < tll_(l"_g)/\zp,where/\g is

t

E [K]

Expected Degree

Proportional Constant P the second largest eigenvalue &

Fig. 6. Plot of expected degree.[E] vs proportional gainP. The plot With the introduction of proportional gaiR in either case,
shows an approximately linear relationship betweefkfand . it is discussed earlier that increase in the valuePofwill
cause the expected degree to rise. The rise in degree widens
time. Since the hotspot is active for the whole duration ofnhe spectral gap (i.e., the difference between the largesbt a
this simulation, there would still be a fluctuationinandx  second-largest eigenvalues) and reduces the secondtlarge
upon reaching steady state. However, the trend becomes clefygenvalue. Based on the upper bounds provided above for
when a 300-period moving average is taken. As observeldoth CTS and DTS cases, an increasePirwill therefore
the beliefv converges to steady state and so does the degrieeer the upper bound of the variance ratio. Although low-
Ec[k]. This is expected becaudeis a function ofv. ering of upper bound does not ensure lowering of measure
Effects of proportional gain on the expected degree variance, numerical experiments show that it seems to be
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Fig. 7. Plots of agent measureand observationy variances over time with® = 0, 10 and 20 for panels (a), (b), and (c) respectively,tat= 0.1. The
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red curve denoteg and the black curve denotes As P increasesw

decreases. Noté#), is selected to be 0.1 instead of 0.01 for clarity. With

0 = 0.1, the magnitudes of variance are more easily compared bylMisspection. A similar trend is also observed in the oddjicase wheré = 0.01.

the case. Fig. 7 demonstrates the variation of the measureg
variance over time for different values éf.

(8]

We used the feedback of a sensor node’s belief measure
to modify its own belief update interval which changes the[g]
network topology without physical modifications. Network
topology is controlled by introducing a proportional gain[10]
P into the update rule relating message lifetimlieas a
function of agent measure. The network degree has apq
Poisson distribution and its expectation is a linear fiorcti
of message lifetimd. under this update scheme. Statistical
moments and the expected network degree are shown I},
converge without causing the network to be fully connected.
Analytical and simulation results show that varying thd13]
proportional gainP has a direct impact on network topology.
Contrary to a constant, a proportional feedback control [14
policy involving gainP can easily control exploration versus
exploitation in a highly dynamic manner. The following are[15]
future research directions:

1) Analysis of the relationship between proportional gain
P and the rate of degree/belief convergence; 16]

2) Analytical evaluation of expected characteristics of
interaction matrixI (e.g. the second-largest eigenvald{17]
ues) with proportional gairP.

6. CONCLUSION AND FUTURE WORK

REFERENCES (18]
[1] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cealyi
“Wireless sensor networks: a surveyzomputer Networksvol. 38,

no. 4, pp. 393-422, 2002.

C.-Y. Chong and S. P. Kumar, “Sensor networks: evolytioppor-

tunities, and challengesProceedings of the IEEEvol. 91, no. 8,

pp. 1247-1256, 2003.

[3] J.Choi, S. Oh, and R. Horowitz, “Distributed learningdazooperative
control for multi-agent systems&utomaticavol. 45, no. 12, pp. 2802
— 2814, 2009.

M. S. Stankovic and D. M. Stipanovic, “Discrete time ettrum

seeking by autonomous vehicles in a stochastic environient
Decision and Control, 2009 held jointly with the 2009 28thir&ise

Control Conference. CDC/CCC 2009. Proceedings of the 4BthH

Conference onpp. 4541-4546, |IEEE, 2009.

P. Ogren, E. Fiorelli, and N. Leonard, “Cooperative ¢ohbf mobile

sensor networks:adaptive gradient climbing in a disteduénviron-

ment,” Automatic Control, IEEE Transactions owol. 49, pp. 1292—
1302, Aug 2004.

L. Brinon-Arranz and L. Schenato, “Consensus-basedcssseeking
with a circular formation of agents,” il€ontrol Conference (ECC),
2013 Europeanpp. 2831-2836, July 2013.

[19]

(2]
[20]

(4
[21]

[22]

(5]
(23]

(6]
[24]

M. Jadaliha, J. Lee, and J. Choi, “Adaptive control of tragent sys-
tems for finding peaks of uncertain static fielddgurnal of Dynamic
Systems, Measurement, and Contwall. 134, no. 5, p. 051007, 2012.
N. Atanasov, J. Le Ny, N. Michael, and G. Pappas, “Stotibas
source seeking in complex environments,’Robotics and Automation
(ICRA), 2012 IEEE International Conference,q@p. 3013-3018, May
2012.

S.-J. Liu and M. Krstic, “Stochastic source seeking fonholonomic
unicycle,” Automatica vol. 46, no. 9, pp. 1443-1453, 2010.

S.-i. Azuma, M. S. Sakar, and G. J. Pappas, “Stochasticce seeking
by mobile robots,”Automatic Control, IEEE Transactions owol. 57,
no. 9, pp. 2308-2321, 2012.

A. S. Matveev, H. Teimoori, and A. V. Savkin, “Navigatioof
a unicycle-like mobile robot for environmental extremunelgag,”
Automatica vol. 47, no. 1, pp. 85-91, 2011.

] S. Sarkar, K. Mukherjee, and A. Ray, “Distributed démis propa-

gation in mobile-agent proximity networkslhternational Journal of
Control, vol. 86, no. 6, pp. 1118-1130, 2013.

Z. Toroczkai and H. Guclu, “Proximity networks and egmdics,”
Physica A: Statistical Mechanics and its Applicatiprel. 378, no. 1,
pp. 68-75, 2007.

S. A. Aldosari and J. M. F. Moura, “Topology of sensorwetks in
distributed detection,Acoustics, Speech and Signal Processimd. 5,
p. V, 2006.

A. Shamsaie, W. Fokkink, and J. Habibi, “Analysis of gipsbased
information propagation in wireless mesh networkSgmputer per-
formance engineeringvol. 6977, pp. 174-188, 2011.

A. Khanafer and T. Basar, “Information spread in netkgorControl,
games, and equilibriaJnformation theory and applications workshop
(ITA), pp. 1-10, 2014.

H. Wang, X. Liao, and T. Huang, “Accelerated consensusadcu-
rate average in multi-agent networks via state predictibignlinear
Dynamics vol. 73, no. 1-2, pp. 551-563, 2013.

X. Yi, W. Lu, and T. Chen, “Distributed event-triggerezbnsensus
for multi-agent systems with directed topologiesiXiv preprint
arXiv:1407.3075 2014.

S. N. loannis Chatzigiannakis, Athanasios Kinalis,ffittent data
propagation strategies in wireless sensor networks ugigdesmobile
sink,” Mobility management and wireless acces®l. 31, no. 5,
pp. 896-914, 2008.

S. S. Ram, A. Nedic, and V. V. Veeravalli, “Asynchron@gssip algo-
rithms for stochastic optimization,” iDecision and Control, 2009 held
jointly with the 2009 28th Chinese Control Conference. CDCC
2009. Proceedings of the 48th IEEE Conference gm 3581-3586,
IEEE, 2009.

C. D. Meyer and C. D. Wessell, “Stochastic consensusteting,”
in Proceedings of the Sixth International Workshop on the Nicale
Solutions of Markov Chain2010.

C. C. Moallemi and B. Van Roy, “Consensus propagatidnforma-
tion Theory, IEEE Transactions owol. 52, no. 11, pp. 4753-4766,
2006.

J. D. Skufca and E. M. Bollt, “Communication and synahization in
disconnected networks with dynamic topology: Moving néigithood
networks,” arXiv preprint nlin/03070102003.

S. Sarkar and K. Mukherjee, “Event-triggered decigioopagation in

proximity networks,”Frontiers in Robotics and Alol. 1, p. 15, 2014.



