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Abstract— Time-varying network topology plays a key role
in mobile sensor networks for detection of an event of interest
and subsequent awareness propagation within a monitoring and
surveillance framework. While physical space parameters such
as communication range and mobility characteristics directly
drive the network structure, feedback from the information
space can be useful to improve network topology and facilitate
efficient information management. In this context, the paper
proposes a feedback control scheme for tuning key network
topology parameters, such as average degree and degree
distribution under the recently proposed generalized gossip
framework for distributed belief/awareness propagation in
mobile sensor networks. The crux of this decentralized control
policy is to modify the timelines of the asynchronous belief
update protocol depending on the node-level belief/awareness.
Using a proximity network representation for a mobile sensor
network, the paper presents both analytic and numerical results
associated with topology control scheme as well as its impacts
on belief/awareness propagation characteristics.

1. INTRODUCTION AND MOTIVATION

Rapid development in wireless communication, micro-
electromechanical systems (MEMS) and digital technol-
ogy [1] enabled large-scale implementation of wireless
sensor networks (WSN) into various applications such as
process monitoring, military reconnaissance, tactical surveil-
lance, safety control, and resource operations. A network of
sensors can be conveniently deployed in air, underwater, and
inside buildings for threat detection and threat tracking (e.g.
vehicles, personnel, chemical and biological agents) [2] over
a large region. Hence, the dynamics and sensor interactions
need to scale well with the physical coverage area.

Currently, much work has been reported on consensus-
based source-seeking methods [3] [4] to identify the source
of events of an unknown signal field. Authors in [5] [6] [7]
present a multi-agent coordination framework where the mo-
bile agents collectively estimate the peaks of sensor field and
move to the peak according to the estimated gradient. In [6],
the agents need to maintain a formation for accurate gradient
estimation. Authors in [8] [9] [10] [11] present algorithmsfor
estimating the source location by using a stochastic gradient
descent algorithm based on robot dynamics.

Multi-agent consensus problems are traditionally modeled
as a discrete time system with states updatedsynchronously

in a single pass before the new states influence the states
of the other agents. However, many real-world systems are
inherently asynchronous. The present work uses a gossip
broadcasting algorithm proposed by Sarkar et al. [12] for
information consensus (modeled as a wireless proximity
network [13]) in an asynchronous manner where each agent
performs state updates at different time instants due to the
varying lengths of update intervals.

Numerous works aim to improve the rate of information
dissemination in wireless networks by changing network
topology. Some authors rewired nodes to a random destina-
tion node [14] [15]. In the virus model, special agents control
residual information using control laws involving binary state
variables [16]. Predictive control [17] [18] are also used,
although the predictive component may increase overhead of
energy consumption. Another author established a hierarchy
in agent responsibilities [19].

Frequently, improving topological lifetime of the network
physically requires a larger financial investment in additional
infrastructures. Hierarchical networks demand using a variety
of sensors; more sensors are needed to increase sensor
density in a region. Laying sensors in an optimal formation is
not conveniently transferable to a different setting, whereas
increasing the mobility of the agents results in higher energy
consumption. We propose a method to improve network
topology without altering the physical aspects of the network.

In consensus scenarios, a convergence set point can be
defined and the behavior of the system can be analyzed rather
easily. Oftentimes, the state transition matrix is required to be
doubly stochastic (i.e., the rows and columns all sum to one)
in order to prove convergence conveniently [20] [21] [22].
However, the set point in this problem depends on the closed-
loop proportional controller gain and the update interval
which is time-varying. Hence, the complexity increases
because the doubly stochastic properties of the matrix is
now absent as a consequence of the system beinglinearly
time-varying. We show that the expectation in time of the
state transition matrix is in fact doubly stochastic and helps
proving convergence properties.

Contributions: The crux of the idea is to change the



topological properties of the mobile sensor network by using
only the feedback of a node’s belief measure to reactively
modify its update interval. This technique can be applied
to spatially change network topology to increase the rate of
convergence by minimizing the second-largest eigenvalue of
the transition matrix without additional energy consumption.
Furthermore, the framework uses continuous state variable
for gossip as opposed to binary variables which is potentially
applicable to a larger variety of problems and focuses on a
single type of mobile sensor instead of static sensors assigned
with different roles or to hierarchy of some kind.

2. BACKGROUND ON GENERALIZED GOSSIPPROTOCOL

IN PROXIMITY NETWORKS

This section provides a basic overview of proximity
networks (also referred to as moving neighborhood net-
works [23]) and the generalized gossip algorithm. In practical
applications, long distance communications are prone to
issues such as delayed transmission and data degradation.
These issues are detrimental to systems undertaking time-
critical missions in hostile environments. For this reason,
distributed proximity networks are essential when technical
limitation restricts the ability of agents to transmit informa-
tion to a central information sink (e.g., GPS satellite) and
prohibits the agents from executing intelligent decisions. As
a matter of clarity, the termsmobile sensor, nodeandagent
are used interchangeably.

In the original problem formulation [12], each mobile
sensor establishes a link with proximal agents within a
predefined communication rangeR within a fixed update
interval. This update interval is defined below asmessage
lifetimeL.

Definition 2.1 (Message lifetime,L) Agent belief update
interval. WhenL for an agent expires, the agent performs
an update of its own belief while accounting for the belief
of other agents within the neighborhood of the agent. Sub-
sequently, all established information links originatingfrom
that particular agent, along with its local message lifetime,
is reset and the process is repeated. AsL → 0, the agent
could never form links with other agents fast enough. On
the other hand, whenL → ∞, the network of agents will
eventually become fully connected.

Remark 2.1 The physical dynamics of the agents (e.g.,
agent motion, and the ticking of clock that keeps track of
message lifetimeL) progress in real time, referred to as
the fast time scale. The information space (i.e., network
topology) evolves on a slower time scale where each slow
time instantτ refers to the moment when agents update their
belief upon the expiration of message lifetimeL.

Interaction between agents and the flow of information
is dictated by thedecentralized generalized gossip algo-
rithm which has the following expressionν(i)θ |τ+1 = (1 −

θ)
∑

j∈i∪Nb(i)
Πij |τν

(j)
θ |τ+θχ(i)|τ , or more simply, in vector

form:
νθ|τ+1 = (1 − θ)Π |τνθ|τ + θχ|τ (1)

whereνθ ∈ [0, 1] denotes the agent measure, orbelief, of a
node indicating the level of awareness (0 for no awareness,1
for complete awareness) regarding the presence of a localized
hotspot in the environment. The state characteristic function,
or observationχ ∈ {0, 1} is a binary variable which
describes whether the agent has actually detected the target
(χ = 1) or not (χ = 0). The parameterθ is another important
parameter which has the following definition:

Definition 2.2 (Control parameter,θ) Parameter to control
emphasis on either agent belief or the agent state charac-
teristic function, whereθ ∈ (0, 1]. As θ → 1, the sensors
rely more on its own observation rather than its own belief
combined with the beliefs of neighboring sensors. Asθ → 0,
the agent updates its belief based solely on other agents in
the neighborhood without considering whether or not it has
actually detected the hotspot.

Note that the subscriptθ in νθ indicates that the agent
belief evolution is parametrized by the control parameterθ.
Nb(i) in (1) denotes the set of sensors communicating with
the i-th sensor during the communication window between
slow-time instantτ and the next instantτ + 1.

The Π term denotes the interaction matrix describing
the connectivity among agents. To computeΠ , the graph
Laplacian matrixL is required and is defined asL =
D − A where thei-th diagonal element in degree matrix
D corresponds to the degree of the nodei. The adjacency
matrix A is defined such that the element in theij-th and
ji-th position is unity if two agentsi andj have established
a link beforeL expires. Otherwise, the value is zero. Matrix
A is also defined where the elementaij = 0 for i = j.
Now, the interaction matrixΠ is Π = I −βL where I is the
identity matrix andβ = 1/(d̄ + 1). In the setup, the agent
ignores communications with other agents that are beyondd̄
agents within message lifetimeL. The value ofd̄ is chosen
such that the probability of degreed(i) > d̄ for agenti is less
than 0.001 (for the study).Π becomes a stochastic matrix
when the productβL is subtracted from the identity matrix
I. Further details can be found in [12].

3. PROBLEM FORMULATION AND ASYNCHRONOUS

BELIEF UPDATES

Sensor network as proximity network: Consider a net-
work with multiple mobile sensors deployed to detect threats
in a region (modeled as a hotspot with a given radius).
Sensors move around in a random walk fashion and have
a nonzero probability of detecting threats upon entering
the hotspot. While threat detection does not influence the
mobility of the sensors, all sensors exchange information of
what they know from the environment at specific intervals.
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Sensor states are updated to reflect the level of awareness
towards the threat. The goal is to disseminate information
away from the hotspot to the entire sensor population.

Synchronous and asynchronous updates: In the original
formulation with homogeneous message lifetimeL presented
in [12], all connections are bidirectional at all times; thelinks
between two connected sensorsi andj are mutual. Since the
beliefs of all sensors update synchronously due to homo-
geneousL, the Π matrix is stochastic and symmetric, i.e.,
doubly stochastic. However, synchronous update requires the
internal clock of all sensors to be in sync, which is not
achieved easily in reality. For example, sensors responsible
for undersea surveillance operations have low power and low
fidelity to minimize the frequency of replacing the battery
supplies. Routine maintenance is inevitable; if the internal
clocks are not recalibrated upon redeployment, sensors would
update their beliefs asynchronously.

Similarly, an update rule that modifies a sensor’s up-
date interval based on its own belief measure results in
asynchronous updates. The state transition matrixΠ is no
longer symmetrical and doubly stochastic at every slow time
instant. With sufficient randomly-walking mobile sensors,
the time-averaged expected value ofΠ matrix can still be
approximated as a doubly stochastic matrix and numerical
simulations presented later in this paper confirms this con-
jecture.

The experimental parameters in the setup consist of a 2-
dimensional operational region of lengthl = 100 units, area
A = l2 = 104 units and hotspot length scaleλ = rh/l = 0.1,
whererh is the radius of the hotspot. Agent density is defined
to beρ = N/A = 0.01 andN is the total number of agents
in the network. The control parameter is fixed atθ = 0.01
and base message lifetimeLb = 15. All sensors move with
constant velocityv = 10 units in a random walk fashion.

4. NETWORK TOPOLOGYCONTROL WITH MESSAGE

L IFETIME ACTUATION

This work proposes a modification to the update rule
from the generalized gossip algorithm to enable dynamic
topological evolution for quicker information propagation in
an asynchronous manner. For this problem, various factors
affecting network connectivity can be considered, such as the
communication radius, agent density in the operational field,
agent velocity, and the duration of message lifetime. Clearly,
increasing these parameters result in the ability of forming
more connections over a set period of time, but some may
not be necessarily feasible in practical applications.

Recall in section 2 that whenL → ∞, the network
becomes fully connected. Therefore, settingL as a constant
with high value is undesirable because there would not be a
localized gradient of belief given a long enough time. Hence,
the paper proposes an algorithm to control information
propagation by setting the message lifetimeL(i) of a sensori

as a function of its beliefν(i) with the following expression:

L(i) = Lb(1 + Pν(i)) (2)

whereL(i) is the message lifetime for agenti, Lb is the
base message lifetime predetermined off-line andP can be
thought as the proportional gain of the closed-loop system.

Definition 4.1 (Proportional Gain for Message Lifetime
Control, P) A tuning parameter that proportionally influences
the new duration of message lifetimeL in the next slow time
instant after the agent performs an update.

Remark 4.1 Varying L does not negatively impact the
overall power consumption as it does not require altering
hardware behaviors (e.g., increasing motor speed to move
faster) in a sensor.L at all time instants will only be larger
or equal to the user-predetermined base message lifetimeLb

so there will be no additional power consumption due to
increased update frequency.

For stochastic analysis performed here, it is impor-
tant to distinguish betweenensemble expectationEe[x] =
1
N

∑N

k=1 xk, that is, the expected value averaged over all
sensors at a time instant; and thetime-averaged expectation
Et[x] = limT→∞

1
T

∑T

k=0 x(k). Recall that message lifetime
L of the i-th sensor updates according to the rule described
in (2), which results in nonhomogenousL and hence asyn-
chronous belief updates. Taking the ensemble expectation on
both sides of (2), the expression becomes:

Ee[L
(i)] = Lb + LbPEe[ν

(i)] (3)

This establishes the basic linear relationship between the
ensemble expectation of the message lifetimeL and the
ensemble expectation of agent measureν. The topology of
the network can be statistically represented by the degree
distribution of the network. Under the current problem for-
mulation, degree (denoted ask) of a sensor is defined to be
the number of outbound connections with other agents in the
network, where Pr(k) for the network is defined to be the
probability distribution of node degrees over the network.
Let Pr(k|L, i) be the distribution of the number of distinct
nodes that communicate with a given nodei within message
life L. The degree distribution can be written as Pr(k|L̄) ,

1
n(L̄)

∑

i:L(i)=L̄ Pr(k|L̄, i), where n(L̄) is the number of
nodes with message lifetimeL. Then, the overall degree
distribution of the network is obtained by taking the expected
value of Pr(k|L) to get Pr(k) , 1

N

∑

L n(L)Pr(k|L).
For ensemble analysis, let the message lifetime for node

i (i.e., L(i)) be taken as Ee[L] for all nodes. Assuming
independent activities at each fast time instant, the prob-
ability of two distinct nodesi and j not communicating
with each other within the expected message lifetime Ee[L]
is 1 − (αgigj)

Ee[L], whereα is a parameter describing the
spatial information of the network (e.g., sensor density).It
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Fig. 1. Expected degree Ee[k] vs. expected message lifetime Ee[L]: The
relationship between these two variables are approximately linear when
Ee[L] > 35.
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Fig. 2. Plot of degree distribution Pr(k|Ee[L]) of the network for (1)P =
0,Ee[L] = 15; (2) P = 10,Ee[L] = 52.66; (3) P = 20,Ee[L] = 86.88.
Degree distribution is found to be Poisson in nature.

follows that pij(Ee[L]) = 1 − (1 − αgigj)
Ee[L]. Termsgi

and gj refers to thegregariousnessor the tendency of an
agent to communicate with another [13]. For all agents,gi
and gj are constant because both agent velocity and the
radius of communication are time invariant. It has been
shown in [12] that the degreek of nodei has the following
relationship withα, gi, andgj whereki =

∑N

j=1 pij(L) ≃
L(αgi

∑

j gj) for αL ≪ 1. Hence, with nonhomogeneous
message lifetime under the current formulation and taking
the ensemble expectations, the equation becomes:

Ee[k] ≃ Ee[L](αgi
∑

j

gj) for αEe[L] ≪ 1 (4)

Therefore, the ensemble expectation of degree Ee[k] is a
linear function of Ee[L]. This relationship is validated by
numerical experiments and presented in Fig. 1.

With agents i and j having the same specifications,
pij(Ee[L]) is written simply asp(Ee[L]). The degree dis-
tribution Pr(k|Ee[L]) can now be written as:

Pr(k|Ee[L]) =

(

N

k

)

pk(1− p)N−k

≃
(Ee[k])

k

k!
e−Ee[k] for N ≫ 1 (5)

which takes the form of the equation for a Poisson distribu-
tion. Fig. 2 from numerical simulation shows that the degree
distribution Pr(k|Ee[L]) for P = 0, 10, 20 (which yields
corresponding Ee[L]) is indeed Poisson. Note, in [12], Sarkar
et al. have validated that the degree distribution is Poisson
in nature in the synchronous case. The simulation in this
paper, on the other hand, confirms the same outcome for the
asynchronous case with proportional feedback control policy.

5. CONVERGENCE OFSTATISTICAL MOMENTS

Convergence of measure average: Due to the stochas-
tic nature of the problem, procedures to prove statistical
convergence involve instances of taking expected quantities.
Althoughχ andν fluctuate in the slow time scale at steady-
state, the expected average Et[Ma[·]] and variance Et[Va[·]]
of ν over agents are considered to be at steady-state. Defining
x as a column vectorx = [x1, x2, ..., xN ]T , the average can
be defined asMa(x) = 1

N
1x = xavg where1 is a row vector

of ones. In addition, with̃x = x− xavg1T and superscriptT
denoting the transpose of a matrix, the variance over agents
can be expressed asVa(x) = x̃T x̃. Sinceν|τ is anN × 1
vector, both average and variance values are scalar.

To show the convergence nature of the expected average
measureν over agents with respect to the expected aver-
age observationχ over agents at steady-state, we take the
expectation of (1) in time to obtain:

Et[νθ,P |τ+1] = (1− θ)Et[Π |τνθ,P |τ ] + θEt[χ|τ ] (6)

Since agent measureν|τ at a slow time instantτ is not
affected by the interaction matrixΠ |τ , ν|τ and Π |τ can
be assumed to be independent. Hence, the equation can be
rewritten as:

Et[νθ,P |τ+1] = (1− θ)Et[Π |τ ]Et[νθ,P |τ ] + θEt[χ|τ ] (7)

Note, the expectation ofΠ |τ in time is doubly stochastic as
discussed earlier. Therefore, after pre-multiplying bothsides
by 1

N
1, the product involvingΠ becomes1 and the following

expression is obtained:

Et[ν
avg
θ,P |τ+1] = (1 − θ)Et[ν

avg
θ,P |τ ] + θEt[χ

avg|τ ] (8)

Expanding the equation, one obtains:

Et[ν
avg
θ,P |τ+1] = (1− θ)τ+1Et[ν

avg
θ,P |0] + θEt[χ

avg|τ ]

+ θ(1− θ)Et[ν
avg
θ,P |τ−1]

+ θ(1− θ)2Et[χ
avg|τ−2]

+ ...+ θ(1 − θ)τEt[χ
avg|0] (9)

As τ → ∞, the equation simplifies to:

Et[ν
avg
θ |∞] = θ[1 + (1− θ) + (1− θ)2 + ...]Et[χ

avg]

= θ[1− (1− θ)]−1Et[χ
avg]

= Et[χ
avg] for θ ∈ (0, 1] (10)

that ultimately yields Et[Ma(νθ,P )] = Et[Ma(χ)]. This
equality (whenτ → ∞) shows that at steady-state, the sum
of ν over agents is equal to the sum ofχ over agents. The
convergence in values implies that the decision of agents de-
tecting the hotspot is being redistributed as awareness among
other agents and signifies the conservation of total awareness
measure in the system. Fig. 3 shows the plots obtained from
simulation that validates the above relationship.

Furthermore, Fig. 4 is a dual-axis plot that shows the
variation of average degree Ee[k] and average beliefν over

4



0 100 200 300 400

Slow Time (Epoch)

0

0.5

1

A
ve

ra
ge

 o
f 

ν
 a

nd
 
χ

(a)

0 100 200 300 400

Slow Time (Epoch)

0

0.5

1

A
ve

ra
ge

 o
f 

ν
 a

nd
 
χ

(b)

0 100 200 300 400

Slow Time (Epoch)

0

0.5

1

A
ve

ra
ge

 o
f 

ν
 a

nd
 
χ

(c)
Fig. 3. Plots of average agent measureν and observationχ over time withP = 0, 10 and 20 for panels (a), (b), and (c) respectively, atθ = 0.1.
The red curve denotesχ and black curve denotesν. In all cases, Et[Ma(νθ)] converges to Et[Ma(χ)]. Note, θ is selected to be 0.1 instead of 0.01
during generation of the plot to clearly illustrate convergence between agent measure averages within 400 epochs. The convergence behavior in this case
is actually similar to the original case withθ = 0.01.
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degree, and the solid black line through the middle is the 300-period moving
average of the expected degree. Note that the fluctuations inthe moving
average degree correspond to the fluctuation in average belief (i.e., measure)
over all agents.
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Fig. 5. Simulation to demonstrate effects ofP on agent degree. (a) shows
the case whereP = 0 and (b) shows the case whereP = 20. Each dot
represents an agent in the field with connecting lines indicating established
connections. Larger red circles surrounding the agent represents a relatively
longer message lifetime compared to other agents on a local basis. Note
that the larger circle size in (a) does not indicate that the message lifetime
is longer than in (b); comparison is performed locally.
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Fig. 6. Plot of expected degree Ee[k] vs proportional gainP . The plot
shows an approximately linear relationship between Ee[k] andP .

time. Since the hotspot is active for the whole duration of
this simulation, there would still be a fluctuation inν andχ
upon reaching steady state. However, the trend becomes clear
when a 300-period moving average is taken. As observed,
the beliefν converges to steady state and so does the degree
Ee[k]. This is expected becauseL is a function ofν.

Effects of proportional gain on the expected degree:

Before, the convergence of measure variance is investigated.
This section discusses the impacts of varying proportional
gain P on the topology of the network that is represented
by the degree of agents. As shown in Fig. 3, increasingP
raises both averageν andχ. See Fig. 5 for an illustration
of impact of P on the network topology. To understand
the overall relationship, Fig. 6 from simulation shows how
the ensemble expectation of node degree Ee[k] varies with
different values of proportional gainP . As shown earlier,
the expected degree varies linearly with expected message
lifetime (see Eqn. (4)) and the expected message lifetime in
turn follows a linear relationship with the proportional gain
P (see Eqn. (3)). Therefore, the relationship between Ee[k]
with P is also approximately linear as expected.

Convergence of measure variance: Analytical results for
variance analysis consider two special scenarios under the
congruous time scale (CTS) and the disparate time scale
(DTS) [12]. In CTS, the time scales for both physical and
informational dynamics remain comparable. In this scenario,
at every slow timeτ there exists an independent agent
interaction matrixΠ and an independent state characteristic
vector χ. To physically realize this scenario, agents must
either have a sufficiently long message lifeL or move fast
enough to decay the temporal correlations between the two
slow time epochs. In CTS, the upper and lower bounds
of measure variance are identified in [24] to beθ2 ≤
Et[Va[νθ,P ]]

Et[Va[χ]]
≤ θ2

1−(1−θ)2Λ2
,whereΛ2 is the second largest

eigenvalue of E[(Π |τ )
T (Π |τ )]. On the other hand, the two

time scales in the DTS scenario are different enough such
that the network evolution and agent state updates can be
considered independently. Agent measures converge before
there is a change inΠ andχ. The bounds in the DTS can
be expressed byθ2 ≤

Va[νθ,P ]
Va[χ]

≤ θ2

[1−(1−θ)λ2]2
,whereλ2 is

the second largest eigenvalue ofΠ .

With the introduction of proportional gainP in either case,
it is discussed earlier that increase in the value ofP will
cause the expected degree to rise. The rise in degree widens
the spectral gap (i.e., the difference between the largest and
second-largest eigenvalues) and reduces the second-largest
eigenvalue. Based on the upper bounds provided above for
both CTS and DTS cases, an increase inP will therefore
lower the upper bound of the variance ratio. Although low-
ering of upper bound does not ensure lowering of measure
variance, numerical experiments show that it seems to be
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Fig. 7. Plots of agent measureν and observationχ variances over time withP = 0, 10 and20 for panels (a), (b), and (c) respectively, atθ = 0.1. The
red curve denotesχ and the black curve denotesν. As P increases,

Et[Va[νθ,P ]]

Et[Va[χ]
decreases. Note,θ is selected to be 0.1 instead of 0.01 for clarity. With

θ = 0.1, the magnitudes of variance are more easily compared by visual inspection. A similar trend is also observed in the original case whereθ = 0.01.

the case. Fig. 7 demonstrates the variation of the measure
variance over time for different values ofP .

6. CONCLUSION AND FUTURE WORK

We used the feedback of a sensor node’s belief measure
to modify its own belief update interval which changes the
network topology without physical modifications. Network
topology is controlled by introducing a proportional gain
P into the update rule relating message lifetimeL as a
function of agent measureν. The network degree has a
Poisson distribution and its expectation is a linear function
of message lifetimeL under this update scheme. Statistical
moments and the expected network degree are shown to
converge without causing the network to be fully connected.
Analytical and simulation results show that varying the
proportional gainP has a direct impact on network topology.
Contrary to a constantL, a proportional feedback control
policy involving gainP can easily control exploration versus
exploitation in a highly dynamic manner. The following are
future research directions:

1) Analysis of the relationship between proportional gain
P and the rate of degree/belief convergence;

2) Analytical evaluation of expected characteristics of
interaction matrixΠ (e.g. the second-largest eigenval-
ues) with proportional gainP .
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