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ABSTRACT
The alarmingly degrading state of transportation infrastruc-

tures combined with their key societal and economic importance
calls for automatic condition assessment methods to facilitate
smart management of maintenance and repairs. In particular,
scalable data-driven approaches is of great interest, because it
can deal with large volume of streaming data without requiring
models that can be inaccurate and computationally expensive to
run. Properly designed, a data-driven methodology could en-
able fast and automatic evaluation of infrastructures, discovery
of causal dependencies among various sub-system dynamic re-
sponses, and inference and decision making with uncertainties
and lack of labeled data. In this work, a spatiotemporal pat-
tern network (STPN) strategy built on symbolic dynamic filtering
(SDF) is applied to explore spatiotemporal behaviors in bridge
network. Data from strain gauges installed on two bridges are
simulated by finite element method, and the causality among
strain data in spatial and temporal resolutions is analyzed. Case
studies are conducted for truck identification and damage de-
tection from simulation data. Results show significant capabil-
ities of the proposed approach in: (i) capturing spatiotemporal
features to discover causality between bridges (geographically
close), (ii) robustness to noise in data for feature extraction, and
(iii) detecting and localizing damage via the comparison ofbe-
haviors within the bridge network.

1 INTRODUCTION
The number of civil structures with critical aging concerns

is large; the cost of repairing and upgrading them is estimated

at $2.2 trillion [1–3]. In the United States alone, the average
age of the 607,380 bridges is 42 years, and the Federal High-
way Administration (FHWA) estimated that we would need to
invest $76 billion to repair deficient bridges. This and other re-
cent infrastructure failures have raised serious concernsabout
the structural integrity of the aging and deteriorating civil infras-
tructures around the world, about the inefficiency, ineffective-
ness and non-uniformity of visual inspection, which is still the
prevalent method for infrastructure inspection, and aboutsoci-
eties’ readiness to respond, to mitigate, to forecast, to manage,
and to minimize the risks associated with aging infrastructures.
A solution is to automate the condition assessment process,also
known as structural health monitoring (SHM).

SHM of civil infrastructures (e.g., bridges, wind turbines,
buildings, nuclear structures, etc.) is a difficult task dueto the
large geometries under inspection. A fundamental challenge is
the lack of scalability of existing sensing solution, due toeco-
nomic and/or technical challenges associated with off-the-shelf
sensors. For example, resistive foil gauges are widely usedto
monitor existing cracks, but are geometrically too small tobe ca-
pable of detecting a new damage of a large area within an accept-
able level of probability [4]. A solution is to deploy sensornet-
works such as piezoelectric wafer active sensors networks [5,6],
fiber optics-based technologies [7, 8], embedded distributed net-
works of conductive particles [9, 10], and large-area electron-
ics [4,11,12].

While the condition assessment research community is ex-
tremely active in developing tools and methodology enabling
automatic evaluation of transportation infrastructure, the vast
majority of the effort is on the input-model-output perspective,
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at a single system level (e.g., a structure equipped with sen-
sors). The problem is not typically approached in terms of sys-
tems of systems (e.g., many interacting structures on a network
equipped with sensors). There has been some research conducted
in the evaluation of infrastructure systems resiliency, that investi-
gated infrastructures as an interconnected system. These studies
mainly studied the impact of that a bridge closure would haveon
an entire network, and did not consider the integration of sensor
data. See references [13–16] for instance. There is an impor-
tant opportunity in agglomerating local networks of sensors for
improving the condition assessment process, which constitute a
system of systems, also termed complex system.

Here, we propose to leverage the unique spatial properties
of bridges in a transportation network to evaluate their condi-
tions in a complex system framework. Bridges constitute criti-
cal connection points in the transportation system. In additional,
adjacent bridges in a system have typically very similar vehicle
loads, weather condition, and geological condition. In thespa-
tial and temporal space, the behavior of the bridges are relative,
noted as causality in graph theory. Discovering the spatiotempo-
ral features in the bridge system is beneficial in detecting poten-
tial changes in structural integrity, and improving the efficiency
and accuracy of bridge inspections by providing the inspectors
with useful data for guidance and identification of potential prob-
lems, instead of uniquely relying on visual procedures and the
inspector’s judgement.

The spatiotemporal discoveries will be made through the
comparison of intrinsic geometry of data sets. This idea hasbeen
previously applied in the field of SHM. For instance, [17] used
a multivariate attractor-based approach to detect the presence
and magnitude of damage in structures through the investiga-
tion of the response’s phase-space constructed by a time delayed
embedding. Ref. [18] compared an attractor constructed from
the undamaged state to predict structural response, and identi-
fied damage as a change in the prediction error. In [19], the
dynamic system is divided in subsystems to cope with nonlin-
earities, and the time series response of each subsystem is an-
alyzed. The study in [20] proposed to analyze nonlinear time
series using a multivariate autoregressive approach in order to
detect damage under varying operational and environmentalcon-
ditions. Ref. [21] used a combined state-space embedding strat-
egy and singular value decomposition to detect structural dam-
age. Refs [12, 22, 23] used a diffusion map-based approach for
detection of anomaly in dynamic systems.

Pattern discoveries in spatiotemporally distributed sys-
tems can also be conducted using symbolic dynamic filtering
(SDF) [24] for establishing and representing causal interactions
among the subsystems [25]. SDF, as a data driven dynamical sys-
tem modeling technique, has advantages in describing different
types of data with a uniform symbolic representation as wellas
low time and memory complexity. Symbolic time-series features
captured by SDF can be used in formation of spatiotemporal pat-

tern network (STPN) as reported in recent studies [26,27].
In this work, we build on STPN to explore spatiotemporal

behaviors in a network of bridges from a condition monitoring
perspective. Data of strain gauges in the bridges are simulated by
finite element method, and analyzed using STPN. The causality
(the causes and the effects) of strain data in spatial and temporal
resolutions is applied for damage detection and localization in
bridges, as the causality includes critical features of thedynami-
cal system health and has great potential in detecting damage and
reasoning failure scenarios. Case studies are conducted based on
strain data of two adjacent bridges simulated with various vehi-
cle (truck) types as well as different damage levels.

2 Background and preliminaries
2.1 Spatiotemporal pattern network

SDF has been recently shown to be extremely effective for
extracting key textures from time-series data [24]. The main idea
is that a symbol sequence (i.e., discretized time-series) emanated
from a process can be approximated as a Markov chain of order
D (also called depth), named asD-Markov machine [25] that
captures the essential behavior of the underlying process.

The discretization or symbolization process is noted as par-
titioning [24]. Let X denote a set of partitioning functions,
X : X(t) → S, that transforms a general dynamic system (time
seriesX(t)) into a symbol sequenceS with an alphabet setΣ.
Various approaches are proposed in the literature, depending on
different objective functions, such as uniform partitioning (UP),
maximally bijective discretization (MBD) [28], statistically sim-
ilar discretization (SSD) [29], and maximum entropy partitioning
(MEP). This study uses simple uniform partitioning.

The D-Markov machine is essentially a probabilistic finite
state automaton (PFSA) that can be described by states (repre-
senting various parts of the data space) and probabilistic transi-
tions among them that can be learnt from data. Related defini-
tions of deterministic finite state automaton (DFSA), PFSA,D-
Markov machine,xD-Markov machine and the learning schemes
can be found in [25].

With this setup, a spatiotemporal pattern network (STPN) is
defined below [27].

Definition. A PFSA based STPN is a 4-tupleWD ≡
(Qa,Σb,Πab,Λab): (a, b denote nodes of the STPN)

(1) Qa = {q1,q2, · · · ,q|Qa|} is the state set corresponding to
symbol sequencesSa;

(2) Σb = {σ0, · · · ,σ|Σb|−1} is the alphabet set of symbol se-

quenceSb;
(3) Πab is the symbol generation matrix of size|Qa|× |Σb|, the

i j th element ofΠab denotes the probability of finding the
symbol σ j in the symbol stringsb while making a tran-
sition from the stateqi in the symbol sequenceSa; while
self-symbol generation matrices are called atomic patterns
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(APs) i.e., whena = b, cross-symbol generation matrices
are called relational patterns (RPs) i.e., whena 6= b.

(4) Λab denotes a metric that can represent the importance of
the learnt pattern (or degree of causality) fora→ b which is
a function ofΠab.

2.2 Information based metric for causality
With the definition of STPN, patterns discovered between

the vertices can be applied to interpret the causality via proper
metrics. Information based criteria are usually applied, e.g.,
transfer entropy [30] and mutual information [25,31]. Thiswork
applies mutual information for representingΛab of the patterns
(APs & RPs). Definition of mutual information forΛab is as
follows.

Λab , Iab = I(qb
k+1;qa

k+1) = H(qb
k+1)−H(qb

k+1|q
a
k) (1)

Detailed description of mutual information based causality met-
ric in the context of APs and RPs can be found in [25].

2.3 Similarity metric for STPNs
As a kind of graphical model, STPN can adopt metric for

estimating similarity of graphs. However, most of the metrics
in graphs are defined with the binary values (0/1) of the ver-
tices/edges [32], and they are not considering influence of degree
of causality (represented by mutual information in this work)
among the edges. To consider the degree of causality in esti-
mating similarity between STPNs, this work applies structural
similarity (SSIM). SSIM was first proposed and applied in im-
age processing, and it was demonstrated to be more effectivein
image quality assessment [33] and feature extraction [34].

Considering full connections (APs & RPs) betweenn nodes
in an STPN, a matrix with causality metricn× n is formed.
Treating the causality matrix asn vectors in an image (similar to
the definition of SSIM in image quality assessment [33]), SSIM
can be applied to estimate the similarity between two causality
matrices in two STPNs. The general form of the structure simi-
larity index [33] between two vectorsx andy is

S(x,y)=

(

2µxµy+C1

µ2
x + µ2

y +C1

)α(
2σxσy+C2

σ2
x +σ2

y +C2

)β
(

σxy+C3

σxσy+C3

)γ
,

(2)
whereµx, µy are the means ofx andy respectively,σ2

x , σ2
y are the

variances ofx andy respectively,σxy is the cross covariance ofx
andy, parametersα, β andγ are used to adjust the relative im-
portance of the three components, withα > 0, β > 0 andγ > 0;
C1, C2, C3 are the constants to avoid instability when the denom-
inators are very close to zero,C1 = (K1L)2, C2 = (K2L)2, C3 =
C2/2, K1, K2 andL are constants.

3 Data generation with Finite Element Method
3.1 Bridge models

Two adjacent steel-concrete composite bridges located in
West Des Moines, Iowa, were simulated. Bridge 1 is 200 ft
long and 38 ft wide with 3 spans, 5 longitudinal girders and 2
traffic lanes, while bridge 2 is 516 ft long and 29 ft wide with 5
spans, 4 longitudinal girders and 1 traffic lane. Planar-level finite
element models of these two bridges were generated using 688
linear beam elements, 328 quadrilateral shell elements, 381 lin-
ear beam elements, and 162 quadrilateral shell elements in Win-
Gen [35]. As shown in Fig. 1, the girders, stringers and floor
beams were modeled using elastic beam elements, whereas the
concrete deck was idealized using quadrilateral shell elements.
The number of beam and shell elements of both bridges is shown
in Table 1. Steel girder and stringer sections near piers were
modeled as non-composite beams (yellow elements in Fig. 1),
while those in the middle spans and side piers were modeled as
composite ones (black elements in Fig. 1). Initial sectionsand
material properties were assigned to all elements to match the
design of two bridges. The boundary conditions were also ide-
alized using rotational spring elements with appropriate initial
stiffness [36]. A total of 25 and 36 strain gauges, for each bridge
respectively, were attached to the bottom of the primary beam
elements.

TABLE 1. Number of beam and shell elements for the bridge models.

Item Bridge 1 Bridge 2

Beam elements

Girders 200 216

Stringers 160 -

Floor 328 165

Shell elements 320 162

Under damage conditions, the damage was assigned by re-
ducing the moment of inertia of given girder elements, shownin
Fig. 1. Damage levels of 5%, 10% and 20% were assigned by
reducing the moment of inertia by 5%, 10% and 20%, respec-
tively.

A total of 20 trucks were randomly selected from the truck
library in WinGen and individually driven (in the simulations)
on bridges. Strain data was collected and analyzed under normal
condition and damaged conditions. As an example, strain data
collected from sensor 10 (E 10) and sensor 28 (I 8) in bridge 2
under normal condition and different levels of damage is shown
in Fig. 2 for Truck-101.

3.2 Headway simulation
In each simulations, trucks are driven over the bridged with

a given time separating the lead truck and the following truck,
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FIGURE 1. Modeling the bridges with Finite Element Method.

termed headway. Headway is generated from traffic modeling
data found in [37]. Statistical parameters used to generatehead-
way are listed in Table 2.

TABLE 2. Headway measured in reality [37], pair type: lead (truck)
– follow (truck), SB – southbound, NB – northbound.

Mean (sec) Median (sec) Std. dev. (sec)

SB NB SB NB SB NB

2.92 2.86 2.71 2.71 1.43 1.46

A Random-walk Metropolis-Hastings sampler is applied to
generate the headway set, and an example is shown in Fig. 3.
With the simulated headway, strain data in each 20-truck setis
generated, as shown in Fig. 4. When there is no truck on the
bridge, the stain is taken as 0 (as only truck loading is consid-
ered in this work). When there is more than one truck on the
bridge simultaneously, strain histories are added linearly. Bridge
2 contains more data set that include simultaneous trucks given
its longer length relative to bridge 1.

3.3 Noise addition
In order to evaluate the robustness of the algorithm to noise

in sensor data, noise is generated with a uniform distribution,
and the amplitude is taken as 5% of the maximum of the mea-
surements. The noisy strain data (regarding the strain datain Fig.
4) is shown in Fig. 5.

4 Damage detection framework for bridge network
with spatiotemporal pattern network

4.1 Formation of STPN in truck matching between
bridges

In this work, truck matching is referred as the successful
identification of a truck driving sequence. Truck matching is crit-
ical to conduct the spatiotemporal study of structural behaviors
on a network of bridges (Section 4.2), as they are taken as con-
stant inputs. Although truck matching is beneficial in improving
damage detection accuracy, it is not strictly required, as one may
conduct spatiotemporal studies assuming that a given truckse-
quence remains constant between two adjacent bridges (no pass-
ing, no truck exiting/entering - more details provided in Section
4.2).

To implement truck matching, causality between sensors
from the two bridges is applied to extract the features in thepairs.
The basic idea is that the two sets of strain are unique in causal-
ity when the same truck passes on the bridges one after another.
From the observations of the strain data from both bridges, the
strain of the first bridge can be applied to predict the strainof the
second bridge in spatiotemporal space, given that the same truck
is passing on the bridges one after another.

To obtain the causal metric, the framework of STPN in truck
matching is shown in Fig. 6. The procedure consists of five steps:

(1) Data abstraction.
(2) State transition formation viaD-Markov machine.
(3) Extraction of causality in atomic patterns (APs) and rela-

tional patterns (RPs) with information based metric.
(4) Formation of similarity metric of each truck pair in the two

bridges.

4 Copyright c© 2016 by ASME



0 100 200 300 400 500 600
Position (ft)

-20

-10

0

10

20

30

S
tr

ai
n

 (
10

- 6)

normal condition
5% damage
10% damage
20% damage

(a) Sensor 10 (damage span)

0 100 200 300 400 500 600
Position (ft)

-20

0

20

40

60

80

S
tr

ai
n

 (
10

- 6)

(b) Sensor 28

FIGURE 2. Bridge strain measured by sensors 10 and 28 (locations
shown in Fig. 1) in bridge 2 under Truck-101. The damaged span(sen-
sor 10) shows an increase in strain with increasing damage. The ad-
jacent span (sensor 28) also exhibits a similar behavior, but at a much
smaller scale.
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FIGURE 3. Example of generated headway.

(5) Truck matching via maximizing similarity between truck
pairs.

The algorithm for truck matching is as follows.

Algorithm 1. Truck matching in bridges.
1 Input : Strain data{Xn

i , i ∈ m} in bridgen with truck set
(IDs m = {1,2, · · · , M}). Strain dataX̃n

i with current
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FIGURE 4. Simulated strain data at mid-span for both bridges with
20 trucks.
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FIGURE 5. Strain of two bridges with noise. The same spans are
shown as in Fig. 4.

truck (ID i) passing by.
2 Output : Matched truck set̃m.
3 Modeling and learning.
4 Obtain symbol sequencesS with strain dataX using the

alphabet setΣ. Here, partitioning is implemented in two
dimensional space, the strain from the sensor in bridge
1 is noted as the first dimension, and the strain from the
sensor in bridge 2 is noted as the second dimension. The
dimensions ofSareg×h, representing number of sensors
in bridge 1 and bridge 2 respectively.

5 Form the state sequencesQ with symbol sequencesSusing
depthD of PFSA.

6 for all a∈ g, b∈ h, do
7 Compute the state transition matrixΠab with xD-

Markov machine.
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FIGURE 6. Framework in formation of spatiotemporal pattern networkand graphical model for truck matching.

8 end
9 for all a∈ g, b∈ h, do

10 Compute the mutual informationΛab with Eq. 1.
11 end
12 Repeat step 4-11, obtain the mutual information set

{Λg×h}M×M.
13 Truck Matching .
14 Obtain symbol sequencesS̃ with strain dataX̃ using the

alphabet setΣ.
15 Form the state sequencesQ̃ with symbol sequences̃Susing

depthD of PFSA.
16 Compute the state transition matrixΠ̃ with xD-Markov ma-

chine.
17 Obtain the mutual informatioñΛ with Eq. 1.
18 for all i ∈ m, j ∈ m, do
19 Compute the similarity betweeñΛ and{Λg×h}i j , i is the

truck ID passing bridge 1,j is the truck ID passing
bridge 2.

20 end
21 Obtain the matching set̃m with maximal similarity.

4.2 Formation of STPN for damage detection
Bridges in the network are geographically close, the vehicle

loads are therefore similar. Under this assumption, the causality
between the bridges is relatively stable and consistent. Ifdamage
is induced in one bridge in some aspect, e.g., span damage due
to external effect, the causality between the damaged bridge and
other bridges would change.

To detect the damage of the bridge in the above situation,
this work applies STPN in estimating the variation of causality
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FIGURE 7. Formation of STPNs for damage detection in two bridges.

between the bridges. The steps in data abstraction, state tran-
sition formation, and extraction of casuality are similar to Sec-
tion 4.1, the damage detection approach is shown in Fig. 7. Two
STPNs are formed in the normal condition and anomaly (dam-
age) condition, respectively, and the variation of the causality is
compared pattern by pattern. The expectation is that the dam-
aged location will present increased strain and this can be cap-
tured by causality metric in STPN. The damage detection ap-
proach also provides a view for damage localization as the sensor
presenting variation of causality indicates the damage position
where the sensor installs.

The algorithm for damage detection is as follows.

Algorithm 2. Damage detection for in bridges with similar
truck set passing by.

1 Input : Strain data{Xn
i , i ∈ m} in bridgen with truck set

(IDs m = {1,2, · · · , M}). Strain data with damage{X̃n
i }

in bridgen with truck (IDsm = {1,2, · · · , M}).
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2 Output : Damage level and location.
3 Modeling in normal condition .
4 Obtain symbol sequencesS with strain dataX using the

alphabet setΣ. Here, symbolization is implemented in
one dimensional space regarding time series generated
from a single sensor. The numbers of sensors in bridge 1
and bridge 2 areU andV, respectively.

5 Form the state sequencesQ with symbol sequencesSusing
depthD of PFSA.

6 for all a∈ U, b∈ V, do
7 Compute the state transition matrixΠab with xD-

Markov machine.
8 end
9 for all a∈ U, b∈ V, do

10 Compute the mutual informationΛab with Eq. 1.
11 end
12 Modeling in anomalous condition.
13 Obtain symbol sequencesS̃ with strain dataX̃ using the

alphabet setΣ. Here, symbolization is implemented in
one dimensional space regarding time series generated
from a single sensor. The numbers of sensors in bridge 1
and bridge 2 areU andV, respectively.

14 Form the state sequencesQ̃ with symbol sequences̃Susing
depthD of PFSA.

15 for all a∈ U, b∈ V, do
16 Compute the state transition matrix̃Πab with xD-

Markov machine.
17 end
18 for all a∈ U, b∈ V, do
19 Compute the mutual informatioñΛab with Eq. 1.
20 end
21 Inference.
22 Compute the difference between{Λ̃} and{Λ}, to obtain

the damage level and location.

It should be noted that the algorithms for truck matching and
damage detection are based on two bridges in this work. How-
ever, the approach can be easily extended to the bridge network
with multiple bridges, where the relations in the bridge network
can be considered pairwise. STPNs formed in truck matching
and damage detection are different in structure, further work will
pursue a unified framework in processing feature extractionfor
both truck matching and damage detection.

5 Results and discussions
5.1 Truck matching

Truck matching is carried out in two cases: (1) the order of
the two truck sets are identical, with the assumption that there
is no passing of trucks between the bridges, and (2) the orders
are different, and the passing of trucks is random. The truck

matching results are shown in Fig. 8. The IDs in defined orders
and matched orders are listed in Table. 3.

In the two cases, the trucks 4 and 5 are mismatched. The
reason is that the weights and dimensions of the two trucks are
similar, and the strain caused by the two trucks are very close (as
shown in Fig. 9).
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FIGURE 8. Truck matching results. The block in black shows the
matching result and the detected truck IDs are in x-axis and y-axis re-
spectively.
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FIGURE 9. Strain in mismatched trucks (trucks 4 & 5, unit in 10−6).

The case presented above includes noiseless data. The ac-
curacy in truck matching may be decreased with diverse noise
levels. Further work is being conduction on the truck matching
algorithm for noisy data sets.

5.2 Damage detection
Damage detection is implemented with the same truck sets

used in the above section, where the damage data in bridge 2 is
applied. With the normal and damage data in the bridge 2, the
patterns of the STPNs are computed and the variation between
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TABLE 3. Truck matching results in two cases.

Item Truck Set (IDs)

Case 1
Defined

Bridge 1 1-20

Bridge 2 1-20

Matched Bridge 2 1-20 (4,5 mismatched)

Case 2
Defined

Bridge 1 1-20

Bridge 2 14, 15, 10, 5, 6, 16, 11, 3, 12, 2, 4, 20, 9, 19, 17, 18, 1,13, 7, 8

Matched Bridge 2 14, 15 10, 4/5, 6, 16, 11, 3, 12, 2, 4/5, 20, 9, 19, 17, 18, 1, 13, 7, 8

them is used for damage detection. Here, the same truck set is
used to generate the stain data in bridge 1 and bridge 2 (normal
and damage cases respectively). The damage detection results
are shown in Figs. 10 and 11 in terms of the data without noise
and with noise, respectively.

The damage level can be seen from the detection results.
Furthermore, the results indicate the damage span. The abnormal
patterns exist between sensor 10 of bridge 2 and any sensor in
bridge 1 in Fig. 10. This means that the damage is located in the
span with sensor 10. A similar case is observed in Fig. 11, where
most of the abnormal patterns locate between sensor 10 of bridge
2 and most of the sensors in bridge 1. Some of the patterns (e.g.,
(1, 10) and (2, 10)) do not show anomaly, the reason is that the
signal with small amplitude is smaller than the amplitude ofthe
noise. Also, some anomalous patterns (e.g. (23, 6) and (23, 15))
are induced by the noise.

Note, sensor 28 of bridge 2 in Figs. 10 and 11 shows slight
anomaly, and this is because the sensor is adjacent to the dam-
aged span, as shown in Fig. 2, where weak increases of strain in
sensor 28 can be observed.

5.3 Discussions
This work applied simulation data in truck matching and

damage detection in bridge network, and the simulation data
is generated by finite element method based on two existing
bridges. The noise is added with a predefined amplitude and uni-
form distribution. Further analysis is being carried out toanalyze
typical characteristics of strain gauges used in bridge monitoring
to get more field-like signals. Also, the trucks used in this work
are randomly picked; further work is being implemented in gen-
erating more data sets to cover typical dimensions and weights
of diverse trucks.

Regarding understanding the causal relations between
bridges in terms of truck matching and damage detection, this
work applied spatiotemporal pattern network with the simulation
data in two bridges. The results show that the proposed approach
can effectively discover the behavior of the strain responses with
different trucks passing bridges, and detect the abnormal dam-

age in a bridge by estimating the variation of causal relationship
between two bridges geographically close. With the abilityin
processing large-scale dataset, the proposed approach canbe ap-
plied in complex network with dense sensor networks, and the
application provides a novel view in damage detection via ex-
ploring causality between bridge network.

6 Conclusions
With spatiotemporal pattern network, this work conducted

truck matching and damage detection for a small bridge network
composed of two adjacent bridges. The proposed approach is
designed for processing large-scale dataset in a bridge network
(network of dense sensor network), and the results show the ad-
vantages of the proposed approach in: (i) capturing spatiotem-
poral features to discover causality between bridges (geographi-
cally close), (ii) handling noise in data for feature extraction, and
(iii) detecting and localizing damage via comparing the behav-
iors in the bridge network.

The proposed approach for the damage detection is based
on the data generated by multiple trucks. The current applica-
tion is implemented in two bridges with one-span damage case.
The further work will pursue: (i) integrating truck matching and
damage detection in a unified framework to implement online
damage detection, (ii) damage detection in multiple cases with
diverse damage levels, (iii) detecting damage with typicalnoise
level regarding the sensor type and environment conditions.
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