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ABSTRACT

The alarmingly degrading state of transportation infrasts
tures combined with their key societal and economic impua
calls for automatic condition assessment methods to fatli
smart management of maintenance and repairs. In particular
scalable data-driven approaches is of great interest, biseait
can deal with large volume of streaming data without reqgri
models that can be inaccurate and computationally experisiv
run. Properly designed, a data-driven methodology could en
able fast and automatic evaluation of infrastructurescdigery

at $2.2 trillion [1-3]. In the United States alone, the agera
age of the 607,380 bridges is 42 years, and the Federal High-
way Administration (FHWA) estimated that we would need to
invest $76 billion to repair deficient bridges. This and othes

cent infrastructure failures have raised serious concabuasit

the structural integrity of the aging and deterioratinglénfras-
tructures around the world, about the inefficiency, inefiec
ness and non-uniformity of visual inspection, which isl gk
prevalent method for infrastructure inspection, and alsogi-
eties’ readiness to respond, to mitigate, to forecast, toape,

of causal dependencies among various sub-system dynamic re and to minimize the risks associated with aging infrastrees.

sponses, and inference and decision making with unceigaint
and lack of labeled data. In this work, a spatiotemporal pat-
tern network (STPN) strategy built on symbolic dynamicfiitg
(SDF) is applied to explore spatiotemporal behaviors irdge
network. Data from strain gauges installed on two bridges ar

A solution is to automate the condition assessment proatss,
known as structural health monitoring (SHM).
SHM of civil infrastructures (e.g., bridges, wind turbines

buildings, nuclear structures, etc.) is a difficult task doehe
large geometries under inspection. A fundamental chalesg

simulated by finite element method, and the causality among the lack of scalability of existing sensing solution, duestm-

strain data in spatial and temporal resolutions is analyz€dse
studies are conducted for truck identification and damage de
tection from simulation data. Results show significant ¢dlpa
ities of the proposed approach in: (i) capturing spatioterg
features to discover causality between bridges (geogcadlyi
close), (ii) robustness to noise in data for feature exi@attand
(iii) detecting and localizing damage via the comparisorbef
haviors within the bridge network.

1 INTRODUCTION
The number of civil structures with critical aging concerns
is large; the cost of repairing and upgrading them is estnhat

1

nomic and/or technical challenges associated with offstinelf
sensors. For example, resistive foil gauges are widely tsed
monitor existing cracks, but are geometrically too smalieaa-
pable of detecting a new damage of a large area within an &ccep
able level of probability [4]. A solution is to deploy sensust-
works such as piezoelectric wafer active sensors netwbtl&,[
fiber optics-based technologies [7, 8], embedded distibuott-
works of conductive particles [9, 10], and large-area etect
ics[4,11,12].

While the condition assessment research community is ex-
tremely active in developing tools and methodology enaplin
automatic evaluation of transportation infrastructutee tast
majority of the effort is on the input-model-output persipes
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at a single system level (e.g., a structure equipped with sen
sors). The problem is not typically approached in terms af sy
tems of systems (e.g., many interacting structures on aanktw
equipped with sensors). There has been some research texduc
in the evaluation of infrastructure systems resiliencgt thvesti-
gated infrastructures as an interconnected system. Theties
mainly studied the impact of that a bridge closure would fave
an entire network, and did not consider the integration nee
data. See references [13-16] for instance. There is an impor
tant opportunity in agglomerating local networks of sesgor
improving the condition assessment process, which coiesit
system of systems, also termed complex system.

Here, we propose to leverage the unique spatial properties

of bridges in a transportation network to evaluate theirdton
tions in a complex system framework. Bridges constitutg-cri
cal connection points in the transportation system. Intamidil,
adjacent bridges in a system have typically very similaricieh
loads, weather condition, and geological condition. Ingpe-
tial and temporal space, the behavior of the bridges aréwela
noted as causality in graph theory. Discovering the spatipb-
ral features in the bridge system is beneficial in detectotgm-
tial changes in structural integrity, and improving theciéfincy
and accuracy of bridge inspections by providing the ingmsct
with useful data for guidance and identification of potdrmrab-
lems, instead of uniquely relying on visual procedures éed t
inspector’s judgement.

The spatiotemporal discoveries will be made through the
comparison of intrinsic geometry of data sets. This idegieas
previously applied in the field of SHM. For instance, [17] dise
a multivariate attractor-based approach to detect theepoes
and magnitude of damage in structures through the investiga
tion of the response’s phase-space constructed by a tiragatel
embedding. Ref. [18] compared an attractor constructeah fro
the undamaged state to predict structural response, ant-ide
fied damage as a change in the prediction error. In [19], the
dynamic system is divided in subsystems to cope with nonlin-
earities, and the time series response of each subsystemn is a
alyzed. The study in [20] proposed to analyze nonlinear time
series using a multivariate autoregressive approach iardaod
detect damage under varying operational and environmeoral
ditions. Ref. [21] used a combined state-space embeddialy st
egy and singular value decomposition to detect structuaai-d
age. Refs [12,22,23] used a diffusion map-based approach fo
detection of anomaly in dynamic systems.

Pattern discoveries in spatiotemporally distributed sys-
tems can also be conducted using symbolic dynamic filtering
(SDF) [24] for establishing and representing causal ictéyas
among the subsystems [25]. SDF, as a data driven dynamgzal sy
tem modeling technique, has advantages in describingrelifte
types of data with a uniform symbolic representation as al|
low time and memory complexity. Symbolic time-series feasu
captured by SDF can be used in formation of spatiotempotal pa

2

tern network (STPN) as reported in recent studies [26, 27].

In this work, we build on STPN to explore spatiotemporal
behaviors in a network of bridges from a condition monitgrin
perspective. Data of strain gauges in the bridges are sietliegy
finite element method, and analyzed using STPN. The caysalit
(the causes and the effects) of strain data in spatial anpdeah
resolutions is applied for damage detection and locatinaith
bridges, as the causality includes critical features ofijmeami-
cal system health and has great potential in detecting deuarad
reasoning failure scenarios. Case studies are conducied ba
strain data of two adjacent bridges simulated with varicefsiv
cle (truck) types as well as different damage levels.

2 Background and preliminaries
2.1 Spatiotemporal pattern network

SDF has been recently shown to be extremely effective for
extracting key textures from time-series data [24]. Themidga
is that a symbol sequence (i.e., discretized time-seriagnated
from a process can be approximated as a Markov chain of order
D (also called depth), named & Markov machine [25] that
captures the essential behavior of the underlying process.

The discretization or symbolization process is noted as par
titioning [24]. Let X denote a set of partitioning functions,
X: X(t) — S that transforms a general dynamic system (time
seriesX(t)) into a symbol sequencg with an alphabet seX.
Various approaches are proposed in the literature, depe rah
different objective functions, such as uniform partitiogi( UP),
maximally bijective discretization (MBD) [28], statistilty sim-
ilar discretization (SSD) [29], and maximum entropy p#otitng
(MEP). This study uses simple uniform partitioning.

The D-Markov machine is essentially a probabilistic finite
state automaton (PFSA) that can be described by stateg{repr
senting various parts of the data space) and probabilistitsi-
tions among them that can be learnt from data. Related defini-
tions of deterministic finite state automaton (DFSA), PFBA,
Markov machinexD-Markov machine and the learning schemes
can be found in [25].

With this setup, a spatiotemporal pattern network (STPN) is
defined below [27].

Definition. A PFSA based STPN is a 4-tupMp =
(Q%,2P, M3 A2b): (a, b denote nodes of the STPN)

(1) Q@ = {g1,02, - ,qga} is the state set corresponding to
symbol sequences;

(2) =* = {0p,- 70‘21)‘,1} is the alphabet set of symbol se-
quences’;

(3) N is the symbol generation matrix of siz@?| x |=P|, the
ijt element off12® denotes the probability of finding the
symbol g; in the symbol strings® while making a tran-
sition from the statay in the symbol sequenc#; while
self-symbol generation matrices are called atomic pattern

Copyright () 2016 by ASME



(APs) i.e., whema = b, cross-symbol generation matrices 3 Data generation with Finite Element Method

are called relational patterns (RPs) i.e., wiaehA b. 3.1 Bridge models

(4) N2 denotes a metric that can represent the importance of Two adjacent steel-concrete composite bridges located in
the learnt pattern (or degree of causality) &+ b which is West Des Moines, lowa, were simulated. Bridge 1 is 200 ft
a function off12>, long and 38 ft wide with 3 spans, 5 longitudinal girders and 2

traffic lanes, while bridge 2 is 516 ft long and 29 ft wide with 5
spans, 4 longitudinal girders and 1 traffic lane. Planaglléxite
element models of these two bridges were generated using 688
linear beam elements, 328 quadrilateral shell elements]iB8

ear beam elements, and 162 quadrilateral shell elementgin W
Gen [35]. As shown in Fig. 1, the girders, stringers and floor
beams were modeled using elastic beam elements, whereas the
concrete deck was idealized using quadrilateral shell etesn

The number of beam and shell elements of both bridges is shown
in Table 1. Steel girder and stringer sections near pierg wer
modeled as non-composite beams (yellow elements in Fig. 1),
AP L2120 = (R, 08 ,) = H(aR 1) —H(aRq[ad) (1) while those in the middle spans and side piers were modeled as
composite ones (black elements in Fig. 1). Initial sectiand
material properties were assigned to all elements to maieh t
design of two bridges. The boundary conditions were alse ide
alized using rotational spring elements with appropriatgall
stiffness [36]. A total of 25 and 36 strain gauges, for eadtige

2.3 Similarity metric for STPNs respectively, were attached to the bottom of the primaryrbea
As a kind of graphical model, STPN can adopt metric for elements.

estimating similarity of graphs. However, most of the nutri
in graphs are defined with the binary values (0/1) of the ver- TABLE 1. Number of beam and shell elements for the bridge models.
tices/edges [32], and they are not considering influencegifak
of causality (represented by mutual information in this kyor
among the edges. To consider the degree of causality in esti- Girders 200 216
mating similarity between STPNSs, this work applies streaitu
similarity (SSIM). SSIM was first proposed and applied in im-
age processing, and it was demonstrated to be more efféctive Eloor 328 165
image quality assessment [33] and feature extraction [34].

Considering full connections (APs & RPs) betweemodes Shell elements 320 162
in an STPN, a matrix with causality metritx n is formed.
Treating the causality matrix asvectors in an image (similar to
the definition of SSIM in image quality assessment [33]),\5SI
can be applied to estimate the similarity between two c#ysal
matrices in two STPNs. The general form of the structure-simi
larity index [33] between two vectossandy is

2.2 Information based metric for causality

With the definition of STPN, patterns discovered between
the vertices can be applied to interpret the causality vigo@r
metrics. Information based criteria are usually applied.,e
transfer entropy [30] and mutual information [25, 31]. Tiwvisrk
applies mutual information for representing® of the patterns
(APs & RPs). Definition of mutual information foh® is as
follows.

Detailed description of mutual information based caugatiet-
ric in the context of APs and RPs can be found in [25].

ltem Bridge 1 Bridge 2

Beam elements Stringers 160 -

Under damage conditions, the damage was assigned by re-
ducing the moment of inertia of given girder elements, shown
Fig. 1. Damage levels of 5%, 10% and 20% were assigned by
reducing the moment of inertia by 5%, 10% and 20%, respec-

tively.
A total of 20 trucks were randomly selected from the truck
2ttty + Cy a 260+ C» B G+ Cs \" Iibrary in WinGep and individually driven (in the simulatis)
SXY)=|-—>—>3 C T 021 C ( C > ; on bridges. Strain data was collected and analyzed underator
HCtHy o O+ 0y +52 0y +Cs condition and damaged conditions. As an example, straia dat
. s o collected from sensor 10 (E 10) and sensor 28 (I 8) in bridge 2
whereiy, 1y are the means ofandy respectivelypy, oy are the under normal condition and different levels of damage issho
variances ok andy respectivelygyy is the cross covariance &f in Fig. 2 for Truck-101.

andy, parametersr, 3 andy are used to adjust the relative im-

portance of the three components, with> 0, 3 > 0 andy > 0;

C1, Cy,, C3 are the constants to avoid instability when the denom- 3.2 Headway simulation

inators are very close to zeiG; = (K1L)2, C = (KZL)27 C= In each simulations, trucks are driven over the bridged with
Cy/2,Ky, Ky andL are constants. a given time separating the lead truck and the followingkruc
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FIGURE 1.

termed headway. Headway is generated from traffic modeling
data found in [37]. Statistical parameters used to genéesd-
way are listed in Table 2.

TABLE 2. Headway measured in reality [37], pair type: lead (truck)
— follow (truck), SB — southbound, NB — northbound.

Mean (sec) Median (sec) Std. dev. (sec)
SB NB SB NB SB NB
2.92 2.86 271 271 143 1.46

A Random-walk Metropolis-Hastings sampler is applied to
generate the headway set, and an example is shown in Fig. 3.
With the simulated headway, strain data in each 20-truclsset
generated, as shown in Fig. 4. When there is no truck on the
bridge, the stain is taken as 0 (as only truck loading is abnsi
ered in this work). When there is more than one truck on the
bridge simultaneously, strain histories are added liye8ridge
2 contains more data set that include simultaneous truskengi
its longer length relative to bridge 1.

3.3 Noise addition

In order to evaluate the robustness of the algorithm to noise
in sensor data, noise is generated with a uniform distidoti
and the amplitude is taken as 5% of the maximum of the mea-
surements. The noisy strain data (regarding the strainml&ig.

4) is shown in Fig. 5.

Modeling the bridges with Finite Element Method.

4 Damage detection framework for bridge network

with spatiotemporal pattern network
4.1 Formation of STPN in truck matching between

bridges

In this work, truck matching is referred as the successful
identification of a truck driving sequence. Truck matchmgriit-
ical to conduct the spatiotemporal study of structural baira
on a network of bridges (Section 4.2), as they are taken as con
stant inputs. Although truck matching is beneficial in impngy
damage detection accuracy, it is not strictly required resroay
conduct spatiotemporal studies assuming that a given saek
guence remains constant between two adjacent bridges §se pa
ing, no truck exiting/entering - more details provided irctan
4.2).

To implement truck matching, causality between sensors
from the two bridges is applied to extract the features irpéies.
The basic idea is that the two sets of strain are unique inataus
ity when the same truck passes on the bridges one after anothe
From the observations of the strain data from both briddes, t
strain of the first bridge can be applied to predict the stoathe
second bridge in spatiotemporal space, given that the sacie t
is passing on the bridges one after another.

To obtain the causal metric, the framework of STPN in truck
matching is shown in Fig. 6. The procedure consists of fiyesste

(1) Data abstraction.

(2) State transition formation via-Markov machine.

(3) Extraction of causality in atomic patterns (APs) andel
tional patterns (RPs) with information based metric.

(4) Formation of similarity metric of each truck pair in thed
bridges.
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shown in Fig. 1) in bridge 2 under Truck-101. The damaged $pam
sor 10) shows an increase in strain with increasing damage. at-
jacent span (sensor 28) also exhibits a similar behavidraba much 0
smaller scale.
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Ce e FIGURE 5. Strain of two bridges with noise. The same spans are

shown as in Fig. 4.

Headway (s)

truck (ID i) passing by.
2 Output: Matched truck sefn.
3 Modeling and learning.
2 4 s 8 10 12 14 15 18 2 4 Obtain symbol sequenc&with strain dataX using the

Truck D alphabet seX. Here, partitioning is implemented in two

dimensional space, the strain from the sensor in bridge
1 is noted as the first dimension, and the strain from the
sensor in bridge 2 is noted as the second dimension. The

FIGURE 3. Example of generated headway.

(5) Truck matching via maximizing similarity between truck dimensions oBareg x h, representing number of sensors
pairs. in bridge 1 and bridge 2 respectively.
. - 5 Form the state sequenc@avith symbol sequence®using
The algorithm for truck matching is as follows. depthD of PFSA.
Algorithm 1. Truck matching in bridges. 6 forall acg,beh,do
1 Input: Strain data{X[", i € m} in bridgen with truck set 7 Compute the state transition matrix® with xD-
(IDsm = {1,2,---, M}). Strain dataX" with current Markov machine.
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FIGURE 6. Framework in formation of spatiotemporal pattern netwaimkl graphical model for truck matching.

8 end
9 forallaeg,beh,do
10  Compute the mutual informatiak?® with Eq. 1.
11 end
12 Repeat step 4-11, obtain the mutual information set
{/\gxh}MxM-
13 Truck Matching .
14 Obtain symbol sequenc&swith strain dataX using the
alphabet sek.
15 Form the state sequenc@sith symbol sequenceédusing
depthD of PFSA.
16 Compute the state transition matfixith xD-Markov ma-
chine.
17 Obtain the mutual informatiof with Eq. 1.
18 forall i em, j €m, do

19  Compute the similarity betweefhand{/\gxh}ij ,1isthe
truck ID passing bridge 1j is the truck ID passing
bridge 2.

20 end

21 Obtain the matching sét with maximal similarity.

4.2 Formation of STPN for damage detection

Bridges in the network are geographically close, the vehicl
loads are therefore similar. Under this assumption, thealiy
between the bridges is relatively stable and consistedartfage

is induced in one bridge in some aspect, e.g., span damage due

to external effect, the causality between the damaged &add
other bridges would change.

To detect the damage of the bridge in the above situation,

this work applies STPN in estimating the variation of caitgal

6

STPN formation
(damage)

STPN formation
(normal)

Damage
detection

FIGURE 7. Formation of STPNs for damage detection in two bridges.

between the bridges. The steps in data abstraction, state tr
sition formation, and extraction of casuality are similarSec-
tion 4.1, the damage detection approach is shown in Fig. 8. Tw
STPNs are formed in the normal condition and anomaly (dam-
age) condition, respectively, and the variation of the aftysis
compared pattern by pattern. The expectation is that the dam
aged location will present increased strain and this canape ¢
tured by causality metric in STPN. The damage detection ap-
proach also provides a view for damage localization as thewse
presenting variation of causality indicates the damag&ipos
where the sensor installs.

The algorithm for damage detection is as follows.

Algorithm 2. Damage detection for in bridges with similar
truck set passing by.
1 Input: Strain data{X!", i € m} in bridgen with truck set
(IDsm={1,2,---, M}). Strain data with damageX['}
in bridgen with truck (IDsm = {1,2,---, M}).
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2 Output: Damage level and location.

3 Modeling in normal condition.

4 Obtain symbol sequencé&swith strain dataX using the
alphabet sek. Here, symbolization is implemented in

matching results are shown in Fig. 8. The IDs in defined orders
and matched orders are listed in Table. 3.

In the two cases, the trucks 4 and 5 are mismatched. The
reason is that the weights and dimensions of the two truaks ar

one dimensional space regarding time series generatedsimilar, and the strain caused by the two trucks are veryedas
from a single sensor. The numbers of sensors in bridge 1 shown in Fig. 9).

and bridge 2 ar®) andV, respectively.
5 Form the state sequenc@€svith symbol sequencesusing
depthD of PFSA.
6 forallac U, beV,do
7 Compute the state transition matiX2® with xD-
Markov machine.
8 end
9 forallae U,beV, do
10  Compute the mutual informatigk?® with Eq. 1.
11 end
12 Modeling in anomalous condition
13 Obtain symbol sequenc&swith strain dataX using the
alphabet sek. Here, symbolization is implemented in

one dimensional space regarding time series generated
from a single sensor. The numbers of sensors in bridge 1

and bridge 2 ar&) andV, respectively.

14 Form the state sequenc@swith symbol sequencédusing
depthD of PFSA.

15 forall ac U,be V, do

16 Compute the state transition matfi¥®® with xD-

Markov machine.

17 end

18 forall ac U,be V, do

19  Compute the mutual informatigk?® with Eq. 1.

20 end

21 Inference.

22 Compute the difference betwe@A} and {A}, to obtain
the damage level and location.

It should be noted that the algorithms for truck matching and

damage detection are based on two bridges in this work. How-

ever, the approach can be easily extended to the bridge rietwo
with multiple bridges, where the relations in the bridgenak

can be considered pairwise. STPNs formed in truck matching

and damage detection are different in structure, furthekwall
pursue a unified framework in processing feature extradton
both truck matching and damage detection.

5 Results and discussions
5.1 Truck matching

Truck matching is carried out in two cases: (1) the order of
the two truck sets are identical, with the assumption thateth

20

-
o

Trucks in bridge 2
= =
o u
[T !#
[
|

i
"

-
o

Trucks in bridge 2

[ } NN

I I

[ [ [T
1 5 10 15 20 1 5 10 15 20
Trucks in bridge 1 Trucks in bridge 1

(a) Case 1, trucks in same ordefb) Case 2, trucks in different order

FIGURE 8. Truck matching results. The block in black shows the
matching result and the detected truck IDs are in x-axis aagiy re-
spectively.
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FIGURE 9. Strain in mismatched trucks (trucks 4 & 5, unit in 1.

The case presented above includes noiseless data. The ac-
curacy in truck matching may be decreased with diverse noise
levels. Further work is being conduction on the truck matghi
algorithm for noisy data sets.

5.2 Damage detection
Damage detection is implemented with the same truck sets
used in the above section, where the damage data in bridge 2 is

is no passing of trucks between the bridges, and (2) the ®rder applied. With the normal and damage data in the bridge 2, the
are different, and the passing of trucks is random. The truck patterns of the STPNs are computed and the variation between

7
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TABLE 3. Truck matching results in two cases.

Item Truck Set (IDs)
. Bridge 1 1-20
Defined
Case 1 Bridge 2 1-20
Matched Bridge 2 1-20 (4,5 mismatched)
. Bridge 1 1-20
Defined
Case 2 Bridge 2 14,15, 10,5, 6, 16, 11, 3,12, 2, 4, 20, 9, 19, 17, 18317, 8

Matched Bridge2 14,1510, 4/5,6, 16,11, 3,12, 2, 4/5,209917, 18, 1, 13,7, 8

them is used for damage detection. Here, the same truck set isage in a bridge by estimating the variation of causal retetiip

used to generate the stain data in bridge 1 and bridge 2 (horma between two bridges geographically close. With the ability

and damage cases respectively). The damage detectiotsresul processing large-scale dataset, the proposed approable egm

are shown in Figs. 10 and 11 in terms of the data without noise plied in complex network with dense sensor networks, and the

and with noise, respectively. application provides a novel view in damage detection via ex
The damage level can be seen from the detection results. ploring causality between bridge network.

Furthermore, the results indicate the damage span. Therahho

patterns exist between sensor 10 of bridge 2 and any sensor ing Conclusions

bridge 1 in Fig. 10. This means that the damage is locatecein th With spatiotemporal pattern network, this work conducted

span with sensor 10. A similar case is observed in Fig. 11revhe  truck matching and damage detection for a small bridge rmétwo

most of the abnormal patterns locate between sensor 10dgféori  composed of two adjacent bridges. The proposed approach is

2 and most of the sensors in bridge 1. Some of the patterns (e.g designed for processing large-scale dataset in a bridgeoriet

(1, 10) and (2, 10)) do not show anomaly, the reason is that the (network of dense sensor network), and the results showtthe a

sig_nal with small amplitude is smaller than the amplitudéhef vantages of the proposed approach in: (i) capturing sgatiot
noise. Also, some anomalous patterns (e.g. (23, 6)and 8B, 1 poral features to discover causality between bridges (ggbg-
are induced by the noise. cally close), (i) handling noise in data for feature extiae, and

Note, sensor 28 of bridge 2 in Figs. 10 and 11 shows slight (jii) detecting and localizing damage via comparing theaweh
anomaly, and this is because the sensor is adjacent to the damijors in the bridge network.
aged span, as shown in Fig. 2, where weak increases of gtrain i The proposed approach for the damage detection is based
sensor 28 can be observed. on the data generated by multiple trucks. The current ag@plic
tion is implemented in two bridges with one-span damage.case
The further work will pursue: (i) integrating truck matclgiand
damage detection in a unified framework to implement online
damage detection, (ii) damage detection in multiple casés w
diverse damage levels, (iii) detecting damage with typicase
level regarding the sensor type and environment conditions

5.3 Discussions

This work applied simulation data in truck matching and
damage detection in bridge network, and the simulation data
is generated by finite element method based on two existing
bridges. The noise is added with a predefined amplitude aird un
form distribution. Further analysis is being carried oudtalyze

typical characteristics of strain gauges used in bridgeitoong : - ,
to get more field-like signals. Also, the trucks used in théstw ‘This paper is based upon research partially supported by the
are randomly picked: further work is being implemented in-ge National Science Foundation under Grant No. CNS-1464279

erating more data sets to cover typical dimensions and wgigh and Grant No. CMMI-1463252. Any opinions, findings, and
of diverse trucks. conclusions or recommendations expressed in this mategal
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