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ABSTRACT
Anomalies in cyber-physical systems may arise due to ma-

licious cyber attacks or operational faults in the physical de-
vices. Accurately detecting the anomalies and isolating their
root-causes is important for identifying appropriate reactive and
preventive measures and building resilient cyber-physical sys-
tems. Anomaly detection and isolation in cyber-physical systems
is challenging, because the impact of a cyber attack on the opera-
tion of a physical system may manifest itself only after some time.
In this paper, we present a Bayesian network approach for learn-
ing the causal relations between cyber and physical variables as
well as their temporal correlations from unlabeled data. We de-
scribe the data transformations that we performed to deal with
the heterogeneous characteristics of the cyber and physical data,
so that the integrated dataset can be used to learn the Bayesian
network structure and parameters. We then present scalable al-
gorithms to detect different anomalies and isolate their respec-
tive root-cause using a Bayesian network. We also present results
from evaluating our algorithms on an unlabeled dataset consist-
ing of anomalies due to cyber attacks and physical faults in a
commercial building system.

INTRODUCTION
Cyber-physical systems (CPS) combine computing and

communication capabilities with monitoring and control of enti-
ties in the physical world. CPS systems are part of many safety-
critical infrastructures and industrial control systems, such as
electric power grids and building automation systems. Tradi-
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tional approaches for protecting control systems have primarily
focused on gradual deterioration or abrupt faults in physical com-
ponents. However, the coupling between information and com-
munication technologies and the physical controllers in a CPS
system makes the control system more vulnerable, especially
since networked systems make it possible to launch remote at-
tacks. Hence, there is a growing need for protecting control sys-
tems against malicious cyber attacks. As part of cyber-security
mechanisms, several authentication and access control technolo-
gies have been developed for protecting information. These tech-
nologies can also be used to prevent attacks in cyber-physical
control systems to some extent. However, in addition, a resilient
CPS architecture needs to include mechanisms for detecting and
reacting to anomalies.

Anomaly detection refers to the problem of finding patterns
that do not conform to expected behavior. Traditional anomaly
detection schemes for cyber security analyze network traces for
detecting network anomalies, but do not analyze the impact of
attacks on physical components. On the other hand, system the-
ory focuses more on reliability and stability of physical systems,
but does not completely model information technology (IT) in-
frastructure. Prior work in fault tolerant control systems use re-
dundancy and reconfiguration mechanisms to address the vul-
nerability of sensors and actuators to physical failures [1]. These
techniques primarily focus on reliability and do not address vul-
nerabilities arising from security attacks. Recently, in [2], the
authors suggest that the physical controllers can be monitored to
detect anomalies that cannot be detected through IT mechanisms.
Likewise, in [3], the authors provide some ways of leveraging
system-theoretic techniques to counter cyber security attacks, in
the context of a smart power grid. In [4], a smart power grid



is modeled as an undirected graph and a polynomial-time de-
tection algorithm based on generalized likelihood ratio with L1
norm regularization is used for finding small, but unobservable
attacks. However, in order to successfully detect CPS anomalies
and perform root-cause analysis to establish whether the anoma-
lies are a result of a cyber attack or a fault in the physical com-
ponents (sensors, actuators, controllers), we need an integrated
approach that is based on understanding the cause-effect rela-
tionship between the cyber components and the physical system.

In this paper, we propose an anomaly detection method that
relies on a probabilistic graphical model of the underlying CPS.
Specifically, we use a Bayesian network to characterize a CPS
under nominal operation. This approach follows an unsuper-
vised generative modeling concept where the model learns the
individual characteristics of subcomponents (sensors/actuators)
and the causal relationships among them under nominal condi-
tion, from a dataset. Then during regular operation, if a fault
occurs in the system, it manifests itself as a low probability or
anomalous event. Given an anomalous condition, further anal-
ysis can be performed to isolate which individual characteris-
tics or causal relationship has changed to cause the anomaly.
This provides a mechanism to perform root-cause analysis with-
out using explicitly labeled training datasets for different faults.
Thus, this approach potentially has good coverage, such that a
single model can be leveraged for the detection and root cause
isolation of multiple types of faults (even those that are previ-
ously unknown) in a CPS. Training such models is also easy as
it avoids the extremely challenging task of acquiring sufficient
labeled data for all types of faults in a CPS. Other benefits in-
clude the ability to handle heterogenous data, while accounting
for the differences in the time scales for cyber and physical enti-
ties. While some studies in literature applied Bayesian networks
(primarily in a supervised manner) for cyber security problems,
our work applies Bayesian networks in an unsupervised manner
for cyber-physical security problems.

BACKGROUND
This section provides a brief background and survey

on Probabilistic Graphical Models (PGMs), with a focus on
Bayesian networks and their applications to cyber security anal-
ysis.

Probabilistic Graphical Models (PGMs)
PGMs provide a succinct mechanism to model the joint dis-

tribution of statistically dependent random variables. The main
benefit of PGMs is the ability to represent the joint distribution
as a graph, which allows one to draw inferences about the un-
derlying system without even knowing the parametric form of
the model. Typically, a random variable is denoted as a node in
the graph, while statistical dependencies are represented as edges

(undirected or directed) between nodes. A Bayesian network is a
type of PGM that allows one to capture causal information (cause
and effect) using directed edges. Each node defines a conditional
distribution of itself, given the parent nodes. The directionality
of the edges are such that no directed cycles are induced in the
overall graph. Hence, Bayesian networks are considered as di-
rected acyclic graphs (DAGs). The overall joint distribution of
the network is computed as a product of the conditional distribu-
tion defined by every node in the network.

Learning and Inference are the two main problems associ-
ated with Bayesian networks. The former involves learning the
structure (the DAG) and the parameters of the conditional proba-
bility distribution. The goal is to identify the structure and the as-
sociated parameters that best explain the given data. Finding the
optimal Bayesian network structure is a NP-hard problem, but
efficient algorithms are available that often yield near optimal
solutions (e.g. [5]). Bayesian networks support learning in su-
pervised as well as in unsupervised settings, and thereby can be
used with both labeled and unlabeled datasets. The second prob-
lem of inference pertains to finding probabilistic answers to user
specified queries. For example, a user may seek the joint distri-
bution of a subset of random variables given the observed values
of another disjoint subset of random variables. Since, Bayesian
networks only encode node-wise conditional probabilities, find-
ing answers to such queries is not straightforward. However, ef-
ficient algorithms exist that allow one to find the exact answer to
an arbitrary query using a secondary structure (such as junction
tree) and a message-passing architecture [6]. Anomaly detec-
tion and root-cause isolation can both be interpreted as inference
problems. In later sections, we show how the junction tree based
inferencing can be leveraged for scalable root cause isolation.

Cyber Security Analysis using Bayesian Networks
Graphical security models are useful for visually represent-

ing and analyzing vulnerabilities in a system. Threat trees and
Bayesian networks are two of the well-known graphical for-
malisms for security modeling [7]. Bayesian networks are ver-
satile in that they can be constructed from attack models and
domain knowledge, or learned from data. Attack graphs model
how multiple vulnerabilities can be combined to result in an at-
tack. Bayesian attack graphs combine attack graphs with com-
putational procedures of Bayesian networks [8]. Wang et al. pro-
pose a probabilistic security metric for nodes in an attack graph
and provide an algorithm for computing this metric in an attack
graph [9]. Frigault et al. [10] provide a method to assign condi-
tional probability to nodes in a Bayesian attack graph based on
Common Vulnerability Scoring System scores (CVSS) and use
that to calculate security metrics. They later extend their work
to dynamic Bayesian networks to account for the evolving na-
ture of vulnerabilities and availability of software patches [11].
Likewise, Houmb et al. quantify security risk level from CVSS



estimates of frequency and impact using Bayesian networks [12].
A Bayesian network modeling approach for separating different
sources of uncertainty, such as uncertainty in attacker actions
and attack success, for real-time security analysis is described
in [13]. Feng and Xie provide an algorithm for merging ex-
pert knowledge and information stored in databases into a sin-
gle Bayesian network [14]. PGMs have also been successfully
used for root-cause analysis in different domains. For instance,
Bayesian networks have been used for fault isolation in electrical
power system [15], automotive systems [16], telecommunication
networks [17] and manufacturing processes [18].

While the references cited above illustrate the use of graph-
ical models for security analysis in different domains, we are not
aware of any previous work that has developed Bayesian network
models for anomaly detection and root-cause analysis in a cyber-
physical system based on unlabeled data. We first formulate the
challenge problem in the following section and then describe our
technical approach to solve the problem.

PROBLEM FORMULATION
A cyber-physical system is a distributed system in which

the sensors, actuators and controllers that are part of the physical
world, coordinate their operation over a communication network.
An insecure communication network makes the physical system
vulnerable to different cyber attacks, which may adversely af-
fect the operation of the system. Hence, in a cyber-physical
system, anomalies in the physical state may arise either due to
faults in the physical devices or due to malicious cyber attacks.
Our goal is to first detect anomalies in the physical system and
then determine the cause of the anomalies - whether a cyber at-
tack or a physical fault was the most likely cause of the anomaly.
This root-cause analysis is important for determining how the
anomaly should be handled. If the anomaly is a result of a cy-
ber attack, the IT staff or cyber professionals should be notified,
so that appropriate security measures can be incorporated to pre-
vent future attacks. On the other hand, if the root-cause analysis
attributes the cause of the anomaly to a physical fault, then the
control operator has to be notified, so that the faulty device can
be fixed or replaced. Thus, an accurate anomaly detection and
root-cause analysis approach enables the cyber-physical anoma-
lies to be handled in a responsive manner.

System Description
The cyber-physical system that we use for our study is

a building zone (which may consist of one or more adjacent
rooms) that is instrumented with networked sensors and actu-
ators to control the heating, ventilation, and air conditioning
(HVAC) of the zone. These sensors and actuators communicate
with a building automation system, using BacNet, a data com-
munication protocol [19]. All physical devices on BacNet are

assigned unique identifiers. The BacNet protocol can be used to
remotely query or read the state of BacNet devices. BacNet can
also be used to remotely write or modify the values of the actu-
ators on the BacNet network at a certain priority level. In our
building system, the sensors and actuators are configured to pe-
riodically report their states to the building automation system,
which maintains a timestamped log of the values. The logs from
the building automation system are supplied as input to the data-
driven approach for learning the Bayesian network structure of
the physical system.

Cyber Attack Mechanisms and Physical Faults
The networked building system described above is vulnera-

ble to different types of attacks, since the BacNet protocol cur-
rently does not provide strong authentication mechanisms. An
adversary may launch data integrity attacks remotely by send-
ing erroneous sensor measurements and estimates or by setting
incorrect actuator values. Such data integrity attacks affect the
operational goals of the building system and render the infor-
mation untrustworthy. A confidentiality attack results in unau-
thorized users gaining access to information about the physical
parameters. A denial-of-service (DoS) attack can be launched
by flooding the communication channels of the building system.
In this work, we primarily focus on data integrity attacks that
are launched from BacNet. We capture the BacNet traffic to
the building sensors and actuators using Wireshark, which is a
network sniffer. The network logs indicate which values were
queried or written.

The physical faults in a building HVAC system can occur in
the form of malfunctioning actuators, e.g., leaky water valves
and stuck air dampers. Such physical anomalies are induced
through electronic actuator override mechanisms for this current
study.

Data Description
We selected the relevant fields from the Wireshark net-

work logs as well as the logs of the physical system to gener-
ate the cyber-physical dataset. This time-series dataset of about
2500 records contains data corresponding to two cyber variables
(which we generically refer to as Cyb1 and Cyb2), two actua-
tor variables (Act1 and Act2) and four sensor variables (Sense1,
Sense2, Sense3, and Sense4). Cyb1 is a BacNet issued identi-
fier that uniquely identifies a sensor or actuator in the building
system within the BacNet network and Cyb2 identifies the Bac-
Net operation performed on the actuator or sensor. The actuator
variables, Act1 and Act2 control heating and air flow to the zone
respectively. Finally, the four sensors Sense1, Sense2, Sense3,
and Sense4 monitor zone parameters, such as temperature and
air flow at different building locations.

Cyb1 and Cyb2 are discrete variables that represent the cy-
ber part of the building CPS. The cyber data collection is event-



(a) Unaligned data. (b) Event-based alignment. (c) Time-based alignment.

Figure 1. ALIGNMENT OF CYBER AND PHYSICAL DATA

driven, which means that there is a timestamped record in the
Wireshark logs only when there is a read or write event on the
BacNet. Wireshark provides timestamps at a nanosecond granu-
larity. On the other hand, the remaining six variables listed above
are continuous variables that represent the state of sensors and
actuators in the physical system. This data is collected periodi-
cally every second and recorded in the building automation sys-
tem logs. The different modalities of the cyber and physical data
necessitate some data transformations, so that we can get an inte-
grated cyber-physical dataset that is amenable to the data-driven
approach.

One of the data transformations is the alignment of the cyber
data with the physical data. When an actuator value is modified
over BacNet, it may take several seconds for the modification to
have an impact on the physical system, as shown in Figure 1(a).
In this figure, a value of 1 in the cyber column shows a read
operation, whereas a value of 2 indicates a write operation. The
first record shows that at the time of the read event, the value
of one of the physical variables is 60. Subsequently, when a
write event occurs, it takes 3 seconds for the value of the physical
variable to stabilize to a value of 65. While the cyber data is
event-driven, the physical data is collected every second. Hence,
although there is only one explicit cyber write event in the logs,
the impact of that event on the physical state is recorded over
multiple units of time. Therefore, we need a way to relate this
temporal evolution to the corresponding cyber event. One way
to achieve this is by aligning the cyber event with the changes it
produces on the physical variables, instead of their raw values, as
shown in Figure 1(b). However, when there are multiple events
taking place concurrently, it may not be feasible to isolate these
changes. Hence, we use time-based alignment, in which the gaps
in the cyber events are filled by making the implicit cyber events
explicit, as shown in Figure 1(c).

METHODOLOGY
We now layout the process for anomaly detection and root-

cause isolation, which begins with learning a Bayesian Network

from a given training set that contains data from nominal oper-
ation of the CPS system. The resulting Bayesian network char-
acterizes the normal operation and hence, is capable of detecting
anomalies as low probability events. The same Bayesian network
also enables isolation of the root-cause of the detected anomaly.
In the following sections we describe the aforementioned steps
in greater detail.

Learning Bayesian Networks

In addition to aligning the time of the cyber events to the
physical state, as discussed in the previous section, we also
discretized the continuous variables. This data transformation
is needed, because our learning process is based on discrete
Bayesian networks. To this end, we used the discretization pol-
icy proposed in [20], that automatically determines the optimal
number of bins and their widths, given the multivariate distribu-
tion of the variables. After discretizing that data, we learned a
network structure (Directed Acyclic Graph) that maximizes the
likelihood of observing the training data. As mentioned earlier,
finding such a DAG is an NP-hard problem, hence we used effi-
cient heuristics to approximate the underlying structure. It is im-
portant to penalize dense structures as they typically lead to over-
parameterization and hence, over-fitting (bias-variance tradeoff).
To address this tradeoff, we track the Bayesian Information Cri-
terion (BIC) to drive our search for the best DAG. Figure 2 shows
the Bayesian Network structure that was learned with the help
of the GeNIe tool [21], using the building dataset that was de-
scribed in the previous section. The thickness of an edge between
a pair of nodes reflects the degree of statistical dependency be-
tween those nodes. For example Act2 has a very strong impact
on Sense2. Hence, in Figure 2, we see that the edge connecting
the two nodes is very thick. It should be noted that learning the
parameters (conditional probability tables) is done as part of the
structure learning process and need not be carried out separately.



Figure 2. BAYESIAN NETWORK STRUCTURE BASED ON THE
BUILDING CPS DATASET

Anomaly Detection
As noted earlier, given a Bayesian Network model of a CPS,

a low probability event (with respect to the network) can be re-
garded as an anomaly. Let N = {N1,N2, . . . ,Nk},k≥ 1 be the set
of nodes in the Bayesian network. Let us define sets X and Y ,
such that X ,Y ⊂ N and X ∩Y = /0. We refer to X and Y as target
set and evidence set, respectively. We can estimate the condi-
tional probability distribution of nodes in X , given the observed
values of the nodes in Y i.e. PX |Y (X). Let X(t) and Y (t) de-
note the observed state of nodes in the respective sets at instant
t. We define anomaly score (AS) with respect to X(t) and Y (t),
as shown in (1), which quantifies the degree of deviation of an
observed state from its most likely state. We use this metric for
the purpose of anomaly detection and root cause isolation, by
appropriately defining X and Y .

AS(X(t),Y (t)) =−log
PX |Y (t)(X(t))
max(PX |Y (t))

(1)

In (1), PX |Y (t)(X(t)) is the posterior likelihood of the observed
target state at instant t, and max(PX |Y (t)) is the likelihood of the
most probable target state, given the evidence set Y (t). The
posterior distribution is obtained using the Junction Tree algo-
rithm [6], which enables efficient computation of arbitrary joint
posteriors in Bayesian Networks. The intuition behind (1) is that,
as the observed state deviates away from the most probable state,
the value of the anomaly score increases.

For anomaly detection we restrict the target set to consist of
a single node, which can be either Act1 or Act2. Let T denote
the target node. The evidence set includes all the nodes except
the target node and is denoted as NvT . Then the anomaly score
for a data sample at instant t is given by AS(T (t),NvT (t)). When
this score exceeds a specified threshold, we classify that obser-
vation as an anomaly. Table 1 summarizes the results of anomaly

Table 1. ANOMALY DETECTION ACCURACY

Type of anomalies Accuracy

Cyber attacks (Act1, Act2) 81%

Physical fault (Act1, Act2) 78%

detection for the building CPS dataset, using our Bayes network
model and anomaly score metric. Anomalous readings due to
cyber attacks on Act1 and Act2 were detected with an average
accuracy of 81%. Anomalous readings in Act1 and Act2 due to
physical faults were detected with an average accuracy of 78%.

Root-Cause Isolation
The next step after detecting an anomalous event in a CPS is

to identify its root cause, i.e. whether the anomaly was caused by
a cyber attack or a physical fault. In general, a higher anomaly
score need not indicate that the target node is the root cause. Dur-
ing this inferencing step, we leverage the posterior distributions
computed by the Junction Tree algorithm during the detection
phase. Note that the posterior distribution in (1) is a conditional
distribution. If an error exists in any of the conditioning nodes, it
will lead to a higher anomaly score. Therefore, disambiguating
between different nodes to isolate the root cause using an exhaus-
tive search is, in general, a combinatorial problem. Given a target
node, our scalable solution limits the search for the root-cause to
the nodes present in the Markov blanket of the target node. The
Markov blanket of a node is defined as a set containing its par-
ents and children and all the other parents of its children. This
reduction in search space is possible due to the fact that the pos-
terior distribution of a node is independent of the nodes outside
its Markov blanket [6], provided the Markov blanket is fully ob-
served. In Figure 3, the red curve shows the nodes in Markov
blanket of Act2 and the blue curve shows the Markov blanket
of Act1, for the Bayesian network given in Figure 2. The cyber
variables appear in the Markov Blanket of both the nodes.

The primary goal of root-cause isolation is to rank the can-
didate nodes or “suspects” by how likely they are the cause of
the detected anomaly and then designate the node that is the
most likely, as the root-cause of the anomaly. To generate this
ranked list, we introduce another metric called root-cause poten-
tial (RCP). Let T (t) denote the state of the target T at an instant t,
which has been flagged as an anomaly by the anomaly detection
phase. RCPT (t)(Ni) quantifies the likelihood that Ni is the root-
cause of this anomaly. Then the node with the highest value of
RCP among the candidate nodes is considered as the most likely
root-cause of the detected anomaly. We present three algorithms
for root-cause isolation. These algorithms define the RCP met-
ric in different ways to generate the aforementioned ranked list.



Figure 3. MARKOV BLANKET FOR THE CPS DATASET

While these algorithms use the anomaly score defined in (1) as a
basis to compute the RCP of the nodes, they differ in their com-
putational complexity.

Algorithm 1: Target Evidence
Input: B: Bayes net; T: Target node; Test data
Output: RC: Root Cause Node

1 Y (t) = T (t)
2 foreach Ni ∈MarkovBlanket(T ) do
3 X(t) = Ni(t)
4 RCPT (t)(Ni)← AS(X(t),Y (t))
5 end
6 RC(T (t)) = argmaxNi

RCPT (t)(Ni)

Algorithm 1: Target Evidence. A simple way to per-
form root-cause analysis is by evaluating every node in the candi-
date set against the target node. In other words, we ask the ques-
tion: Given the observed state of the target T as evidence, what
is the likelihood that a node Ni ∈MarkovBlanket(T ) is the cause
of the anomaly? Algorithm 1 is a method to address this ques-
tion. In Algorithm 1, the RCP of a node is given by its anomaly
score with respect to the target node (Line 4 in Algorithm 1).

It should be noted that the evidence set doesn’t change dur-
ing the RCP computation of the candidate nodes. As a result,
the Algorithm 1 has a low computational overhead because it
requires only a single message passing step. However, on the
down side, when computing the RCP of a node Ni, it consid-
ers only the pairwise interaction between Ni and the target node
while ignoring information about the other nodes in the Bayesian
network. In general, there may be dependencies between Ni and
other nodes that need to be considered. Performing root-cause

analysis by considering only partial interactions may result in
lower accuracy.

Algorithm 2: All Evidence.
Input: B: Bayes net; T: Target; Test data
Output: RC: Root Cause Node

1 foreach Ni ∈MarkovBlanket(T ) do
2 X(t) = Ni(t)
3 Y (t) =v Ni(t)
4 RCPT (t)(Ni)← AS(X(t),Y (t))
5 end
6 RC(T (t)) = argmaxNi

RCPT (t)(Ni)

Algorithm2: All Evidence. Algorithm 2 addresses the
key shortcoming of Algorithm 1, by taking into account the in-
teraction among all the nodes, instead of the just the target node
T , when computing the RCP. This algorithm asks the following
query: What is the likelihood that node Ni is the root-cause of the
anomalous state T (t), given the evidence about the other nodes
in the candidate set excluding Ni?

The advantage of Algorithm 2 is that it uses more informa-
tion than Algorithm 1 to perform root-cause analysis. However,
the evidence set Y changes while computing the RCP of every
candidate node (Line 3 in Algorithm 2). As a result, the message-
passing step is repeated for every RCP computation, which leads
to a higher computational overhead during inferencing.

Algorithm 3: Clique-Based Evidence. Algorithm 3
addresses some of the drawbacks of Algorithm 1 and Algo-
rithm 2 to provide a more scalable way to perform root-cause
analysis. Algorithm 3 uses more information than Algorithm 1
to infer the root-cause, but unlike Algorithm 2, it requires only a
single message passing step. Instead of computing the RCPs of
individual nodes, Algorithm 3 is a novel approach that computes
the RCP of a collection of nodes, called cliques. These cliques
are inherently generated during the junction tree based inference
process. Of all the cliques present in the junction tree, the al-
gorithm considers only those that contain at least one node in
Markov Blanket of T . Unlike the previous two algorithms where
the RCPs were computed using non-empty evidence sets, this al-
gorithm uses an empty evidence set (Line 4 in Algorithm 3), and
therefore requires only a single message passing step to compute
the RCP of all the candidate nodes. The RCP of a node Ni is
computed as the average of the anomaly scores of the cliques,
Q j, that Ni is a member of (Line 13 in Algorithm 3).

The low computational overhead of Algorithm 3 makes it
amenable for online analysis. The cliques can be pre-computed



Algorithm 3: Clique-Based Evidence
Input: B: Bayes net; T: Target node; Test data
Output: RC: Root Cause Node

1 Determine the cliques Q = {Q1,Q2, . . . ,Qk} of B by
running the junction tree inferencing algorithm.

2 M( j, i)← 1∀ nodes Ni ∈ clique Q j
3 M( j, i)← 0∀ nodes Ni /∈ clique Q j
4 Y (t) = /0

5 foreach Ni ∈MarkovBlanket(T ) do
6 wtSum← 0
7 numCliq← 0
8 foreach Q j ∈ Q do
9 X(t) = Q j(t)

10 wtSum← wtSum+M( j, i)∗AS(X(t),Y (t))
11 numCliq← numCliq+M( j, i)
12 end
13 RCPT (t)(Ni)← wtSum

numCliq
14 end
15 RC(T (t)) = argmaxNi

RCPT (t)(Ni)

and as new data streams in, only the anomaly score and RCP
needs to be computed. We have empirically observed that the
smaller cliques lead to better isolation of the root-cause. A dense
Bayesian Network, results in large cliques, therefore, in such
cases, it may be necessary to consider the subsets of the clique,
in order to achieve better root-cause isolation.

RESULTS AND DISCUSSION
We implemented the three root-cause analysis algorithms

described in the previous section in Matlab and compared their
performance using a test dataset from the building system. In
this section, we present the results of the evaluation.

Root-Cause Evaluation
After detecting the anomalies in the anomaly detection

phase, we determined the root-cause of different anomalies, us-
ing the 3 algorithms. Table 2 compares the accuracy of these
algorithms. As mentioned earlier, the anomalies in our test data
are due to either a cyber attack on the actuator variables control-
ling the heating (Act1) and air flow (Act2) or due to a fault in a
physical variable that impacts the state of the Act1 and Act2 vari-
ables. We know the ground truth for the test dataset. Our goal is
to determine the accuracy of the 3 algorithms by validating their
inference with the ground truth.

The results show that when there is a cyber attack on Act1
(Column 2 in Table 2), Algorithm 1 is able to correctly infer
that the root-cause of the anomaly is indeed a cyber variable, for
only 2% of the test records. On the other hand, Algorithm 2

Table 2. ROOT-CAUSE ACCURACY

Algorithm Cyber Cyber Physical Physical

Act1 Act2 Act1 Act2

Algorithm 1 2% 0% 49% 84%

Algorithm 2 56% 80% 77% 99%

Algorithm 3 67% 94% 77% 99%

Table 3. COMPUTATIONAL TIME PER TEST RECORD

Algorithm Time (millisec)

Algorithm 1 90

Algorithm 2 379

Algorithm 3 84

and Algorithm 3 have a much higher accuracy of 56% and 67%,
respectively. When there is a cyber attack on Act2 (Column 3),
Algorithm 1 incorrectly infers the root-cause of the anomaly to
be a physical fault for all of the test records. Again, Algorithm 2
and Algorithm 3 have a much higher accuracy of 80% and 94%,
respectively.

When the anomaly in Act1 is due to a fault in a physical
variable (Column 4), Algorithm 1 correctly identifies the root-
cause as a physical fault for 49% of the test records, while the
accuracy of Algorithm 2 and Algorithm 3 is 77% for both cases.
Similarly, when the anomaly in Act2 is due to a fault in a physical
variable (Column 5), Algorithm 1 correctly identifies the root-
cause as a physical fault for 84% of the test records, while the
inference accuracy of Algorithm 2 and Algorithm 3 is 99% for
both cases.

Computational Time
Table 3 shows the total computational time for anomaly de-

tection and root-cause analysis per test record. Algorithm 2 has
a high computational time, because the evidence changes and
hence, the message passing step during inferencing has to be re-
peated when computing the RCP for each candidate node. On the
other hand, Algorithm 1 uses only one additional message pass-
ing step at the beginning (Line 2 in Algorithm 1). Algorithm 3
does not require any additional message passing, as it reuses the
message passing that was done as part of the anomaly detection
phase. Hence, both these algorithms have relatively low compu-
tational overhead.



Algorithm Comparison
In summary, Algorithm 1 has low computational complex-

ity. However, its inferencing is mainly conditioned on the ob-
served state of the target node and it does not consider the de-
pendencies between the other nodes. Hence, its inferencing ac-
curacy is relatively poor. Algorithm 2 has a better accuracy than
Algorithm 1, because its inference is based on more evidence.
However, there may be some overfitting, because its inference is
conditioned on the observed states of all the nodes in the comple-
ment set. Among the 3 algorithms, Algorithm 3 has the lowest
computational overhead and the best root-cause accuracy for all
the anomalies. Not only was it able to correctly infer the root-
cause as a cyber attack or a physical fault, but in the case of the
physical fault, in many cases it was also able to correctly infer
the exact physical variable that caused the anomaly. This result
can be attributed to the fact that Algorithm 3 exploits a natural
partitioning of the graphical model via cliques and it examines
individual cliques in an isolated manner to discover local anoma-
lies that may result in faults at the system level.

CONCLUSIONS AND FUTURE WORK
Anomaly detection and root-cause analysis are essential for

building resilient cyber-physical systems. Anomalies in cyber-
physical systems, such as a smart grid or a smart building in-
strumented with networked sensors and actuators, may arise due
to malicious cyber attacks or operational faults in the physical
devices. Accurately detecting the anomalies and isolating their
root-cause is important for identifying appropriate reactive and
mitigating measures. However, this task is extremely challeng-
ing, as certain cyber attacks and physical faults may have very
similar signatures on the system. Furthermore, the impact of a
cyber attack on the operation of a physical system may manifest
itself only after some time. Hence, we need suitable methods to
not only model the causal relations between the cyber and physi-
cal variables, but also to take into account this temporal behavior.

In this paper, we presented a Bayesian network approach
for learning these causal relations from unlabeled data. One
of the challenges of the problem is that cyber data is typically
event-driven and discrete, whereas physical data from sensors
and actuators is periodic and continuous. We briefly discussed
the data transformations that we performed to deal with the het-
erogeneity, so that the integrated dataset can be used to learn the
Bayesian network structure and parameters. We also presented
scalable algorithms to detect anomalies and isolate their root-
cause using the Bayesian network approach. The novel clique-
based algorithm for root-cause analysis was particularly effec-
tive in isolating the root-cause of cyber and physical attacks. It
uses the cliques generated from the junction tree algorithm for
Bayesian networks to compute the correlations and isolate the
root-cause.

As part of the future work, we plan to validate these

Bayesian network algorithms for anomaly detection and isola-
tion using larger datasets from different domains. In addition, a
couple of key technical research directions currently being pur-
sued are: (i) explicit modeling of temporal correlations among
cyber and physical entities for increased robustness of data-
driven diagnosis algorithms, and (ii) discovery of fault propaga-
tion patterns and attack graphs for a cyber-physical system from
a generative Bayesian network model of the system.
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