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Abstract— The concepts of symbolic dynamics and data
set partitioning have been used for feature extraction and
anomaly detection in time series data. Although modeling
of state machines from symbol sequences has been widely
reported, similar efforts have not been expended to investigate
partitioning of time series data to optimally generate symbol
sequences for anomaly detection. This paper addresses this
issue and proposes a partitioning method based on maximum
migration of data points across cell boundaries. Various aspects
of the proposed partitioning tool, such as adaptiveness of
alphabet size selection, noise mitigation, and robustnessto
spurious disturbances, are discussed. Experimental results on
laboratory apparatuses of electronic circuits and electric motors
show that maximum-migration partitioning yields significant
improvement over existing partitioning methods (e.g., maximum
entropy partitioning) for the purpose of anomaly detection.

1. INTRODUCTION

Early detection of anomalies (i.e., deviations from nominal
behavior) in human-engineered complex dynamical systems
is essential for prevention of catastrophic failures, enhance-
ment of performance and survivability. In general, the suc-
cess of data-driven anomaly detection techniques depends
on the quality of feature extraction from sensor time-series
data. To this end, several tools of feature extraction tools,
such as principal component analysis (PCA) [1], indepen-
dent component analysis (ICA) [2], kernel PCA [3], and
semidefinite embedding [4], have been reported in literature.
Symbolic Dynamic Filtering (SDF) [5] is a data-driven tool
of anomaly detection, which is built upon the concepts of
symbolic dynamics. SDF also serves as a feature extraction
method via partitioning of time-series data to generate sym-
bol sequences.

Although modeling of state machines from symbol se-
quences has been widely reported, similar efforts have not
been expended to investigate partitioning of time series
data to optimally generate symbol sequences for anomaly
detection. Stauer et al. [6] reported comparison of maxi-
mum entropy partitioning and uniform partitioning; it was
concluded that maximum entropy partitioning is a better

tool for change detection in symbol sequences than uniform
partitioning. Symbolic false nearest neighbor partitioning
(SFNNP) optimizes a generating partition by avoiding topo-
logical degeneracy. However, a shortcoming of SFNNP is
that it may become extremely computation intensive if the
dimension of the phase space of the underlying dynamical
system is large. Furthermore, if the time series data become
noise-corrupted, the symbolic false neighbors rapidly grow
in number and may erroneously require a large number
of symbols to capture pertinent information on the system
dynamics [7]. The wavelet transform largely alleviates the
above shortcoming and is particularly effective with noisy
data for large-dimensional dynamical systems [8]. Maximum
entropy partitioning was utilized to convert the wavelet
space partitioning (WSP) data to a sequence of symbols.
Although WSP is significantly computationally faster than
SFNNP and is suitable for real-time applications, WSP
too has several shortcomings including: requirements of
good understanding of signal characteristics for selection of
the wavelet basis, identification of appropriate scales, and
conversion of the two-dimensional scale-shift domain into
a single dimension. Subbu and Ray [7] introduced Hilbert-
transform-based analytic signal space partitioning (ASSP) as
an alternative to WSP. Sarkar et. al [9] generalized ASSP
for symbolic analysis of noisy signals. Nevertheless, these
partitioning techniques primarily attempts to provide an ac-
curate symbolic representation of the underlying dynamical
system under a given quasistationary condition. Therefore, a
partitioning that focuses on statistical changes of time-series
data as the dynamical system moves from one quasistationary
condition to another may prove to be more useful for the
purpose of anomaly detection.

SDF can be interpreted as a tool for compressing and
transferring dynamical system information from the space of
time-series data to the space of patterns via data partitioning
and state machine construction. Properties and variations
of transformation from symbol space to pattern space have
been thoroughly studied in mathematics, computer science



and especially data mining literature. Although quite a few
variations of partitioning techniques are reported in the
physics and signal processing literature, only a few of them
address the issue of anomaly detection in particular. This
paper proposes a partitioning method based on maximized
migration of time series data points across cell boundaries
during evolution of the underlying dynamical system. To
this end, a framework is presented toward optimization of
this partitioning scheme for anomaly detection and inves-
tigates its major features, namely, robustness of extracted
information from symbol sequences and enhancement of
computation efficiency. The paper is organized into four sec-
tions including the present section. The partitioning scheme
is described in an optimization framework in Section 2
along with its key features. Section 3 validates the pro-
posed concepts on an active electronic circuit apparatus that
implements a second order non-autonomous forced Duffing
equation [10]. Section 4 summarizes the paper and makes
major conclusions along with recommendations for future
research.

2. OPTIMIZATION OF THE PARTITIONING SCHEME

Recent literature [5] [8] has explored the concepts of
symbolic dynamics and data set partitioning to develop
a computationally efficient tool called Symbolic Dynamic
Filtering (SDF) for anomaly detection in complex dynamical
systems. Although the SDF methodology is reported in
recent literature, a brief outline of the procedure is succinctly
presented here for completeness of the paper.

Anomaly detection from time series data is posed as a
two-scale problem. Thefast scaleis related to the response
time of the process dynamics. Over the span of data acqui-
sition, dynamic behavior of the system is assumed to remain
invariant, i.e., the process is quasi-stationary at the fast scale.
On the other hand, theslow scaleis related to the time span
over which anomalies may occur and exhibit non-stationary
evolution of the system dynamics. SDF detects the statistical
changes in behavioral patterns over slow-scale epochs that
are simply referred to as epochs in the sequel. The first part
of the method, which is called theforward probleminvolves
generation of patterns from training data, which is comprised
of the following steps.

• Sensor time series data, generated from a physical
system or its dynamical model, are collected at several
training epochs over the range of operation. A compact
(i.e., closed and bounded) regionΩ ∈ R

n, wheren ∈ N,
within which the stationary time series is circumscribed,
is identified. Let the space of time series data sets be
represented asQ ⊆ R

n×N , whereN ∈ N is sufficiently
large for convergence of statistical properties within a
specified threshold. Then,{qi} ∈ Q denotes a time
series at an epochi ∈ {0, 1, ..., l − 1}, where l is the
number of epochs under consideration. Let the epoch0
denote the reference/nominal condition.

• Encoding ofΩ is accomplished by introducing a par-
tition B ≡ {B0, ..., B(m−1)} consisting of m mutually
exclusive (i.e.,Bj ∩ Bk = ∅ ∀j 6= k), and exhaustive
(i.e., ∪m−1

j=0 Bj = Ω) cells. Let, each cell be labeled by
symbolssj ∈ Σ where Σ = {s0, ..., sm−1} is called
the alphabet. This process of coarse graining can be
executed by uniform, maximum entropy, or any other
form of partitioning with respect to the data set at epoch
0. Then, the time series data points{q0} that visit the
cell Bj are denoted assj ∀j = 0, 1, ..., m − 1. This
step enables transformation of the reference time series
data{q0} to a symbol sequence{s0}. To alleviate the
difficulties in partitioning of noisy time series, it can
be transformed to wavelet space [8] or analytic signal
space [7]. Similar to the reference condition, symbol
sequences{s0}, {s1}, ..., {sl−1} are generated from the
data at other epochs using the same partitioning created
at the reference condition.

• A probabilistic finite state machine (PFSA) is then
constructed with a chosen depth and the training epoch
symbol sequences are run through it. Thus a state
transition matrixΠi = [πi

jk ], wherej, k ∈ {1, 2, ..., r}
are the states of the PFSA with an(r×r) state transition
matrix, is obtained for each training epochi. Since
πi

jk ≥ 0 is the transition probability from statej to state
k, Πi is a stochastic matrix, i.e.,

∑

k πi
jk = 1. Often to

compress the information further, the state probability
vector pi = [pi

1 · · · pi
r] that is the left eigenvector

corresponding to the (unique) unity eigenvalue of the
irreducible stochastic matrixΠi) is calculated at each
epoch i. The vectorpi is called the pattern vector
at the respective training epochi in the sequel, and
is a relatively low-dimensional representation of the
dynamical system at the current epoch. LetP denote
the space of pattern vectorsp.

• The anomaly measure, also called deviation measure,
is obtained from the distance of a pattern vectorpi (or
state transition matrixΠi) at an epochi from the refer-
ence pattern vectorp0 (or state transition matrixΠ0) at
epoch0. For example, the deviation measureµ at epoch
i can be calculated asµ(pi, p0) as a scalar distance (e.g.
Euclidean norm or Kullback distance [11]) between two
vectorspi andp0. In the forward problem, evolution of
deviation patterns over the epochs is determined in a
statistical sense [12].

Given a deviation measure, theinverse problemyields an
estimate of the current condition of the system.

An example of anomaly detection for a nonlinear elec-
tronic system apparatus modeled on the Duffing equation [5],
[13] is considered at this point. The Duffing equation is given
below.

d2y

dt2
+ β

dy

dt
+ y(t) + y3(t) = Acos(Ωt) (1)
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Fig. 1. Anomaly Evolution Profile for Duffing equation

where the dissipation parameterβ varies slowly with respect
to the response of the dynamical system; and a change
in the value ofβ is considered as an anomaly. With the
input amplitudeA = 22.0 and input frequencyΩ = 5.0,
Fig. 1 shows the anomaly evolution profile obtained from
the forward problem using maximum entropy partitioning
with alphabet size8.From the perspective of inverse problem,
monotonicity of anomaly evolution is a necessary condition
for identification ofβ based on a given value of the deviation
measure. However, in the incipient anomaly condition the
slope of the curve is observed to be small and due to noise it
can be seen that the anomaly evolution curve has significant
variance, which causes a potential difficulty in the execution
of the inverse problem, i.e., given a deviation measure, there
may exist a wide range of possible values ofβ.

The SDF-based anomaly detection tool has been shown
to be superior in performance, especially for detection of
incipient anomalies, compared to other pattern recognition
tools, such as principal component analysis (PCA), arti-
ficial neural network (ANN), and particle filter (PF). In
this context, the focus of this paper is to explore further
improvement of the SDF performance for the purpose of
anomaly detection. In the current SDF methodology, and
also in other literature, partitioning is done based on nominal
data. In such cases, even if the partitioning is optimal
(e.g., in terms of maximum entropy or some other criteria)
under nominal conditions, there is no guarantee that it
will satisfy the monotonicity condition. On the other hand,
partitioning based on the nominal stationary data does not
consider evolutionary characteristics of the data over the
epochs. Hence, it may be advantageous to take non-stationary
dynamics into consideration and create partitioning basedon
changes of time series data over different epochs. This is
the key idea of the maximum migration partitioning (MMP)
method; the rationale of this nomenclature is explained in
the next section. The ultimate goal is to obtain a well-
conditioned anomaly evolution curve even at the incipient
anomaly conditions, which is very useful for anomaly (or
fault) detection in real complex systems.

A. The Maximum Migration Partitioning (MMP)

Given the structure of the PFSA, a mapping from the
data space to the pattern space, denoted byΓB(·), depends
only on the chosen partitioningB. Let pattern vectorspi be
considered for anomaly detection. Hence,ΓB(qi) = pi

B
for

epochi ∈ {0, 1, ..., l−1}, whereqi is the time series data as
defined earlier in Section 2. Furthermore, let the epoch be a
function of a single system parameter. Then, the maximum
migration partitioning (MMP)B∗ satisfies the following two
conditions.

1) The mappingΓB∗ : Q → P is bijective, i.e. time series
data at two different epochs that are statistically differ-
ent are not be mapped as the same pattern; otherwise,
it will be impossible to distinguish between deviation
measures at those two epochs in the inverse prob-
lem. Therefore, bijectivity is a necessary condition for
MMP. Since the deviation measureµ is a continuous
function of the pertinent slowly varying parameter(s),
bijectivity of ΓB∗ implies strict monotonicity and is a
necessary condition for MMP.

2) With the constraint of the first condition, theB∗ is
given by maximizing the multi-objective vector reward
function JB defined as

B
∗ = argmax

B

JB , arg max
B











µ(p1
B
, p0

B
)

µ(p2
B
, p0

B
)

...
µ(pl−1

B
, p0

B
)











(2)

Condition 2 justifies the nomenclature of the maximum
migration partitioning (MMP) technique as explained in the
following remark.

Remark 2.1:At an off-nominal epochi, i.e., i > 0, net
migration of data points from one cell of the partitioning
to another is maximized when the time series evolves from
q0 to qi. That is why this partitioning is named maximum
migration. The concept of MMP is analogous to the that
of particle migration from one energy level to another in
the Statistical Mechanics setting [14]; however, only the net
data point migration is relevant to partitioning. Otherwise,
migration of data points among different partitioning cells,
which keeps the state occupation probabilities unchanged,
will result in a zero deviation measure. Therefore, in the
context of Statistical Mechanics, the particles are identical
and indistinguishable. If evolution of the state transition
matrix Π is considered instead of the pattern vectorsp, it
might be possible to identify a change inΠ without any net
migration of data points.

The satisfaction of the above two conditions may require
Pareto optimization [15] even for one-dimensional time se-
ries data sets. It is possible for certain ill-conditioned data
sets the solution of the optimization procedure may become
intractable. While the future work will be devoted to develop
an elaborate optimization algorithm, this paper provides a



relatively simpler algorithm for one-dimensional (i.e.,n = 1)
time-series data in the following subsection, primarily to
establish validity of the proposed MMP concept.

B. Maximum Migration Partitioning Procedure

This section describes a sub-optimal solution for the
constrained multi-objective optimization problem described
in Section 2-A. The objective spaceO consists of the reward
vector J , while decisions are made in the spaceP of
all possible partitions. The reward vectorJ is broken up
into individual rewards functionsJ i = µ(pi, p0), that are
independently optimized to obtain the individual maxima.
As a further simplification, it is assumed that the time series
data is one-dimensional (i.e.,n = 1) wherein a partition
consisting ofm cells may be succinctly represented by the
m − 1 points that separate the cells. In other words, anm-
cell partition is expressed byΛ , {λ1, λ2, · · · , λm−1} with
cardinality |Λ| = m − 1.

The deviation measure for theith epoch µ(pi, p0) is
dependent on its specific partitionΛ and is denoted by
J i(Λ) = µ(pi

Λ, p0
Λ). This sub-optimal partitioning scheme

involves sequential estimation of the elements of the parti-
tioning Λ.

The partitioning process is initiated by dividing the data
set into two cells,Λ2 = {λ1}, whereλ1 is evaluated as

λ∗

1 = argmax
λ1

J i(Λ2) = argmax
λ1

µ(pi
Λ2

, p0
Λ2

) (3)

Now, the two-cell optimal partitioning is given byΛ∗

2 =
{λ∗

1}. The next step is to partition the data into three cells
asΛ3) by dividing either of the two existing cells ofΛ∗

2 with
the placement of a new partition boundary atλ2, whereλ2

is evaluated as

λ∗

2 = argmax
λ2

J i(Λ3) = argmax
λ2

µ(pi
Λ3

, p0
Λ3

) (4)

where Λ3 = {λ∗

1, λ2}. The optimal3-cell partitioning is
obtained asΛ∗

3 = {λ∗

1, λ
∗

2}. In this (local) optimization
procedure, the cell that provides the largest increment in the
reward function upon further segmentation ends up being
partitioned. Iteratively, this procedure can be extended to
obtain them cell partition as follows.

λ∗

m−1 = arg max
λm−1

J i(Λm) = arg max
λm−1

µ(pi
Λm

, p0
Λm

) (5)

where Λm = Λ∗

m−1 ∪ {λm−1} and the optimalm cell
partitioning is given byΛ∗

m = Λ∗

m−1 ∪ {λ∗

m−1}
This optimization procedure is monotonically increase in

the reward function with every additional sequential oper-
ation, i.e.J i(Λ∗

m−1) ≤ J i(Λ∗

m). This is evident from the
following argument.

Let Λ∗

m−1 be the (m − 1)-cell partition that maximizes
the reward J i(Λm−1). Based on the algorithmΛm =
Λ∗

m−1 ∪ {λm−1}), if λm−1 is chosen such that it already
belongs toΛ∗

m−1, then there would be no change in the
partitioning structure andJ i(Λm) = J i(Λ∗

m−1). Since

J i(Λ∗

m) ≥ J i(Λm) ∀Λm, it follows that maxJ i(Λm−1) ≤
maxJ i(Λm). The monotonicity in the reward functionJ i

allows formulation of a rule for termination of the sequential
optimization algorithm. The process of creating additional
partitioning cells is stopped if the gain in the reward falls
below a specified thresholdηstop and the stopping rule is:

J i(Λ∗

m) − J i(Λ∗

m−1) ≤ ηstop. (6)

Let the suboptimal maximum migration partitioning
(MMP) at an epochi be denoted asΛ∗(i), in which the
above procedure is followed to obtain consecutive partitions
Λ∗(1), Λ∗(2), ..., Λ∗(l − 1) for l − 1 off-nominal training
epochs. These partitions capture the slowly varying non-
stationary evolution of the dynamical system at different
epochs. If the statistical characteristics of the dynamical
system do not significantly change over the range of the
training epochs, then it is expected thatΛ∗(i) ≈ Λ∗(j) for
i 6= j. In other words, the cell boundaries in the partitions
for different epochs form clusters on the decision space,
which is viewed as a near-Utopian global partitioningΛ∗

global

that takes the mean of partitions across all training epochs
to simultaneously satisfy optimization criteria for different
epochs; it is considered as the universal partitioning for
the data set (e.g., the data sets of the Duffing system in
Section 3).

Remark 2.2:However, there may exist certain epochs for
which the partitioning is significantly different from the rest.
In this paper, these outlier partitions are not considered for
construction ofΛ∗

global. In general, if the partitioning for
individual epochs are not clustered in the decision space,
a Pareto surface should be constructed. Furthermore, since
this method of partitioning may not guarantee monotonicity.
it needs to be chosen from the Pareto set based on the mono-
tonicity constraint (see Section 2-A) and weights assignedto
each epoch. This is a topic of future research.

3. EXPERIMENTAL VALIDATION OF MAXIMUM

M IGRATION PARTITION

This section evaluates the performance of maximum mi-
gration partitioning (MMP) for anomaly detection by exper-
imentation on a nonlinear electronic circuit that implements
Duffing equation.

A. Anomaly detection in Duffing system

Experiments have been conducted for anomaly detection in
a nonlinear active electronic circuit that emulates the forced
Duffing equation [10]

d2y

dt2
+ β

dy

dt
+ y(t) + y3(t) = Acos(Ωt) (7)

where amplitudeA = 22.0, Ω = 5.0 and the dissipation
parameterβ is slowly varied from0.1 to 0.4. The nominal
condition is atβ = 0.1 and the anomalous conditions are at
β = 0.20, 0.26 and 0.32. A detailed description of the ex-
perimental setup and the accompanying results for anomaly



detection obtained by using the maximum entropy partition-
ing (MEP) scheme reported in earlier publications [8][12].
This subsection compares the results obtained by MEP with
those obtained by MMP that is developed in this paper.

The time seriesq0, q1, q2 andq3, sampled from the sensor
data y(t) in the experiment, are collected for the nominal
condition atβ = 0.10 and for three other training epochs
representing anomalous conditions atβ = 0.20, β = 0.26
and β = 0.32, respectively. The MMP scheme is then
implemented to obtain the partition setsΛ∗(1), Λ∗(2) and
Λ∗(3) for the three anomalous epochs, respectively.
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Fig. 2. Reward function vs. partitions for Epoch1 in Duffing system

Figure 2 depicts the optimization process for obtaining the
partition setΛ∗(1) at β = 0.20, whereλ∗

1 is evaluated by
maximizing the reward functionJ1({λ1}). Figure 2 shows
both the reward function and its corresponding optimal value
λ∗

1 and the second partitionλ∗

2 is obtained by maximizing the
functionJ1({λ∗

1, λ2}). As described in Subsection 2-A,λ∗

1 is
kept fixed whileλ2 is optimized. This suboptimal process is
recursively continued until the thresholdηstop = 4.0× 10−4

is reached, which leads to the creation of6 cells (i.e., 5
partitions) denoted byΛ∗

6(1) = {λ∗

1, · · · , λ∗

5} as shown in
Fig. 2.

The above procedure is repeated for the two other anoma-
lous epochs atβ = 0.26 andβ = 0.32 to obtain the partition
setΛ∗

6(2) andΛ∗

6(3), respectively. These three partition sets
are superimposed on the time series data in Fig. 3. Inter-
estingly, even though the three partition sets were obtained
by independent maximization of the reward functionsJ1 =
µ(p1, p0), J2 = µ(p2, p0) and J3 = µ(p3, p0); they lie in
close proximity of one another. In fact the partitions obtained
across the epochs are within a bound ofε = 0.15 from each
other. This result justifies the conjecture made at the end of
subsection 2-B and eludes to the possibility of obtaining a
near-utopian (sub)optimal partitioning scheme. The mean of
the three partition set is taken as the final partitioningΛ∗

global,
obtained by the MMP method. The alphabet size is the same
as the number of partitioning cell and is equal to6.

For maximum entropy partitioning (MEP) [8], an alphabet
size of |Σ| = 8 is chosen and the partition set is generated

0 0.02 0.04 0.06 0.08 0.1
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

Time (sec)

V
ol

ta
ge

 (
V

)

 

 
β=0.10
β=0.20
β=0.26
β=0.32

λ
5
*

λ
1
* λ

3
*

λ
2
* λ

4
*

Fig. 3. Partitioning Duffing time series data using MMP

0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Parameter β

N
or

m
al

iz
ed

 A
no

m
al

y 
M

ea
su

re

 

 

MEP
MMP (testing)
MMP (training)

Fig. 4. Comparison of anomaly evolution profiles

from the nominal dataβ = 0.10. Normalized measure
µ(pi, p0) quantifies the deviation of the Duffing system be-
havior from its nominal condition. Euclidean distance is used
asµ(·, ·) for the whole exercise. Figure 4 plots the deviation
measure versus the dissipation parameterβ by using both
the MEP and the MMP methods. The following qualitative
differences between the deviation measure profiles obtained
by the two different partitioning scheme are observed.

• The deviation measureµ in MMP provides high sen-
sitivity in the region close toβ = 0.1; hence, a
better detection of incipient faults becomes possible
along with reduction in probability of false alarms and
missed detections of anomaly. It also provides a better
estimation of the parameterβ.

• The Duffing system is nonlinear and undergoes bifur-
cations. Phase plots and time response plots in [13]
show that the system behavior abruptly changes around
β = 0.32. The partitioning obtained by MEP depends
only on the nominal condition (β = 0.1) and is therefore
rendered ineffective for anomaly detection forβ is
beyond the point of bifurcation. In fact, Fig. 4 shows
that the sensitivity of the MEP anomaly profile is almost
negligible for large values ofβ (i.e., > 0.32). On the
other hand, the MMP deviation measure profile has



sufficient sensitivity in the region beyond the point of
bifurcation. This may be attributed to the fact that MMP
captures the evolution of the dynamical system from a
training set and, unlike MEP, it is not based on any
single epoch.

Based on the above observations, it is concluded that MMP
has certain advantages over MEP for partitioning, especially
for detection of incipient anomaly and for estimation of
critical parameter(s) beyond the point of bifurcation.

4. SUMMARY, CONCLUSIONS ANDFUTURE WORK

This paper presents a novel method of partitioning time
series data for anomaly detection. In this approach, the trans-
formation from the data space to pattern space is optimized
to improve the capability of symbolic feature extraction. The
advantage of using maximum migration partitioning (MMP)
over maximum entropy partitioning (MEP) are demonstrated
by testing on experimental data. The major aspects of this
methodology is summarized below along with important
conclusions.

• Identification of the evolving characteristics of the dy-
namical system: The MMP is shown to capture the
nonstationary evolution of a dynamical system. Hence,
it has the capability to generate a well-conditioned
anomaly evolution profile in the forward problem that
leads to better anomaly estimation in the inverse prob-
lem.

• Optimization of alphabet size: During traditional par-
titioning process, the alphabet size is typically a user-
defined quantity. The stopping rule (see Subsection 2-A)
in the MMP scheme provides a way to systematically
arrive at the correct alphabet size. This helps in avoiding
redundant partitions, which thereby reduces computa-
tional complexity.

• Issue of Sensitivity and Robustness: In the partitioning
algorithm, MMP is made sensitive to small changes
in the time series. Although this property improves
the anomaly detection capability for incipient anoma-
lous conditions, robustness may become a potential
problem, especially for data with high noise content.
As discussed in Subsection 2-B and Section 3, over
different epochs, partitions are observed to form clusters
of certain widths. It is also observed that fluctuation
of partitions within that cluster does not change the
anomaly evolution profile significantly, proving the
method’s robustness property. However, further in depth
study on the tradeoff between sensitivity and robustness
will be an important future work.

• MMP is shown to be a tool to magnify the deviations in
data space during transformation to pattern space and
this is achieved by rewarding larger distances between
pattern vectors in pattern space. However, another po-
tential promise of MMP is to make the pattern space
input independent, which will make nonlinear systems

behave like a linear system. This might be possible by
penalizing the deviations in pattern space upon change
in input for a particular epoch.

As the concept of MMP is proposed here for the first
time to the best of the authors’ knowledge, this method of
space partitioning for anomaly detection requires continued
theoretical and experimental research. The following topics
are recommended for future research.

• Formulation of a Pareto multi-objective optimization
algorithm to generate MMP for a general time-series
data.

• Extension of the MMP algorithm for multi-dimensional
time-series data.

• Modification of the MMP algorithm in transformed
space (e.g., Hilbert transform, wavelet transform) of
time-series data.

• Modification of the MMP algorithm for input indepen-
dence by penalizing the deviations in pattern space upon
change in input for a particular epoch.
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