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Abstract— The concepts of symbolic dynamics and data tool for change detection in symbol sequences than uniform
set partitioning have been used for feature extraction and partitioning. Symbolic false nearest neighbor partitiani
anomaly detection in time series data. Although modeling (SFNNP) optimizes a generating partition by avoiding topo-

of state machines from symbol sequences has been widely, . - .
reported, similar efforts have not been expended to invegiate logical degeneracy. However, a shortcoming of SFNNP is

partitioning of time series data to optimally generate symil ~ that it may become extremely computation intensive if the
sequences for anomaly detection. This paper addresses this dimension of the phase space of the underlying dynamical

issue and proposes a partitioning method based on maximum system is large. Furthermore, if the time series data become
migration of data points across cell boundaries. Various gsects noise-corrupted, the symbolic false neighbors rapidlyngro

of the proposed partitioning tool, such as adaptiveness of . b d | - | b
alphabet size selection, noise mitigation, and robustnest® In number and may erroneously require a large number

spurious disturbances, are discussed. Experimental ression ~ Of symbols to capture pertinent information on the system
laboratory apparatuses of electronic circuits and electrt motors ~ dynamics [7]. The wavelet transform largely alleviates the

show that maximum-migration partitioning yields significant  apove shortcoming and is particularly effective with noisy
improvement over existing partitioning methods (e.g., masnum 4414 for large-dimensional dynamical systems [8]. Maximum
entropy partitioning) for the purpose of anomaly detection e -
entropy partitioning was utilized to convert the wavelet

space partitioning (WSP) data to a sequence of symboals.
Although WSP is significantly computationally faster than

Early detection of anomalies (i.e., deviations from norhinaSSFNNP and is suitable for real-time applications, WSP
behavior) in human-engineered complex dynamical systemso has several shortcomings including: requirements of
is essential for prevention of catastrophic failures, @gea good understanding of signal characteristics for selaabib
ment of performance and survivability. In general, the suache wavelet basis, identification of appropriate scales, an
cess of data-driven anomaly detection techniques depenctmversion of the two-dimensional scale-shift domain into
on the quality of feature extraction from sensor time-seriea single dimension. Subbu and Ray [7] introduced Hilbert-
data. To this end, several tools of feature extraction toolsransform-based analytic signal space partitioning (AS8P
such as principal component analysis (PCA) [1], indeperan alternative to WSP. Sarkar et. al [9] generalized ASSP
dent component analysis (ICA) [2], kernel PCA [3], andfor symbolic analysis of noisy signals. Nevertheless, ¢hes
semidefinite embedding [4], have been reported in liteeaturpartitioning techniques primarily attempts to provide an a
Symbolic Dynamic Filtering (SDF) [5] is a data-driven toolcurate symbolic representation of the underlying dynamica
of anomaly detection, which is built upon the concepts ofystem under a given quasistationary condition. Therefore
symbolic dynamics. SDF also serves as a feature extractipartitioning that focuses on statistical changes of timdes
method via partitioning of time-series data to generate-synilata as the dynamical system moves from one quasistationary
bol sequences. condition to another may prove to be more useful for the

Although modeling of state machines from symbol sepurpose of anomaly detection.
guences has been widely reported, similar efforts have notSDF can be interpreted as a tool for compressing and
been expended to investigate partitioning of time serigsansferring dynamical system information from the spafce o
data to optimally generate symbol sequences for anomadiyne-series data to the space of patterns via data pairtition
detection. Stauer et al. [6] reported comparison of maxand state machine construction. Properties and variations
mum entropy partitioning and uniform partitioning; it wasof transformation from symbol space to pattern space have
concluded that maximum entropy partitioning is a bettebeen thoroughly studied in mathematics, computer science

1. INTRODUCTION



and especially data mining literature. Although quite a few e
variations of partitioning techniques are reported in the
physics and signal processing literature, only a few of them
address the issue of anomaly detection in particular. This
paper proposes a partitioning method based on maximized
migration of time series data points across cell boundaries
during evolution of the underlying dynamical system. To
this end, a framework is presented toward optimization of
this partitioning scheme for anomaly detection and inves-
tigates its major features, namely, robustness of exulacte
information from symbol sequences and enhancement of
computation efficiency. The paper is organized into four sec
tions including the present section. The partitioning sche

is described in an optimization framework in Section 2
along with its key features. Section 3 validates the pro-
posed concepts on an active electronic circuit apparaats th
implements a second order non-autonomous forced Duffing
equation [10]. Section 4 summarizes the paper and makes
major conclusions along with recommendations for future «
research.

2. OPTIMIZATION OF THE PARTITIONING SCHEME

Recent literature [5] [8] has explored the concepts of
symbolic dynamics and data set partitioning to develop
a computationally efficient tool called Symbolic Dynamic
Filtering (SDF) for anomaly detection in complex dynamical
systems. Although the SDF methodology is reported in
recent literature, a brief outline of the procedure is suctty
presented here for completeness of the paper.

Anomaly detection from time series data is posed as a
two-scale problem. Théast scaleis related to the response
time of the process dynamics. Over the span of data acqui-
sition, dynamic behavior of the system is assumed to remain
invariant, i.e., the process is quasi-stationary at thesizale.

On the other hand, thelow scaleis related to the time span
over which anomalies may occur and exhibit non-stationary .
evolution of the system dynamics. SDF detects the stadlstic
changes in behavioral patterns over slow-scale epochs that
are simply referred to as epochs in the sequel. The first part
of the method, which is called tHerward probleminvolves
generation of patterns from training data, which is congatis

of the following steps.

o Sensor time series data, generated from a physical
system or its dynamical model, are collected at several
training epochs over the range of operation. A compact
(i.e., closed and bounded) regifne R™, wheren € N,

Encoding ofQ2 is accomplished by introducing a par-
tition B = { By, ..., Bum—1)} consisting of m mutually
exclusive (i.e.,B; N B, = 0 Vj # k), and exhaustive
(i.e., U}’jolBj = Q) cells. Let, each cell be labeled by
symbolss; € ¥ whereX = {so,...,sm—_1} is called

the alphabet. This process of coarse graining can be
executed by uniform, maximum entropy, or any other
form of partitioning with respect to the data set at epoch
0. Then, the time series data poir{tg’} that visit the

cell B; are denoted as; Vj = 0,1,...,m — 1. This
step enables transformation of the reference time series
data{q"} to a symbol sequencgs’}. To alleviate the
difficulties in partitioning of noisy time series, it can
be transformed to wavelet space [8] or analytic signal
space [7]. Similar to the reference condition, symbol
sequence$s’}, {s'}, ..., {s'~!} are generated from the
data at other epochs using the same partitioning created
at the reference condition.

A probabilistic finite state machine (PFSA) is then
constructed with a chosen depth and the training epoch
symbol sequences are run through it. Thus a state
transition matrixII" = [r},], wherej, k € {1,2,...,r}

are the states of the PFSA with &nx r) state transition
matrix, is obtained for each training epoch Since

W§k > 0 is the transition probability from stajeto state

k, II" is a stochastic matrix, i.e)_, 7/, = 1. Often to
compress the information further, the state probability
vector pi = [p} --- pi] that is the left eigenvector
corresponding to the (unique) unity eigenvalue of the
irreducible stochastic matrixl’) is calculated at each
epochi. The vectorp’ is called the pattern vector
at the respective training epochin the sequel, and

is a relatively low-dimensional representation of the
dynamical system at the current epoch. [2tdenote

the space of pattern vectops

The anomaly measure, also called deviation measure,
is obtained from the distance of a pattern vegib or
state transition matriXI?) at an epoch from the refer-
ence pattern vectq® (or state transition matrixI®) at
epoch0. For example, the deviation measuyrat epoch

i can be calculated agp?, p°) as a scalar distance (e.g.
Euclidean norm or Kullback distance [11]) between two
vectorsp’ andp®. In the forward problem, evolution of
deviation patterns over the epochs is determined in a
statistical sense [12].

Given a deviation measure, tiveverse problenyields an

within which the stationary time series is circumscribedestimate of the current condition of the system.
is identified. Let the space of time series data sets be An example of anomaly detection for a nonlinear elec-

represented a@ C R*"*, whereN ¢ N is sufficiently

tronic system apparatus modeled on the Duffing equation [5],

large for convergence of statistical properties within 413] is considered at this point. The Duffing equation is give
specified threshold. Ther,q’} € Q denotes a time pelow.

series at an epoche {0,1,...,1 — 1}, wherel is the
number of epochs under consideration. Let the efbch
denote the reference/nominal condition.
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A. The Maximum Migration Partitioning (MMP)

L T;“;j;”;ﬂﬁ;“e"‘n'ﬁe”}ﬁ;‘;‘;;'f : 1 Given the structure of the PFSA, a mapping from the
5 o8 ] data space to the pattern space, denoted'fy), depends
g 0.7} , « ] only on the chosen partitioning. Let pattern vectorg® be
2> 06} 1 considered for anomaly detection. Hente,(q’) = p for
§ 05} ] epochi € {0,1,...,1—1}, whereq® is the time series data as
< o4t ',’,- ] defined earlier in Section 2. Furthermore, let the epoch be a
% 03f e A ] function of a single system parameter. Then, the maximum
£ 02} /*:," ] migration partitioning (MMP)B* satisfies the following two
= o S i 1 conditions.

T o ol 03 om  os 1) The mappind'sz- : @ — P is bijective, i.e. time series

Parameter B data at two different epochs that are statistically differ-
ent are not be mapped as the same pattern; otherwise,
it will be impossible to distinguish between deviation
measures at those two epochs in the inverse prob-
lem. Therefore, bijectivity is a necessary condition for
MMP. Since the deviation measufeis a continuous
function of the pertinent slowly varying parameter(s),
bijectivity of I'g- implies strict monotonicity and is a
necessary condition for MMP.

2) With the constraint of the first condition, tHg* is
given by maximizing the multi-objective vector reward
function Jg defined as

Fig. 1. Anomaly Evolution Profile for Duffing equation

where the dissipation paramefgewvaries slowly with respect

to the response of the dynamical system; and a change
in the value of 3 is considered as an anomaly. With the
input amplitudeA = 22.0 and input frequency? = 5.0,

Fig. 1 shows the anomaly evolution profile obtained from
the forward problem using maximum entropy partitioning
with alphabet siz&8.From the perspective of inverse problem,
monotonicity of anomaly evolution is a necessary condition
for identification of3 based on a given value of the deviation

measure. However, in the incipient anomaly condition the w(ps, p%)

slope of the curve is observed to be small and due to noise it w(p3,pY)

can be seen that the anomaly evolution curve has significant B* = arg nax Jp £ arg max . 2)
variance, which causes a potential difficulty in the exexuti -1 0

of the inverse problem, i.e., given a deviation measuregthe (P~ Pz)

may exist a wide range of possible valuestof Condition 2 justifies the nomenclature of the maximum

The SDF-based anomaly detection tool has been showmigration partitioning (MMP) technique as explained in the
to be superior in performance, especially for detection dbllowing remark.
incipient anomalies, compared to other pattern recognitio Remark 2.1:At an off-nominal epockhi, i.e.,i > 0, net
tools, such as principal component analysis (PCA), artimigration of data points from one cell of the partitioning
ficial neural network (ANN), and particle filter (PF). In to another is maximized when the time series evolves from
this context, the focus of this paper is to explore furtheg® to g’. That is why this partitioning is named maximum
improvement of the SDF performance for the purpose ahigration. The concept of MMP is analogous to the that
anomaly detection. In the current SDF methodology, andf particle migration from one energy level to another in
also in other literature, partitioning is done based on maini the Statistical Mechanics setting [14]; however, only tle¢ n
data. In such cases, even if the partitioning is optimalata point migration is relevant to partitioning. Othenmsyis
(e.g., in terms of maximum entropy or some other criteriainigration of data points among different partitioning sell
under nominal conditions, there is no guarantee that which keeps the state occupation probabilities unchanged,
will satisfy the monotonicity condition. On the other handwill result in a zero deviation measure. Therefore, in the
partitioning based on the nominal stationary data does noontext of Statistical Mechanics, the particles are ideamti
consider evolutionary characteristics of the data over thend indistinguishable. If evolution of the state transitio
epochs. Hence, it may be advantageous to take non-stationaratrix 11 is considered instead of the pattern vectprst
dynamics into consideration and create partitioning based might be possible to identify a changelihwithout any net
changes of time series data over different epochs. This figigration of data points.
the key idea of the maximum migration partitioning (MMP) The satisfaction of the above two conditions may require
method; the rationale of this nomenclature is explained iRareto optimization [15] even for one-dimensional time se-
the next section. The ultimate goal is to obtain a wellries data sets. It is possible for certain ill-conditioneatad
conditioned anomaly evolution curve even at the incipiergets the solution of the optimization procedure may become
anomaly conditions, which is very useful for anomaly (ofintractable. While the future work will be devoted to deyelo
fault) detection in real complex systems. an elaborate optimization algorithm, this paper provides a



relatively simpler algorithm for one-dimensional (i.e.= 1)  J'(A%,) > J¥(A,,) VA, it follows thatmax J*(A,,—1) <
time-series data in the following subsection, primarily tanaxJ!(A,,). The monotonicity in the reward functios’
establish validity of the proposed MMP concept. allows formulation of a rule for termination of the sequanti
optimization algorithm. The process of creating additiona
partitioning cells is stopped if the gain in the reward falls

This section describes a sub-optimal solution for th@elow a specified thresholgl;,,, and the stopping rule is:
constrained multi-objective optimization problem deised

in Section 2-A. The objective spac2 consists of the reward JHAL) = T (Af—1) < Nstop- (6)
vector J, while decisions are made in the spage of Let the suboptimal maximum migration partitioning
all possible partitions. The reward vectdris broken up (MMmP) at an epochi be denoted as\*(i), in which the
into individual rewards functions”” = (p’, p°), that are  apove procedure is followed to obtain consecutive partitio
independently optimized to obtain the individual maximaa«(1), A*(2),...,A*(l — 1) for I — 1 off-nominal training
As a further simplification, it is assumed that the time Sf‘rieepochs. These partitions capture the slowly varying non-
data is one-dimensional (i.en, = 1) wherein a partition stationary evolution of the dynamical system at different
consisting ofm cells may be succinctly represented by thpochs. If the statistical characteristics of the dynamica
m — 1 points that separate the cells. In other wordsyan  system do not significantly change over the range of the
cell partition is expressed by £ {1, A2, -~ , Am—1} With  training epochs, then it is expected thet(i) ~ A*(j) for
cardinality [A| = m — 1. , i # j. In other words, the cell boundaries in the partitions
The deviation measure for thé" epoch u(p’,p°) is  for different epochs form clusters on the decision space,
dependent on its specific partitioh and is denoted by which is viewed as a near-Utopian global partitionitg, .,
J'(A) = pu(p},p3). This sub-optimal partitioning scheme that takes the mean of partitions across all training epochs
involves sequential estimation of the elements of the partjq simultaneously satisfy optimization criteria for diféat

B. Maximum Migration Partitioning Procedure

tioning A. o o epochs; it is considered as the universal partitioning for
The partitioning process s initiated by dividing the datahe data set (e.g., the data sets of the Duffing system in
set into two cellsAy = {\;}, where); is evaluated as Section 3).
A = argmax J'(Ay) = arg max u(ph, pC 3 Remark 2.2:However, there may exist certain epochs for
! &0 (A2) W HPh, P () which the partitioning is significantly different from thegt.
Now, the two-cell optimal partitioning is given by = In this paper, these outlier partitions are not consideced f

{\;}. The next step is to partition the data into three cell§onstruction ofA7, ;. In general, if the partitioning for
asAs) by dividing either of the two existing cells df; with individual epochs are not clustered in the decision space,

the placement of a new partition boundaryXat where), @ Pareto surface should be constructed. Furthermore, since
is evaluated as this method of partitioning may not guarantee monotonicity

. ; ; 0 it needs to be chosen from the Pareto set based on the mono-
Ay = arg H;“;XJ (A3) = arg mgxu(pAS, Pa;) (4 tonicity constraint (see Section 2-A) and weights assigoed

. .. .. each epoch. This is a topic of future research.
where As = {\j, \2}. The optimal3-cell partitioning is

obtained asA; = {A},A5}. In this (local) optimization 3. EXPERIMENTAL VALIDATION OF MAXIMUM
procedure, the cell that provides the largest incremertten t MIGRATION PARTITION

reward function upon further segmentation ends up being This section evaluates the performance of maximum mi-

partmoned. Iteratlvely,_ this procedure can be extended fgration partitioning (MMP) for anomaly detection by exper-

obtain them cell partition as follows. imentation on a nonlinear electronic circuit that implensen
Ny = arg ax J (A, = arg max u(ph PR, ) () UG equaton

m—1 m—1

A. Anomaly detection in Duffing system

_ * H
where A, = A7,_; U {An-1} and the optimalm cell Experiments have been conducted for anomaly detection in

partitioning is given byA;, = A:Y.lfl Y {/\:nfl_} . .a nonlinear active electronic circuit that emulates theddr
This opt|m|zat|_on prc_)cedure is mc_motomcally increase 'rbuffing equation [10]
the reward function with every additional sequential oper- )
atlon,_l.e.JZ(A;*n_l) < J*(Ar,). This is evident from the y +5@ Fy(t) + 43(t) = Acos(Qt) @)
following argument. dt? d
Let A%, , be the {n — 1)-cell partition that maximizes where amplituded = 22.0, @ = 5.0 and the dissipation
the reward J'(A,,_1). Based on the algorithm\,, = parameter3 is slowly varied from0.1 to 0.4. The nominal
AX L U{A\n—1}), if A1 is chosen such that it already condition is at3 = 0.1 and the anomalous conditions are at
belongs toA},_,, then there would be no change in theg = 0.20,0.26 and 0.32. A detailed description of the ex-

partitioning structure and/‘(A,,) = J'(A%,_;). Since perimental setup and the accompanying results for anomaly



detection obtained by using the maximum entropy partition-
ing (MEP) scheme reported in earlier publications [8][12].
This subsection compares the results obtained by MEP with
those obtained by MMP that is developed in this paper.

The time serieg, q', g? andg?, sampled from the sensor
datay(t) in the experiment, are collected for the nominal
condition a8 = 0.10 and for three other training epochs
representing anomalous conditionsat= 0.20, 8 = 0.26
and 5 = 0.32, respectively. The MMP scheme is then
implemented to obtain the partition sets'(1), A*(2) and
A*(3) for the three anomalous epochs, respectively.
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Fig. 2. Reward function vs. partitions for Epodhin Duffing system

Figure 2 depicts the optimization process for obtaining the
partition setA*(1) at 5 = 0.20, where \} is evaluated by
maximizing the reward functioo’* ({\;}). Figure 2 shows
both the reward function and its corresponding optimal &alu
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Fig. 3. Partitioning Duffing time series data using MMP
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Fig. 4. Comparison of anomaly evolution profiles

At and the second partitioxs; is obtained by maximizing the from the nominal datad = 0.10. Normalized measure

functionJ({\}, A2}). As described in Subsection 2-A; is

u(p?, p°) quantifies the deviation of the Duffing system be-

kept fixed while), is optimized. This suboptimal process ishavior from its nominal condition. Euclidean distance iedis

recursively continued until the threshald,,, = 4.0 x 10~4
is reached, which leads to the creation tfcells (i.e.,5

asu(-, ) for the whole exercise. Figure 4 plots the deviation
measure versus the dissipation parametdsy using both

partitions) denoted by\;(1) = {\},---,\:} as shown in the MEP and the MMP methods. The following qualitative

Fig. 2.

differences between the deviation measure profiles olitaine

The above procedure is repeated for the two other anomy the two different partitioning scheme are observed.

lous epochs af = 0.26 and3 = 0.32 to obtain the partition
setAf(2) and A§(3), respectively. These three partition sets
are superimposed on the time series data in Fig. 3. Inter-
estingly, even though the three partition sets were obdaine
by independent maximization of the reward functios=
u(p',p°), J* = p(p?,p°) and J* = u(p?®,p°); they lie in
close proximity of one another. In fact the partitions obéal
across the epochs are within a boundef 0.15 from each
other. This result justifies the conjecture made at the end of
subsection 2-B and eludes to the possibility of obtaining a
near-utopian (sub)optimal partitioning scheme. The mdan o
the three partition set is taken as the final partitioniifg,, .,
obtained by the MMP method. The alphabet size is the same
as the number of partitioning cell and is equal6to

For maximum entropy partitioning (MEP) [8], an alphabet
size of |3| = 8 is chosen and the partition set is generated

o The deviation measurg in MMP provides high sen-

sitivity in the region close tog = 0.1; hence, a
better detection of incipient faults becomes possible
along with reduction in probability of false alarms and
missed detections of anomaly. It also provides a better
estimation of the parameter.

The Duffing system is nonlinear and undergoes bifur-
cations. Phase plots and time response plots in [13]
show that the system behavior abruptly changes around
8 = 0.32. The partitioning obtained by MEP depends
only on the nominal condition{ = 0.1) and is therefore
rendered ineffective for anomaly detection f6r is
beyond the point of bifurcation. In fact, Fig. 4 shows
that the sensitivity of the MEP anomaly profile is almost
negligible for large values of} (i.e., > 0.32). On the
other hand, the MMP deviation measure profile has



sufficient sensitivity in the region beyond the point of
bifurcation. This may be attributed to the fact that MMP
captures the evolution of the dynamical system from a

behave like a linear system. This might be possible by
penalizing the deviations in pattern space upon change
in input for a particular epoch.

training set and, unlike MEP, it is not based on any As the concept of MMP is proposed here for the first
time to the best of the authors’ knowledge, this method of

Based on the above observations, it is concluded that MM$pace partitioning for anomaly detection requires comtihu
has certain advantages over MEP for partitioning, esggcialtheoretical and experimental research. The followingdspi
for detection of incipient anomaly and for estimation ofare recommended for future research.

single epoch.

critical parameter(s) beyond the point of bifurcation.

4, SUMMARY, CONCLUSIONS ANDFUTURE WORK

This paper presents a novel method of partitioning time

series data for anomaly detection. In this approach, thmestra
formation from the data space to pattern space is optimiz
to improve the capability of symbolic feature extractioheT

ed

advantage of using maximum migration partitioning (MMP)
over maximum entropy partitioning (MEP) are demonstrated
by testing on experimental data. The major aspects of this *
methodology is summarized below along with important

conclusions.
« Identification of the evolving characteristics of the dy

namical systemThe MMP is shown to capture the
nonstationary evolution of a dynamical system. Hence,
it has the capability to generate a well-conditioned*
anomaly evolution profile in the forward problem that 2]
leads to better anomaly estimation in the inverse prob-
lem. 3]
Optimization of alphabet sizeDuring traditional par-
titioning process, the alphabet size is typically a user-
defined quantity. The stopping rule (see Subsection 2-A54
in the MMP scheme provides a way to systematically
arrive at the correct alphabet size. This helps in avoidin
redundant partitions, which thereby reduces computa
tional complexity.

Issue of Sensitivity and Robustnelsthe partitioning
algorithm, MMP is made sensitive to small changes
in the time series. Although this property improves (7]
the anomaly detection capability for incipient anoma-
lous conditions, robustness may become a potentialg]
problem, especially for data with high noise content.
As discussed in Subsection 2-B and Section 3, over
different epochs, partitions are observed to form cluster$?!
of certain widths. It is also observed that fluctuation
of partitions within that cluster does not change thél0]
anomaly evolution profile significantly, proving the 11]
method’s robustness property. However, further in depth
study on the tradeoff between sensitivity and robustne$]
will be an important future work.

MMP is shown to be a tool to magnify the deviations inj;3
data space during transformation to pattern space and
this is achieved by rewarding larger distances betwe 514]
pattern vectors in pattern space. However, another po-
tential promise of MMP is to make the pattern spacéis]
input independent, which will make nonlinear systems

5]

(6]

Formulation of a Pareto multi-objective optimization
algorithm to generate MMP for a general time-series
data.

o Extension of the MMP algorithm for multi-dimensional

time-series data.

o Modification of the MMP algorithm in transformed

space (e.g., Hilbert transform, wavelet transform) of
time-series data.

Modification of the MMP algorithm for input indepen-
dence by penalizing the deviations in pattern space upon
change in input for a particular epoch.

REFERENCES

] K. Fukunaga,Statistical Pattern Recognition, 2nd EditioAcademic

Press, Boston, USA, 1990.

T. Lee, Independent component analysis: Theory and applications
Kluwer Academic Publishers, Boston, USA, 1998.

R. Rosipal, M. Girolami, and L. Trejo, “Kernel pca feaguextraction

of event-related potentials for human signal detectiorfoperance,”
Proc. Int. Conf. Artificial Neural Networks Medicine Biopp. 321—
326, 2000.

] K. Weinberger and L. Saul, “Unsupervised learning of gaaman-

ifolds by semidefinite programmingn Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (R0R),
Washington D.C.2004.

A. Ray, “Symbolic dynamic analysis of complex systemsdoomaly
detection,” Signal Processingvol. 84, no. 7, pp. 1115-1130, July
2004.

R. Steuer, L. Molgedey, W. Ebeling, and M. Jimenez-Mowta“En-
tropy and optimal partition for data analysi§;he European Physical
Journal B vol. 19, pp. 265-269, 2001.

A. Subbu and A. Ray, “Space partitioning via Hilbert tsform for
symbolic time series analysisfpplied Physics Lettersol. 92, no. 8,
pp. 084107-1 to 084107-3, 2008.

V. Rajagopalan and A. Ray, “Symbolic time series analysia
wavelet-based partitioning,”Signal Processing vol. 86, no. 11,
pp. 3309-3320, Nov 2006.

S. Sarkar, K. Mukherjee, and A. Ray, “Generalization ofibeirt
transform for symbolic analysis of noisy signal§ignal Processing
pp. in press, DOI: 10.1016/j.sigpro.2008.12.009, 2008.

J. Thompson and H. Stewaitonlinear Dynamics and Chao¥Viley,
Chichester, UK, 1986.

S. Kullback and R. A. Leibler, “On information and suféocy,”
Annals of Mathematical Statisticsol. 22, pp. 79-86, 1951.

S. Gupta and A. Ray, “Real-time fatigue life estimatiormechanical
structures,"Measurement Science and Technologyl. 18, pp. 1947—
1957, May 2007.

C. Rao, A. Ray, S. Sarkar, and M. Yasar, “Review and coatpe
evaluation of symbolic dynamic filtering for detection of camaly
patterns,”Signal Processingp. in press, 2008.

R. Pathria, Statistical Mechanics, 2nd edMutterworth Heinmann,
Oxford, UK, 1996.

R. SteuerMultiple Criteria Optimization: Theory, Computations, @&n
Application John Wiley & Sons, Inc., New York, USA, 1986.



