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Abstract— This paper presents a generalized gossip-based
algorithm to solve distributed optimization problems in multi-
agent networks, especially for multiple supply-demand opti-
mization problems. The proposed algorithm provides a gen-
eralization such that the optimization process can operate in
the entire spectrum of “complete consensus” to “complete
disagreement”. A user-defined control parameterθ is identified
for controlling such tradeoff as well as the temporal convergence
properties. Analytical results for first moment convergence
analysis are presented and it is shown that withθ → 0, the
formulation boils down to a classical consensus based protocol.
Beyond the control parameter, the agent interaction matrix is
also shown to be useful for effectively suppressing large local-
ized uncertainties in subgradient estimation. A practical use
case regarding building zone temperature control is presented
as a numerical example for validation.

1. INTRODUCTION

In recent times, large-scale networks have received con-
siderable interest from industry and academia due to their
impact in areas such as robotics, intelligent surveillance
and reconnaissance, transportation networks and smart build-
ings [1], [2], [3]. One challenge that is faced by these
large-scale sensor and actuator networks is to autonomously
optimize the behaviors of agents or allocate resources within
these networks while reducing the computational and eco-
nomic cost. State-of-the-art techniques employ cooperative
and non-cooperative [4] distributed optimization [5] to obtain
the best agent behavior and/or resource allocation. In these
methods, a global decision (scalar/vector quantity) is shared
by all agents to prevent local minima [6]. Subgradient
methods [7], [8], [9], [10], [11], [12] are widely used to
iteratively refine the estimates of the shared decision for each
agent in a distributed manner. In [13], a scheme combining
consensus algorithm with subgradient method was described
for solving the convex optimization problems. In [3], a
theoretical framework was established for consensus and
cooperation in networked multi-agent systems.

Generalized gossip algorithms [14], [15], [16] essentially
extend gossip algorithms [17], [18] to cases where perfect
consensus is not required to be archived. A tradeoff between
the decision propagation radius (i.e., how far a decision
spreads from its source) and localization of information is
chosen to vary the dissemination of agent beliefs throughout

the network. While consensus of the belief state of agents
is not guaranteed, proximal agents are more likely to share
similar beliefs. Therefore, in sensor networks, generalized
gossip aims at describing the observed phenomenon at more
‘local’ level as compared to pure consensus algorithms.
The objective of this paper is to combine the generalized
gossip algorithm with subgradient approach and present the
generalized gossip-based subgradient algorithm developed
for distributed optimization. The optimal solution is derived
from performing a more ‘local’ consensus of behavior or
allocation of resources. With a user-defined generalizing pa-
rameter in the agent interaction policy, the trade-off between
propagation radius and localization gradient may be con-
trolled to yield a spectrum of optimal solutions ranging from
globally optimal solution (complete consensus) to greedy
locally optimal solution (no compromise).

The specific contributions of this paper beyond the existing
work are:(1) formulation of a new technique for distributed
optimization by incorporating the generalized gossip algo-
rithm into a subgradient optimization framework, (2) first
moment convergence analysis of consensus and/or discord
between agents for distributed optimization, (3) proposi-
tion of agent interaction matrix adaptation for suppressing
localized large uncertainties in subgradient estimation, (4)
validation of the proposed algorithm in a simulation test bed
for temperature control in building zones.

2. BACKGROUND AND PROBLEM SETUP

Consider an undirected graphG = (V ,A) consisting of
N agents, whereV = {1, 2, ..., N} and A ⊆ V × V . If
(i, j) ∈ A, then agenti can communicate with agentj. Let
a distributed optimization problem be defined on the network
as follows:

minimize , f(x) =
N∑

i=1

f i(x)

subject to, x ∈ X

(1)

wheref i : RM −→ R are agent level objective functions
(possibly convex or non-convex),X is a nonempty, closed,
and compact subset ofRM . x is a vector whoseith compo-
nent is represented byxi. While in this initial paper, only



unconstrained case is considered, constrained case will bean
important future work.

A. Preliminary Background

The basic definitions [7], [13] and assumptions used in
this paper are:

Definition 1: A vector g ∈ R
M is a subgradient of a

convex functionf : RM −→ R at a pointz ∈ R
M if

f(y) ≥ f(z) + gT (y − z), ∀y ∈ R
M (2)

Definition 2: The set of all subgradients of a convex
function of f at z ∈ R

M is called the subdifferential of
f at z, and is denoted by∂f(z):

∂f(z) = {g ∈ R
M |f(y) ≥ f(z) + gT (y − z), ∀y ∈ R

M}
(3)

Definition 3: ∃ǫ ≥ 0, for all y ∈ R
M , if f(y) ≥ f(z) +

gT (y−z)−ǫ, theng is aǫ-subgradient. Namely,g ∈ ∂ǫf(z).
Note, scalar optimization variables can be easily converted

to M dimensional vectors as suggested in the definitions
presented above. For notational simplifications scalar agent
level optimization variablesxi are used without loss of
generality.

Assumption 1 (Subgradient boundedness): There exists a
scalarG for all i = 1, ..., N such that

‖gi(x)‖2 ≤ G, ∀gi(x) ∈ ∂f i(x), ∀x ∈ X (4)

Assumption 2: The optimal solution setx∗ is nonempty.

The standard distributed subgradient formulation for
multi-agent distributed optimization (see [8]) is as follows:

xi(k + 1) =
m∑

j=1

aij(k)x
j(k)− αi(k)di(k) (5)

where aij are weights,αi(k) are step sizes,di(k) are the
subgradients off i atxi(k) andk is a time index. Depending
on choice weights, this formulation has been shown to solve
multi-agent optimization problems primarily via consensus.
Choice of step size is also key to obtain desired convergence
properties.

B. Generalized Gossip Algorithm

“Agreement” or “consensus” is one of the most widely
used concepts in the area of multi-agent systems for infor-
mation fusion, decision-making, information propagationand
distributed optimization. Among various protocols, gossip-
based consensus algorithms are quite popular due to their
simple nature yet powerful properties as well as strong
analytical results [19], [20]. Recently, in the context of
distributed information propagation in a mobile sensor net-
work [21], the present authors proposed a generalized gossip
protocol [14]. One of the key observations made in the study
was that a user defined parameter is able to control the
fundamental tradeoff between information propagation radius
and localization gradient. This paper applies this formulation

to a distributed optimization problem where the tradeoff is
between “global optimal” achieved through compromise and
“local optimal” (s) achieved in a greedy manner by individual
agents.

The generalized gossip protocol outlined in [14] for belief
propagation in a mobile sensor network is as follows:

υi
θ(k + 1) = (1− θ)

∑

j∈{i}∪Nb(i)

πij(k)υ
j
θ(k) + θχi(k) (6)

whereθ ∈ (0, 1] is a user-defined control parameter,Nb(i) is
the set of agents in the neighborhood of agenti. In this set,
agents can communicate with agenti during the time span
betweenk andk+1. πij is the element ofi-th row andj-th
column in the agent interaction matrixΠ ∈ R

N ×R
N . υ and

χ are the vectors representing agent belief measure and state
characteristics function (quantifying observations madeby
agents), respectively. While the agent interaction matrixmay
in general be time varying, it maintains thedoubly stochastic
property.

3. GENERALIZED GOSSIP-BASED SUBGRADIENT

ALGORITHM

In this section, the proposed generalized gossip-based sub-
gradient algorithm is proposed for distributed optimization.
In this formulation, the discrete-time update law (derived
from eqn. 5 and 6) for the optimization variable is as follows:

xi(k+1) = (1−θ)
∑

j∈{i}∪Nb(i)

πij(k)x
j(k)+θ(xi(k)−∇i(k))

(7)
where∇i(k) is the subgradient off i at xi(k) computed by
agenti. Note, there is no explicit stepsize parameter in this
update rule. However, user defined parameterθ acts as the
weight on the subgradient term at every update step.

In a vector notation, the update rule becomes:

x(k + 1) = (1− θ)Π(k)x(k) + θ(x(k) −∇(k)). (8)

Note, as the control parameterθ approaches0, this policy
boils down to a standard consensus-based optimization proto-
col using subgradients. On the other hand, asθ approaches1,
interaction among agents reduce significantly and individual
agent-level optimization variable tend to converge to their
respective local minima based on individual subgradients.
Formal discussion on this aspect will follow the analytical
results presented in the sequel.

This initial paper presents analytical results for the first
moment along with generic numerical results. Second mo-
ment analysis remains a critical future work. Following are
notations and lemmas required for the convergence analysis.

For first moment analysis, ensemble average (over agents)
of x(k) and∇(k) are denoted bȳx(k) and∇̄(k) respectively.
They are defined as:

x̄(k) =
1

N
1x(k) =

N∑

i=1

xi(k) (9)
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∇̄(k) =
1

N
1∇(k) =

N∑

i=1

∇i(k) (10)

where1 is a row vector with all elements being 1.
Note, multiplying the update rule described in eqn. 8

by 1
N
1 yields the following relationship (asΠ is doubly

stochastic):
x̄(k + 1) = x̄(k)− θ∇̄(k) (11)

The form of this equation is similar to that of the classical
subgradient method.

Next, optimal function values are denoted byf∗, that are
assumed to be finite. Without loss of generality the optimal
set is represented byx∗, i.e., x∗ = {x ∈ R|

∑N

i=1 f
i(x) =

f∗}. Note, optimal points can be multi-dimensional and not
necessarily have to be scalar. Here are a few necessary
lemmas and proposition required for convergence analysis.

Lemma 1: If ‖xi(k) − xj(k)‖2 ≤ σ<∞, ∀i, j = 1, ..., N ,
then‖xi(k)− x̄(k)‖2 ≤ σ. See [13] for proof.

Note, this lemma suggests that if pairwise distance be-
tween optimization variables of any two agents is bounded
then distance between the average and any point is bounded
by the same quantity. Before presenting the next lemma, the
following proposition is required.

Proposition 1: If Assumption 1holds, then for a sequence
{∇̄(k)}, ∀k,

‖∇̄(k)‖2 ≤ G.

Proof: ‖∇̄(k)‖2 = ‖ 1
N

∑N
i=1 ∇

i(k)‖2 ≤ 1
N
[‖∇1(k)‖2 +

‖∇2(k)‖2 + · · ·+ ‖∇N (k)‖2] ≤
1
N
(NG) = G. �

The proposition suggests that if all individual agent level
subgradient norms are bounded, then norm of the average
subgradient is also bounded by the same quantity.

Lemma 2: If Assumption 1holds, then, for a sequence
{x̄(k)}, ∀k andz ∈ R,

f(z) ≥ f(x̄(k)) +N∇̄(k)(z − x̄(k))− ǫ (12)

whereǫ = 2NGσ.
Proof: Using Definition 1andAssumption 1

f i(xi(k)) ≥ f i(x̄(k) + ∇̄i(k)(xi(k)− x̄(k))

≥ f i − ‖∇̄i(k)‖2‖x
i(k)− x̄(k)‖2

≥ f i(x̄(k))−Gσ.

(13)

Using the above relationship for allN agents

f(xi(k)) ≥ f(x̄(k))−NGσ. (14)

For anyz ∈ R, there exists

f i(z) ≥ f i(xi(k)) +∇i(k)(z − xi(k))

≥ f i(xi(k)) +∇i(k)(z − x̄(k) + x̄(k)− xi(k))

≥ f i(xi(k)) +∇i(k)(z − x̄(k)−∇i(k))

− ‖∇i(k)‖2‖x̄(k)− xi(k)‖2

≥ f i(xi(k)) +∇i(k)(z − x̄(k)−∇i(k))−Gσ.
(15)

Again, using the above relationship for allN agents

f(z) ≥ f(xi(k)) +

N∑

i=1

∇i(k)(z − x̄(k))−NGσ. (16)

Substituting eqn. 14 into eqn. 16, the following inequality
can be obtained

f(z) ≥ f(x̄(k)) +

N∑

i=1

∇i(k)(z − x̄(k))− 2NGσ. (17)

Combining eqn. 17 and eqn. 10, the desired result is
achieved.�

Note, Lemma 2shows thatN∇̄ is anǫ-subgradient of̄x.

4. STATISTICAL CONVERGENCEANALYSIS

In this section, first moment convergence analysis for the
generalized gossip based subgradient algorithm is presented.
The analysis begins with the following lemma.

Lemma 3:If Assumptions 1, 2holds, then, for a sequence
{x̄(k)}, ∀k,

‖x̄(k + 1)− x∗‖22 ≤ ‖x̄(k)− x∗‖22 − 2θ
1

N
(f(x̄(k))

− f∗) + 4θGσ + θ2G2.

(18)

Proof: By using Lemma 2,

‖x̄(k + 1)− x∗‖22 = ‖x̄(k)− θ∇̄(k)− x∗‖22

= ‖x̄(k)− x∗‖22 − 2θ∇̄(k)

(x̄(k)− x∗) + θ2‖∇̄(k)‖22

≤ ‖x̄(k)− x∗‖22

− 2θ
1

N
(f(x̄(k))− f∗)

+ 4θGσ + θ2G2.

(19)

wheref∗ = f(x∗). The last inequality follows fromf(x∗) ≥
f(x̄(k))+N∇̄(k)(x∗−x̄(k))−2NGσ and theAssumption 2.
�

Lemma 3suggests that̄x gets closer tox∗ with every
iteration whenf(x̄) is much greater thanf∗. However, as
f(x̄) comes very close tof∗, x̄ is not guaranteed to get closer
to x∗. This is due to the two positive terms in the equation,
4θGσ andθ2G2. If the control parameterθ is reduced, then
the positive terms reduce in magnitude andx̄ approachesx∗.

Next, Theorem 1is introduced to provide an upper bound
for the optimized function value.

Theorem 1:If Assumptions 1, 2holds, then, for a sequence
{xi(k)}, ∀k and i = 1, . . . , N ,

f∗ ≤ f(xi(k))min ≤ f∗ +
N‖x̄(1)− x∗‖22

2mθ

+3NGσ +
NθG2

2

(20)

wheref(xi(k))min = min{f(xi(1)), . . . , f(xi(m))}, m is
the number of iterations,G is the upper bound of subgradi-
ents,σ is the upper bound of Euclidean distance between
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xi(k) and x̄(k) and θ is the control parameter. As the
subgradient is not always in the descent direction, the best
value need to be tracked that best approachesf∗. Hence,
afterm iterations, the best value is denoted byf(xi(k))min.

Proof: The lower bound is easily obtained when the
optimal solution set exists. Therefore, the proof mainly deals
with the upper bound. RecallingLemma 3,

‖x̄(k + 1)− x∗‖22 ≤ ‖x̄(k)− x∗‖22

− 2θ
1

N
(f(x̄(k))− f∗) + 4θGσ + θ2G2,

(21)

then, applying this inequality recursively form iterations

‖x̄(k + 1)−x∗‖22 ≤ ‖x̄(1)− x∗‖22

− 2θ
1

N

m∑

k=1

(f(x̄(k))− f∗) + 4θmGσ

+mθ2G2.

(22)

Since‖x̄(k + 1) − x∗‖22 ≥ 0, the inequality above can be
written as

0 ≤ ‖x̄(1)− x∗‖22

− 2θ
1

N

m∑

k=1

(f(x̄(k))− f∗) + 4θmGσ

+mθ2G2.

(23)

Let f(x̄(k))min = min{f(x̄(1)), . . . , f(x̄(m))}. Then, the
second term on the right hand side of the above equation
satisfies

2θ
1

N

m∑

k=1

(f(x̄(k))− f∗)

≥ (

m∑

k=1

2θ
1

N
) min
k=1,...,m

(f(x̄(k)) − f∗).

(24)

Combining the above two equations another inequality fol-
lows

f(x̄(k))min − f∗ = min
k=1,...,m

f(x̄(k)) − f∗

≤
N‖x̄(1)− x∗‖22

2mθ
+ 2NGσ +

NθG2

2
.

(25)

The goal is to obtain the inequality in terms of the se-
quence{xi(k)}. Hence, the relationship betweenf(xi(k))
andf(x̄(k)) would be required.

By recalling that

f i(x̄(k)) ≥ f i(xi(k)) +∇i(x̄(k)− xi(k)),

the following expression can be obtained usingAssumption 1,

f(xi(k)) ≤ f(x̄(k)) +NGσ. (26)

Finally, substituting eqn. 26 into eqn. 25, the upper bound
described in Theorem is obtained.�

Theorem 1demonstrates the convergence of function val-
ues and it can be concluded that for a givenθ, as number

of iteration m increases, the upper bound converges to
f∗ + 3NGσ + NθG2

2 . Thus,f(xi(k))min converges within
3NGσ+ NθG2

2 from the optimal value. Also, note that effect
of initial condition dies out with a large value ofm.

Next, the convergence characteristics are analyzed as the
control parameter approaches extreme values0 or 1.

Let a sequence{θk}, k = 1, 2, . . . ,m follow the dimin-
ishing step sizeproperties.

There exists an integerN1, that satisfies θk ≤
δ

NG2 , δ>0, ∀k>N1. Then there exists another integerN2

such that

m∑

k=1

θk ≥
1

δ
(N‖x̄(1)− x∗‖22 +NG2

N1∑

k=1

θ2k), ∀m>N2.

This inequality holds becauselimm→∞

∑m

k=1 θk = ∞.
Now, letN = max{N1, N2}, and the followingTheorem 2

can be stated.
Theorem 2: If Assumptions 1 and 2holds, then, for a

sequence{xi(k)}, if θk satisfiesdiminishing step size, ∀k,
and i = 1, . . . , N ,

f(xi(k))min ≤ f∗ + δ + 3NGσ, ∀m>N. (27)

Proof: By replacingθ with θk in eqn. 20 and rewriting it,

f(xi(k))min − f∗ ≤

N‖x̄(1)− x∗‖22 + 6N
∑m

k=1 θkGσ +NG2
∑m

k=1 θ
2
k

2
∑m

k=1 θk
,

(28)
then rewriting the above inequality,

f(xi(k))min − f∗ ≤

N‖x̄(1)− x∗‖22 +NG2
∑N1

k=1 θ
2
k

2
∑m

k=1 θk

+
6N

∑m
k=1 θkGσ

2
∑m

k=1 θk

+
NG2

∑m

k=N1+1 θ
2
k

2
∑N1

k=1 θk + 2
∑m

k=N1+1 θk

≤
N‖x̄(1)− x∗‖22 +NG2

∑N1

k=1 θ
2
k

2
δ
[N‖x̄(1)− x∗‖22 +NG2

∑N1

k=1 θ
2
k]

+ 3NGσ +
NG2

∑m
k=N1+1

δ
NG2 θk

2
∑m

k=N1+1 θk

= δ + 3NGσ.

(29)

Sinceδ is arbitrarily small, this implies that if the iteration
numberm → ∞, limk→∞ f(xi(k)) ≤ f∗ + 3NGσ. �

This result shows that asθ → 0, the proposed formulation
boils down to the standard subgradient formulation as ana-
lyzed in [13]. With small values ofG andσ, the gap between
the upper bound and the true optimal value reduces.

Now, the case whereθ → 1 is analyzed by presenting the
following theorem.
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Theorem 3: If Assumptions1,2holds, then, for a sequence
{xi(k)}, with θ → 1, ∀k and i = 1, . . . , N ,

f(xi(k))min ≤ f∗ +
N‖x̄(1)− x∗‖22

2m
+ 3NGσ +

NG2

2
.

(30)
Proof: Directly follows from Theorem 1.

Now, with iteration numberm → ∞:

lim
k→∞

f(xi(k)) ≤ f∗ + 3NGσ +
NG2

2
. � (31)

Note, that the gap between the upper bound and the true
optimal value increases asθ increases from0 and approaches
1. Furthermore, withθ = 1, the update rule boils down to:
xi(k+1) = xi(k)−∇i(k) ∀i. It follows from this equation
that with θ = 1, individual agents reach their own locally
optimal values as there is no interaction among agents.

Remark 4.1 First moment analysis presented in this paper
shows that while lowerθ reduces the error with respect to
the global optimal value, largerθ increases that. This is
further explained by the observation that withθ = 1, the
distributed optimization problem turns into separate opti-
mization problems for individual agents. Hence,θ controls
the tradeoff between “degree of consensus” and “degree of
disagreement”.

Remark 4.2 Although it is important to consider subgra-
dients of all agents (with low value ofθ), highly uncertain
subgradient computation by certain agent(s) can reduce the
effectiveness of the optimization algorithm. However, in case
Π is controllable such that appropriateΠ can be chosen
online while maintaining certain constraints such as its
stochastic nature, one can potentially adaptΠ to suppress
the impact of large uncertainty stemming from a particular
agent. In this context, the role of agent interaction matrixis
numerically explored in the following section for suppressing
large uncertainties in subgradient computations.

5. NUMERICAL EXAMPLE

This section presents numerical results to validate the
proposed generalized gossip distributed optimization algo-
rithm in the context of optimizing supply air temperature
for minimizing energy consumption in a building involving
ten zones (agents) while achieving their respective comfort
requirements. In this problem, a general heating, ventila-
tion, and air-conditioner (HVAC) system associated with a
building is investigated. In such a system, zone temperature
regulation is implemented typically through the supply air
flow provided by a central air handling unit (AHU). Please
see [22] for further details. By using the proposed algorithm,
the global supply air temperature gets updated following the
information exchange among zones.

Figure 1 shows that supply air temperature for each zone
converge to the optimized value of29.9◦C as a consequence
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Fig. 1. Supply air temperature convergence plots with iteration number
usingθ = 0.05; Optimal value29.9◦C
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Fig. 2. Supply air temperature optimization performance with different
values of control parameterθ; ; Optimal value29.9◦C; while lower θ
increasesdegree of consensusconvergence time increases as well

of a small value of the control parameter choice (θ = 0.05).
In this example, the network is fully connected, that is, every
zone exchanges information with every other to cooperatively
come up with the desired supply air temperature. Asθ

increases from0, “degree of disagreement” increases as
suggested in the previous section and shown in fig. 2.
Temporal behavior of convergence (i.e., convergence gets
slower with lower value ofθ) can also be observed. With mid
ranges ofθ, an interesting “clustering” phenomenon can be
observed where zones with similar requirements converge
to similar supply air temperature requirements. This sug-
gests that the proposed generalized gossip-based distributed
optimization policy can be very useful in the context of
multi resource and consumption entities or multiple supply-
demand optimization problems.

Figure 3 shows the optimization performance with uniform
agent interaction matrixΠ (fully connected network) and it is
evident that the optimal supply air temperature performance
suffers due to the large uncertainty in test zone 10. On the
other hand, use of a nonuniformΠ (non-fully connected
network) that almost isolates zone 10 reduces its impact on
the overall optimization problem (see fig. 4). However, its
own performance suffers as a consequence. In both cases,
the control parameter used wasθ = 0.1. Therefore, there
are two types of control actions that can be taken in the
proposed framework, namely the control parameterθ and
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the agent interaction matrixΠ.

6. CONCLUSIONS AND FUTURE WORKS

In this paper, a generalized gossip-based subgradient algo-
rithm is proposed to solve distributed optimization problems
in multi-agent networks. Analytical results for first moment
convergence analysis are presented and it is shown that with
θ → 0, the formulation boils down to a classical consensus
based protocol. Whileθ controls this tradeoff, it also controls
the temporal convergence properties. A practical use case
regarding building zone temperature control is presented as
a numerical example to illustrate the proposed algorithm.
Beyond the control parameterθ, the agent interaction matrix
Π can also be used to effectively suppress large uncertainties
in subgradient estimation stemming from certain agents.

While the ongoing effort is focusing on second moment
convergence analysis, some other potential future research
directions are: Effectively using “clustering” effects (in mid
ranges ofθ) for set point optimization at multiple resources;
quantifying and propagation analysis of uncertainties stem-
ming from subgradient computations; extending to con-
strained optimization problems; validation on real-life large
scale supply-demand networks.
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