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Abstract— This paper presents a generalized gossip-based the network. While consensus of the belief state of agents

algorithm to solve distributed optimization problems in multi-
agent networks, especially for multiple supply-demand opti-
mization problems. The proposed algorithm provides a gen-
eralization such that the optimization process can operate in
the entire spectrum of “complete consensus” to “complete
disagreement”. A user-defined control parameterd is identified
for controlling such tradeoff as well as the temporal convergence
properties. Analytical results for first moment convergence
analysis are presented and it is shown that withd — 0, the

formulation boils down to a classical consensus based protocol.

Beyond the control parameter, the agent interaction matrix is

also shown to be useful for effectively suppressing large local-
ized uncertainties in subgradient estimation. A practical use

case regarding building zone temperature control is presented
as a numerical example for validation.

is not guaranteed, proximal agents are more likely to share
similar beliefs. Therefore, in sensor networks, generalized
gossip aims at describing the observed phenomenon at more
‘local’ level as compared to pure consensus algorithms.
The objective of this paper is to combine the generalized
gossip algorithm with subgradient approach and present the
generalized gossip-based subgradient algorithm developed
for distributed optimization. The optimal solution is derived
from performing a more ‘local’ consensus of behavior or
allocation of resources. With a user-defined generalizing pa-
rameter in the agent interaction policy, the trade-off between
propagation radius and localization gradient may be con-

trolled to yield a spectrum of optimal solutions ranging from
globally optimal solution (complete consensus) to greedy
locally optimal solution (no compromise).

In recent times, large-scale networks have received con-The specific contributions of this paper beyond the existing
siderable interest from industry and academia due to thework are:(1) formulation of a new technique for distributed
impact in areas such as robotics, intelligent surveillanceptimization by incorporating the generalized gossip algo-
and reconnaissance, transportation networks and smart builidhm into a subgradient optimization framework, (2) first
ings [1], [2], [3]. One challenge that is faced by thesemoment convergence analysis of consensus and/or discord
large-scale sensor and actuator networks is to autonomoubltween agents for distributed optimization, (3) proposi-
optimize the behaviors of agents or allocate resources withiion of agent interaction matrix adaptation for suppressing
these networks while reducing the computational and ectpcalized large uncertainties in subgradient estimation, (4)
nomic cost. State-of-the-art techniques employ cooperativalidation of the proposed algorithm in a simulation test bed
and non-cooperative [4] distributed optimization [5] to obtairfor temperature control in building zones.
the best agent behavior and/or resource allocation. In these
methods, a global decision (scalar/vector quantity) is shared 2. BACKGROUND AND PROBLEM SETUP

by all agents to prevent local minima [6]. Subgradient Consider an undirected gragh = (V, A) consisting of
methods [7], [8], [9], [10], [11], [12] are widely used to Ny agents, where) = {1,2,..,N} and A C V x V. If
iteratively refine the estimates of the shared decision for eth’ j) € A, then agent can communicate with agerjt Let

agent in a distributed manner. In [13], a scheme combining distributed optimization problem be defined on the network
consensus algorithm with subgradient method was describgd follows:

for solving the convex optimization problems. In [3], a
theoretical framework was established for consensus and
cooperation in networked multi-agent systems.

Generalized gossip algorithms [14], [15], [16] essentially
extend gossip algorithms [17], [18] to cases where perfect
consensus is not required to be archived. A tradeoff betweerhere f* : R — R are agent level objective functions
the decision propagation radius (i.e., how far a decisiofpossibly convex or non-convexy is a nonempty, closed,
spreads from its source) and localization of information isnd compact subset &". x is a vector whoseé'" compo-
chosen to vary the dissemination of agent beliefs throughooént is represented hy’. While in this initial paper, only

1. INTRODUCTION

N

minimize , f(x) =Y _ f*(x)

i=1

1)

subject to,z € X



unconstrained case is considered, constrained case véli beto a distributed optimization problem where the tradeoff is
important future work. between “global optimal” achieved through compromise and
- “local optimal” (s) achieved in a greedy manner by individua

A. Preliminary Background agentsp ) g y y

The basic definitions [7], [13] and assumptions used in The generalized gossip protocol outlined in [14] for belief

this paper are: propagation in a mobile sensor network is as follows:
Definition1: A vector g € RM is a subgradient of a . ,
convex functionf : R — R at a pointz € RM if vhk+1)=(1—-80) Y my(k)uj(k) +6x' (k) (6)
- v JE{iUNB()
fw) = fz)+9 (y—2),VyeR )

whered € (0, 1] is a user-defined control paramet&i (i) is
Definition2: The set of all subgradients of a convexthe set of agents in the neighborhood of agerh this set,
function of f at z € RM is called the subdifferential of agents can communicate with agenduring the time span
[ atz, and is denoted by f(2): betweenk andk + 1. 7;; is the element of-th row andj-th
_ M T M column in the agent interaction matik € R x RY. v and
/() ={g €RVI (W) 2 f(z) +9" (y = 2). Wy €R 23) x are the vectors representing agent belief measure and state
Definition3: 3¢ > 0, for all y € RM, if f(y) > f(2) + characteristics fgnction (quantifying o_bservat_ions m@de
g7(y—z)—e, theng is ac-subgradient. Namely; € . f(=). agents), respectively. While the agent interaction matray

Note, scalar optimization variables can be easily conderte” general be time varying, it maintains tteubly stochastic

to M dimensional vectors as suggested in the definitiod¥ OPEY-
presented above. For notational simplifications scalantage 3. GENERALIZED GOSSIPBASED SUBGRADIENT
level optimization variables:’ are used without loss of ALGORITHM
generality.

Assumption 1 (Subgradient boundednedd)ere exists a
scalarG for all i =1, ..., N such that

In this section, the proposed generalized gossip-based sub
gradient algorithm is proposed for distributed optimiaati
In this formulation, the discrete-time update law (derived
lg' ()2 < G,Vg'(z) € Ofi(z), Ve € X (4) fromeqgn.5and 6) for the optimization variable is as follows

Assumption 2 The optimal solution set* is nonempty.  z'(k+1) = (1-0) Z i (k)2 (k)+0(2' (k)—V' (k)

The standard distributed subgradient formulation for JE{IIOND() )

multi-agent distributed optimization (see [8]) is as folk whereVi (k) is the subgradient of’ at z*(k) computed by
, mo } } , agenti. Note, there is no explicit stepsize parameter in this
o' (k+1) =Y ai(k)a? (k) — o (k)d' (k) (5)  update rule. However, user defined paramétercts as the
j=1 weight on the subgradient term at every update step.

where a;, are weights,oi(k) are step sizesfi(k) are the In a vector notation, the update rule becomes:
subgradients of* atz’(k) andk is a time index. Depending 2k +1) = (1 — O)T(k)z(k) + 0(z(k) — V(k)).  (8)
on choice weights, this formulation has been shown to solve
multi-agent optimization problems primarily via consesisu  Note, as the control parametmapproaches, this policy
Choice of step size is also key to obtain desired convergeneeils down to a standard consensus-based optimizationprot

properties. col using subgradients. On the other hand} approaches,
) , ) interaction among agents reduce significantly and indefidu
B. Generalized Gossip Algorithm agent-level optimization variable tend to converge to rthei

“Agreement” or “consensus” is one of the most widelyrespective local minima based on individual subgradients.
used concepts in the area of multi-agent systems for infoFormal discussion on this aspect will follow the analytical
mation fusion, decision-making, information propagatma results presented in the sequel.
distributed optimization. Among various protocols, gpssi  This initial paper presents analytical results for the first
based consensus algorithms are quite popular due to theioment along with generic numerical results. Second mo-
simple nature yet powerful properties as well as strongent analysis remains a critical future work. Following are
analytical results [19], [20]. Recently, in the context ofnotations and lemmas required for the convergence analysis
distributed information propagation in a mobile sensor net For first moment analysis, ensemble average (over agents)
work [21], the present authors proposed a generalizedgossif z(k) andV (k) are denoted by (k) andV (k) respectively.
protocol [14]. One of the key observations made in the studyhey are defined as:

was that a user defined parameter is able to control the N
fundamental tradeoff between information propagatioiusd Z(k) = ilx(k) _ in(k) 9)
and localization gradient. This paper applies this forrtioia N P



Again, using the above relationship for &l agents

N
_ 1 ,
V(k)= —1V(k) =) V'(k) (10) . N
N Z; f(2) = f@' (k) + > V'(k)(z — (k) — NGo.  (16)
where1 is a row vector with all elements being 1. o =t o _
Note, multiplying the update rule described in eqn. ghubstituting eqn. 14 into eqn. 16, the following inequality
by 11 yields the following relationship (a$l is doubly ~Can be obtained
stochastic): B N
Z(k+1)=z(k) — 6V (k) (11) f(z) > f(z(k)) + Z V'(k)(z —z(k)) —2NGo. (17)
The form of this equation is similar to that of the classical . = . .
subgradient method Combining eqn. 17 and egn. 10, the desired result is
Next, optimal function values are denoted J¥, that are 2chieved® o A baradiont ofs
assumed to be finite. Without loss of genera}vlity the optimal Note, Lemma 2shows thatVV' is ane-subgradient ofc.
set is represented by, i.e.,z* = {z e R[> ., f'(z) = 4. STATISTICAL CONVERGENCEANALYSIS
f*}. Note, optimal points can be multi-dimensional and not
necessarily have to be scalar. Here are a few necess
lemmas and proposition required for convergence analysi
Lemmallf ||zi(k) — 27 (k)|2 < 0<o00,Vi,j = 1,..., N, L 3If A :
. e A : t 1, holds, then, f
then||z* (k) — z(k)|2 < o. See [13] for proof. j(:)n;mva;g ssumptions 2, 201ds, then, for a sequence
Note, this lemma suggests that if pairwise distance bé— o
.. . . . B y B y 1 B
tween optimization variables of any two agents is bounded(ux(k +1) — 2|2 < |3(k) — 2¥||2 — 20— (f(@(k))

In this section, first moment convergence analysis for the
eheralized gossip based subgradient algorithm is pegent
he analysis begins with the following lemma.

then distance between the average and any point is bounde N (18)
by the same quantity. Before presenting the next lemma, the — [*) +40Go + 0°G?.
following .p_roposition is req_uired. Proof: By using Lemma 2,
Proposition 1 If Assumption holds, then for a sequence - o - _ o
{V(k)}, V, ) @k +1) = 213 = l2(k) — 09 (k) — 2|
IV(E)ll2 < G. = |z(k) — ™3 — 20V (k)
Proof: [V (k)12 = || S, VI(R)ll2 < 41V (®)ll2 + (2(k) —2") + [V (R)Il3
IV2E)ll> + - + IV (B)]]2] < %(NG) = G. < @ (k) — 2" I3 (19)
The proposition suggests that if all individual agent level 1 - .
subgradient norms are bounded, then norm of the average - 29N(f(f”(k)) /")
subgradient is also bour_1ded by the same quantity. +40Go + 02G2.
Lemma2 If Assumptionlholds, then, for a sequence
{z(k)}, Vk and z € R, wheref* = f(2*). The last inequality follows fronf (z*) >

1) > F@(k) + N9 (= — 5(F)) 12) :(:E(k))+NV(k)(:z:* —Z(k))—2NGo and theAssumption 2

wheree = 2NGo. Lemma 3suggests thatt gets closer toxr* with every
Proof: Using Definition 1 and Assumption 1 iteration whenf(z) is much greater tharf*. However, as
il i _ i _ f(z) comes very close t¢*, z is not guaranteed to get closer
fia'(k) = f.(x(kz".i_ v (k)(fT (k) — 2(k)) to x*. This is due to the two positive terms in the equation,
> 1=V (k)ll2llz* (k) — 2(K)||2 (13)  40Go and#2G?2. If the control parametef is reduced, then
> fi(z(k)) — Go. the positive terms reduce in magnitude andpproaches*.

Next, Theorem 1is introduced to provide an upper bound
for the optimized function value.
f(z'(k)) > f(z(k)) — NGo. (14) Theorem 11f Assumptions 1, Bolds, then, for a sequence
{2%(k)}, Vk andi =1,..., N,

/ Njz(1) — 2|3

Using the above relationship for a¥ agents

For anyz € R, there exists

F'Gz) 2 f1@ (k) + V' (k) (2 — &' (k) | P F @ R min < 7+ ——5
> il (k) + Vi (k) (= — 2(k) + (k) — 2 (F)) Nogz &0)
> fi(a (k) + Vi (k) (= — 2(k) — V'(R)) TINGE
— VI (B)[l2l|z (k) — " (k)2 where f (2 (k))min = min{f(zi(1)),..., f(zi(m))}, m is
> fi(zi (k) + Vi(k)(z — 2(k) — Vi(k)) — Go. the number of iterationsy is the upper bound of subgradi-

(15) ents,o is the upper bound of Euclidean distance between



2i(k) and z(k) and 6 is the control parameter. As the of iteration m increases, the upper bound converges to
subgradient is not always in the descent direction, the begt + 3NGo + %Gz Thus, f(2°(k))m:m converges within
value need to be tracked that best approachiesHence, 3NGo -+~ from the optimal value. Also, note that effect
afterm iterations, the best value is denoted py* (k))min-  of initial condition dies out with a large value of.

Proof: The lower bound is easily obtained when the Next, the convergence characteristics are analyzed as the
Optlmal solution set exists. Therefore, the prOOf mainlﬂlde control parameter approaches extreme values 1.

with the upper bound. Recallingemma3 Let a sequencéf}, k = 1,2,...,m follow the dimin-
|Z(k + 1) — 2% < [|z(k) — 2*||3 ishing step sizgroperties.
1 (21) There exists an integerN;, that satisfiesf, <
= 205 (f(@(k) = f*) + 40Go + 0*G?, ~oz.0>0,Vk>Ny. Then there exists another integah
such that
then, applying this inequality recursively for iterations v
1
Ik +1)=a"lf3 < Jl2(1) - "I Zek N||:c (1) = 2|2+ NG? 3 62), Yim>N,.
k=1
- 29— 40mG
Z ) +49mGo - (22) This inequality holds becausdan,,, o Y 1o, 0x = ©
i m92G2 Now, let)t = maxz{ Ny, N3}, and the followingTheorem 2

can be stated.
Since||z(k + 1) — z*||3 > 0, the inequality above can be Theorem?2 If Assumptions 1 and holds, then, for a
written as sequencezi(k)}, if ) satisfiesdiminishing step sizevk,
OSH;E()_;C*H‘;’ andi=1,...,N,

YRS Z
+m6‘2G2.
Let f(2(k))min = min{f(z(1)),..., f(z(m))}. Then, the

second term on the right hand side of the above equation

)+ 46mCo 23) F(@ (k))min < f*+ 06 +3NGo,Ym>N.  (27)

Proof: By replacingé with 6 in eqn. 20 and rewriting it,

J(@ (k))min — f* <
Nz(1) — z* H2+6N2k 19kG0+NGQZk 10

satisfies 22k b (28)
1 e, . . then rewriting the above inequality,
20 > (F(@(k) - ) ) e
k=1 (24) f(xz( ))mzn - f <
m N1
> (Y 205) min (F(2(K) ~ ). Nz = o |3 + NG? 32, 6
N’ k=1,.., m 2
k=1 Zk:l
Combining the above two equations another inequality fol- 6N >y OrGo
lows 23 O
F@®))min — 7= min f(z(k)) - f* L N N b 9
=hyeem Ny m
N||E(1) — 2|2 NOG2 (25) 2 1 Ok + 23 N 1 O,
<t = . - 1
ST gmp TANOTH i@ (1) - o |3+ NG ) 67

The goal is to obtain the inequality in terms of the se- 2IN||z(1) — 2|3 + NG? kN:lle,%]
quence{zi(k)}. Hence, the relationship betwediiz’(k))
and f(z(k)) would be required.

By recalling that

F@®) 2 £ (k) + Vi(@k) = ' (R)), Since/ is arbitrarily small, this implies that if the iteration
the following expression can be obtained uskgpumption 1  numberm — oo, limy_o0 f (27 (k) < f* +3NGo. W
i _ This result shows that @&— 0, the proposed formulation
f(@'(k)) < f(2(k)) + NGo. (26) boils down to the standard subgradient formulation as ana-
Finally, substituting eqn. 26 into egn. 25, the upper bounlyzed in [13]. With small values off ando, the gap between
described in Theorem is obtaindll. the upper bound and the true optimal value reduces.
Theorem 1demonstrates the convergence of function val- Now, the case wheré — 1 is analyzed by presenting the
ues and it can be concluded that for a givknas number following theorem.

2 \m 5
Zk:Nﬁ-l NG? Ok
m
2 Zk:Nﬁ-l O

+3NGo +

=0+ 3NGo.
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Supply air temperature performance
T ——

Theorem 3If Assumptionsl, Bolds, then, for a sequence
{2*(k)}, with & — 1, Vk andi=1,..., N,

w
=}

—zonel
——zone2

N
©
T

)
)
i
, N||Z(1) — |2 NG? e
f(xl(k))mzn < f* + W + 3NGo + —. S 28+ fzoneg
(30) 8 e
Proof: Directly follows from Theorem 1 g 27| — oones
Now, with iteration numbem — oo: % ~—zoneld
| NG? £ ‘ ‘ ‘ ‘
. 7 * (@) 0 200 400 600 800 1000
klggo f(.%' (k)) S f + 3NGU + : . (31) Iteration number

NOtea that t_he gap betV\{een the upper bound and the treg 1. supply air temperature convergence plots with ti@nanumber
optimal value increases &@sncreases frond and approaches usingd = 0.05; Optimal value29.9°C

1. Furthermore, withd = 1, the update rule boils down to:
2 (k+1) = 2 (k) — V(k) Vi. It follows from this equation
that with # = 1, individual agents reach their own locally
optimal values as there is no interaction among agents.

Supply air temperature performances with different control parameters
T T T T T T T T T

Remark 4.1 First moment analysis presented in this paper
shows that while lowe# reduces the error with respect to
the global optimal value, largef increases that. This is
further explained by the observation that with= 1, the
distributed optimization problem turns into separate epti T o0 o o o oo eor oo am evs 1ouo
mization problems for individual agents. Hendegcontrols fteration number
the tradeoff b?tween “degree of consensus” and “degree qlfig. 2. Supply air temperature optimization performancéhvdifferent
disagreement”. values of control parameteff; ; Optimal value 29.9°C; while lower 9
increaseslegree of consensunvergence time increases as well
Remark 4.2 Although it is important to consider subgra-
dients of all agents (with low value @), highly uncertain
subgradient computation by certain agent(s) can reduce th#f a small value of the control parameter choiée=(0.05).
effectiveness of the optimization algorithm. Howevergsgec In this example, the network is fully connected, that is,rgve
II is controllable such that appropriatél can be chosen zone exchanges information with every other to cooperigtive
online while maintaining certain constraints such as itscome up with the desired supply air temperature. As
stochastic nature, one can potentially addptto suppress increases from0, “degree of disagreement” increases as
the impact of large uncertainty stemming from a particulasuggested in the previous section and shown in fig. 2.
agent. In this context, the role of agent interaction matsix Temporal behavior of convergence (i.e., convergence gets
numerically explored in the following section for suppiags slower with lower value o)) can also be observed. With mid
large uncertainties in subgradient computations. ranges off, an interesting “clustering” phenomenon can be
observed where zones with similar requirements converge
5. NUMERICAL EXAMPLE to similar supply air temperature requirements. This sug-
This section presents numerical results to validate trgests that the proposed generalized gossip-based disttibu
proposed generalized gossip distributed optimizatior-alg optimization policy can be very useful in the context of
rithm in the context of optimizing supply air temperaturgmulti resource and consumption entities or multiple supply
for minimizing energy consumption in a building involving demand optimization problems.
ten zones (agents) while achieving their respective camfor Figure 3 shows the optimization performance with uniform
requirements. In this problem, a general heating, ventila&gent interaction matrikl (fully connected network) and it is
tion, and air-conditioner (HVAC) system associated with &vident that the optimal supply air temperature perforreanc
building is investigated. In such a system, zone tempezatusuffers due to the large uncertainty in test zone 10. On the
regulation is implemented typically through the supply aiother hand, use of a nonuniforii (non-fully connected
flow provided by a central air handling unit (AHU). Pleasenetwork) that almost isolates zone 10 reduces its impact on
see [22] for further details. By using the proposed alganith the overall optimization problem (see fig. 4). However, its
the global supply air temperature gets updated followirgg thown performance suffers as a consequence. In both cases,
information exchange among zones. the control parameter used wés= 0.1. Therefore, there
Figure 1 shows that supply air temperature for each zorae two types of control actions that can be taken in the
converge to the optimized value 29.9°C as a consequence proposed framework, namely the control parameteand

Control parameter = 0.6

Optimal supply air temperature
Control parameter = 0.2

Control parameter = 0.05

Optimized supply air temperature TSA(C)
w




Supply air temperature performances of 10 zones

(2]

(3]

(4]

0 100 200 300 400 500 600 700 800 900 1000 [5]
Iteration number

Fig. 3.  Supply air temperature optimization performancéhwiniform
agent interaction matrix under uncertainties in subgradi®mputation

(6]

Supply air temperaure performances of 10 zones

: T::ﬂ [71
(8]

El

[10]

0 100 200 300 400 500 600 700 800 900 1000
Iteration number

[11]
Fig. 4. Supply air temperature optimization performancehwonuniform
agent interaction matrix under uncertainties in subgradi®mputation

[12]

the agent interaction matrii.

6. CONCLUSIONS AND FUTURE WORKS

In this paper, a generalized gossip-based subgradient algo
rithm is proposed to solve distributed optimization prohée
. : X ! [14]
in multi-agent networks. Analytical results for first monien
convergence analysis are presented and it is shown that with
0 — 0, the formulation boils down to a classical consensug®!
based protocol. Whilé controls this tradeoff, it also controls ,
the temporal convergence properties. A practical use case
regarding building zone temperature control is presented a
a numerical example to illustrate the proposed algorithnh?]
Beyond the control parametéy the agent interaction matrix
IT can also be used to effectively suppress large uncertaintie
in subgradient estimation stemming from certain agents.

While the ongoing effort is focusing on second moment-&l
convergence analysis, some other potential future relsearc
directions are: Effectively using “clustering” effects (mid
ranges ofY) for set point optimization at multiple resources;[1°
qguantifying and propagation analysis of uncertaintiesnste 20
ming from subgradient computations; extending to con-
strained optimization problems; validation on real-litgge
scale supply-demand networks. 21]

[13]
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