
Proceedings of the ASME 2015 Dynamic Systems and Control Con ference
DSCC 2015

October 28-30, 2015, Columbus, Ohio, USA

DSCC2015-9784

UNDERSTANDING WIND TURBINE INTERACTIONS USING SPATIOTEMP ORAL
PATTERN NETWORK

Zhanhong Jiang and Soumik Sarkar ∗

Department of Mechanical Engineering
Iowa State University, Ames, IA 50011

Emails: {zhjiang@iastate.edu, soumiks@iastate.edu}

ABSTRACT
This paper presents a data-driven modeling framework to

understand spatiotemporal interactions among wind turbines in
a large scale wind energy farm. A recently developed proba-
bilistic graphical modeling scheme, namely the spatiotemporal
pattern network (STPN) is used to capture individual turbine
characteristics as well as pair-wise causal dependencies.The
causal dependency is quantified by a mutual information based
metric and it has been shown that it efficiently and correctly
captures both temporal and spatial characteristics of windtur-
bines. The causal interaction models are also used for predicting
wind power production by one wind turbine using observations
from another turbine. The proposed tools are validated using the
Western Wind Integration data set from the National Renewable
Energy Laboratory (NREL).

INTRODUCTION
Wind power is a significant alternate source of energy that

is clean and pollution-free and accurate wind power prediction
is a critical need for the wind energy industry today in orderto
compete with the more traditional energy sources in the energy
market where both lower and surplus energy productions often
get penalized. Furthermore, reliable models are required to max-
imize global energy production. However, due to the stochas-
tic nature and intermittence of wind source, improving modeling
accuracy, reliability assessment and characterization ofthe wind
energy is a critical technical challenge. Various methods have
been proposed to predict overall farm-wide wind energy produc-

∗Address all correspondence to this author.

tion that are primarily either physics-based or data-driven meth-
ods. Physics-based methods rely on local meteorological service
or numerical weather prediction (NWP) [1–4] model data associ-
ated with specific geographical information [5] and wind turbine
fluid mechanics [6, 7]. However, they often lack scalabilityand
robustness while modeling complex spatiotemporal interactions
among a large number of wind turbines. Data-driven methods are
also widely used especially for short-term wind power prediction
such as, artificial neural networks (ANNs) [8–14], support vector
machines [15], Kalman filtering [16] and Bayesian methods [17].
More recently, hybrid methods have been put forward to enhance
the accuracy of short-term wind energy prediction, such as ANN
and imperialistic competitive algorithm (ICA) [18]; Kalman fil-
tering and NWP [19]; Gaussian process (GP) and NWP [2]; ge-
netic algorithm (GA) and ANN [20]; hybrid neural network and
computational fluid dynamics (CFD) [21]; wavelet transform,
GA and SVM [22]; ANNs and Bayesian methods [23]; adaptive
Bayesian learning and GP [24]. Moreover, He et al. [25,26] pro-
posed a spatiotemporal analysis framework in which finite state
Markov models were developed for wind farm energy generation
forecast where a short-term distributional forecasts and apoint
forecast were derived by using Markov chains and ramp trend in-
formation. Similar models were explored by Xie el al. [27] for a
short-term spatiotemporal wind power forecast with the Trigono-
metric Direction Diurnal (TDD) and geostrophic wind informa-
tion (TDDGW) to improve the forecasting performance. They
further integrated the improved performance and economic dis-
patch framework to improve economic benefits.

Based on the above discussion, it is evident that the current
state-of-the-art techniques mostly focus on predicting short-term
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farm-wide energy production. Therefore, they don’t necessar-
ily capture various complex spatiotemporal interactions at local
levels, such as turbine-turbine and turbine-wind pattern interac-
tions. While physics-based methods explore such interactions
using first principles, it becomes significantly complicated as the
number of turbines increases. This is because although physics-
based relationships can be constructed for a single turbineor a
small number of them, scaling such nonlinear relationshipsfor
a large number turbines becomes intractable due to high degree
of uncertainty. Furthermore, such techniques may succumb to
the curse of dimensionality. However, using data-driven meth-
ods can effectively avoid directly figuring out the complex rela-
tions involving many physical variables. Modeling spatiotempo-
ral interactions is crucial in order to monitor performanceand
diagnose issues related to individual turbines as well as tode-
velop supervisory control schemes for individual wind turbines
at a local level to maximize global energy production. Accurate
forecasting of overall farm production is of great importance as it
can improve ability to manage dispatchable energy sources and
enable greater wind energy penetration. Although it is out of
the scope of this paper currently, integrating the improvedper-
formance of wind turbines over wind farms by using novel data-
driven methods and economic dispatch framework is essential to
improve economic benefits and will be the future focus. Note,
high-fidelity modeling of isolated single turbine will not be suf-
ficient in this context as the behavior of a turbine changes sig-
nificantly based on the joint behavior of other turbines and wind
patterns [26].

This paper proposes a novel way of capturing spatiotem-
poral interaction patterns among multiple wind turbines inthe
form of a recently proposed probabilistic graphical model,called
the spatiotemporal pattern network (STPN) [28]. STPN is built
on the concept of Symbolic Dynamic Filtering (SDF) that has
been shown to be an efficient time-series feature extractiontool
for various applications, e.g., parameter estimation in electronic
circuits [29], fatigue damage detection in polycrystalline al-
loys [30, 31], activity recognition [32], fault detection and isola-
tion in nuclear power plants [33], coal gasification systems[34]
and aircraft gas turbine engines [35]. While most of the tra-
ditional uses of SDF tool focus on modeling individual sub-
systems usingD-Markov machines [36], the key advancement
made in the STPN development was development of a variant,
called thexD-Markov machine [28, 35] to capture the causal
dependencies between multiple sub-systems. Such models are
shown to be sufficient to capture a fairly general class of causal
dependencies while correlation-based analysis fails to perform
the task [37]. Furthermore, information theoretic measures can
be used to quantify the spatiotemporal causality among various
sub-systems captured by the thexD-Markov machines. Hence,
the STPN technique is highly suited to capture spatiotemporal
interaction patterns among multiple wind turbines and the paper
validates the proposed method using wind farm data from the

National Renewable Energy Laboratory (NREL) database [38].
The paper is organized in five sections including the present

one. In Section II, a brief background on SDF along withD-
Markov andxD-Markov machines is provided for completeness.
Detail description of STPN construction and information theo-
retic causality measure in the context of the wind turbine prob-
lem is presented in Section III. Section IV presents the valida-
tion results along with a comprehensive discussion. The paper is
summarized and concluded in Section V with recommendations
of future work.

BRIEF BACKGROUND ON SDF AND D-MARKOV MA-
CHINES

This section presents a brief background on SDF andD-
Markov machines for completeness. Further details can be found
in [39]. SDF is based on the concept of symbolic dynamics
where discretization and symbolization are two key steps which
yield symbol sequences from observed continuous data. Thisen-
ables study of dynamical systems in the symbolic space using
a language-theoretic approach with tools such as shift-maps and
sliding block codes in both deterministic and probabilistic set-
ting. However, although there have been various methods pro-
posed in literature for discretization or partitioning, there is not a
single standard way to approach it. In the present study, a super-
vised multi-variate discretization scheme called the maximally
bijective discretization (MBD) [39] is used that was proposed for
modeling complex dynamical systems. MBD aims at maximally
preserving the input-output relationship present in the continuous
domain for a dynamical system.

The discretization of time-series data is followed by the
symbolization process and construction ofD-Markov machines.
An important assumption in SDF is that the symbol sequence
generated from a system observation can be approximated by a
Markov chain of orderD (a positive integer), which is called the
D-Markov machine. AD-Markov machine can be used to model
the individual time-series data as it captures the temporalcharac-
teristics embedded in the symbol sequence. More formally,

Definition 1. [28] (DFSA) A deterministic finite state automa-
ton (DFSA) is a 3-tuple G= (Σ,Q,δ ) where:

1. Σ is a non-empty finite set, called the symbol alphabet, with
cardinality |Σ|< ∞;

2. Q is a non-empty finite set, called the set of states, with car-
dinality |Q|< ∞;

3. δ : Q×Σ → Q is the state transition map;

andΣ⋆ is the collection of all finite-length strings with symbols
fromΣ including the (zero-length) empty stringε.

Definition 2. [28] (PFSA) A probabilistic finite state automa-
ton (PFSA) is constructed upon a DFSA G= (Σ,Q,δ ) as a pair
K =(G,Π̃), i.e., the PFSA K is a 4-tuple K=(Σ,Q,δ ,Π̃), where:
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1. Σ,Q, andδ are the same as in Definition 1;
2. Π̃ : Q× Σ → [0,1] is the symbol generation function (also

called probability morph function) that satisfies the condi-
tion ∑σ∈Σ Π̃(q,σ) = 1 ∀q∈ Q, andπ̃i j is the probability of
occurrence of a symbolσ j ∈ Σ at the state qi ∈ Q.

Definition 3. [28] (D-Markov) A D-Markov machine is a
PFSA in which each state is represented by a finite history of
D symbols as defined by:

1. D is the depth of the Markov machine;
2. Q is the finite set of states with cardinality|Q| ≤ |Σ|D, i.e.,

the states are represented by equivalence classes of symbol
strings of maximum length D where each symbol belongs to
the alphabetΣ;

3. δ : Q×Σ→Q is the state transition function that satisfies the
following condition if|Q| = |Σ|D, then there existα,β ∈ Σ
and x∈ Σ⋆ such thatδ (αx,β ) = xβ andαx,xβ ∈ Q.

Remark 4. It follows from Definition 3 that a D-Markov
machine is a statistically stationary stochastic process S=
· · ·s−1s0s1 · · · , where the probability of occurrence of a
new symbol sn depends only on the last D symbols, i.e.,
P[sn|sn−1 · · ·sn−D · · ·s0] = P[sn|sn−1 · · ·sn−D].

The details ofD-Markov machine construction can be found
in [28,36], which may include state splitting that generates sym-
bol blocks of different lengths and state merging that results in
the reduction of the number of states.

While Π̃ denotes the symbol generation function or the prob-
ability morph function,Π denotes the state transition matrix, el-
ements of which captures the transition probabilities fromone
symbolic state to another. For example, let the symbolic state of
wind turbineA at thekth instant be denoted byqA

k . Then, thei j th

matrix elementπA
i j of the (stationary) state transition matrixΠA

is the probability ofqA
k+1 being i provided the past observation

qA
k was j, i.e.,

πA
i j , P

(

qA
k+1 = i | qA

k = j
)

for an arbitrary instantk

D-Markov machines can be used for modeling individual
sub-systems. Recently, concept of xD-Markov machine was
proposed to capture the causal dependencies between multiple
sub-systems. Such models are shown to be sufficient to capture
a fairly general class of causal dependencies while correlation-
based analysis fails to perform the task [37]. Formal definition
of xD-Markov machine is as follows:

Definition 5. [28] (xD-Markov) LetM1 andM2 be the PF-
SAs corresponding to symbol streams{s1} and{s2} respectively.
Then a xD-Markov machine is defined as a 5-tupleM1→2 ,

(Q1,Σ1,Σ2,δ1,Π̃12) such that:

1. Σ1 = {σ0, ...,σ|Σ1|−1} is the alphabet set of symbol sequence
{s1}

2. Q1 = {q1,q2, . . . ,q|Q1|} is the state set corresponding to
symbol sequence{s1}

3. Σ2 = {σ0, ...,σ|Σ2|−1} is the alphabet set of symbol sequence
{s2}

4. δ1 : Q1×Σ1 → Q1 is the state transition mapping that maps
the transition in symbol sequence{s1} from one state to an-
other upon arrival of a symbol in{s1}

5. Π̃12 is the symbol generation matrix of size|Q1|× |Σ2|; the
i j th element ofΠ̃12 denotes the probability of finding the
symbolσ j in the symbol string{s2} while making a tran-
sition from the state qi in the symbol sequence{s1}

From the above definition, it is evident that while a regular
D-Markov machine encodes the probability of occurrence of a
new symbol given the lastD symbols for one symbol sequence,
a xD-Markov machine encodes the probability of occurrence of a
new symbol in one symbol sequence given the lastD symbols for
another different symbol sequence (possibly from a different sub-
system). Thus it can capture the causal effects of one symbolse-
quence (sub-system) on another symbol sequence (sub-system).

STPN CONSTRUCTION FOR WIND ENERGY FARMS
This section presents the spatiotemporal pattern network

(STPN) construction process for the specific problem of under-
standing wind turbine interactions based on the concepts ofSDF
outlined above. We begin with data space abstraction that in-
volves data partitioning/discretization and symbolization.

Data Space Abstraction
A wind turbine in a wind energy farm can be seen as a sub-

system in a multi-agent complex system. Among various mea-
sured variables, two key observations for each wind turbineare
wind speed and associated wind power. In the context of sym-
bolic modeling, a wind turbineA is characterized by two sensor
observations namely, wind speed and wind power. Note, other
variables such as wind direction and humidity that may effect
power can be included in the sub-system modeling as well. For
the data discretization step, there are many methods that can
be applied, such as the symbolic false nearest neighbor parti-
tioning [40], maximum entropy partitioning and uniform parti-
tioning [41]. In this paper, maximally bijective discretization
(MBD) [39] is used to maintain the functional relationship be-
tween wind speed and wind power present in the continuous do-
main. In this case, wind speed is discretized as an independent
variable and wind power discretization depends on it to maxi-
mize bijectivity between discrete states of the two variables. The
second part of the abstraction step is symbolization of continuous
data using the discretization. The symbolization process converts
the temporal evolution ofA in the multi-dimensional (2-D in this
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FIGURE 1. Illustration of Symbolic Dynamic Filtering (SDF) process applied to a wind turbine: Steps to generate a D-Markov machine (PFSA
model) using heterogeneous data of wind power and wind speedfrom a wind turbine

case) space into a symbol sequence. An illustration is presented
in fig. 1: heterogeneous data for wind speed and wind power is
obtained from wind turbineA and using a discretization policy
time-series data are converted into a temporal symbol sequence.
Note, although the same discretization may be used for differ-
ent wind turbines, typically they would correspond to different
symbol sequence characteristics. Also, this symbolization pro-
cess implicitly performs data-level information fusion with wind
speed and wind power data.

Symbolic Modeling of Wind Turbines and Interactions
The symbol sequences generated at the abstraction step are

modeled in the form of PFSA following the SDF approach as
shown in fig. 1. Note, AD-Markov machine is a PFSA in
which each state is represented by a finite history ofD symbols.
Now we consider the two different wind turbines and quantify
their spatiotemporal relations. According to the definition of D-
Markov machine, the regular state transition matricesΠA and
ΠB represent wind turbinesA andB respectively. Similarly, cross
state transition matricesΠAB andΠBA are defined for xD-Markov
machines representing the causal dependencies ofB on A and
of A on B respectively. Note, that such dependencies may not
be symmetric, i.e.,ΠAB andΠBA are not necessarily the same.
Features (e.g., state transition matrix or stationary distribution)
fromD-Markov machines are known as atomic patterns (AP) and
those from xD-Markov machines are known as relational patterns
(RP) [28]. The elements of the cross-state transition matrices
ΠAB andΠBA are shown as follows:

πAB
kℓ , P

(

qB
n+1 = ℓ | qA

n = k
)

∀n

πBA
i j , P

(

qA
n+1 = j | qB

n = i
)

∀n

A B);( AAA
IP );( BBB
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);( ABAB
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FIGURE 2. Extraction of atomic and relational patterns (using D-
Markov and xD-Markov machines respectively) to characterize indi-
vidual wind turbine behavior and interaction behavior among different
wind turbines

where j,k ∈ QA and i, ℓ ∈ QB. The cross-state transition matrix
is established from symbol sequences generated from two wind
turbines and every element in the matrix identifies the probability
of transition from a state in one wind turbine to another state in
the second wind turbine.

Furthermore, an information-theoretic measure can be used
quantify the information content of the atomic and relational fea-
tures. As shown in fig. 2,I denotes the mutual information based
importance metric for a feature. For example, mutual informa-
tion for the atomic pattern of wind turbineA is expressed as:

IAA = I(qA
n+1;qA

n) = H(qA
n+1)−H(qA

n+1|q
A
n)
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where

H(qA
n+1) =−

QA

∑
i=1

P(qA
n+1 = i) log2P(qA

n+1 = i)

H(qA
n+1|q

A
n) =−

QA

∑
i=1

P(qA
n = i)H(qA

n+1|q
A
n = i)

H(qA
n+1|q

A
n = i) =−

QA

∑
i=1

P(qA
n+1 = l |qA

n = i)·

log2P(qA
n+1 = l |qA

n = i)

Note, the quantityIAA signifies the temporal self-prediction ca-
pability (self-loop) of the wind turbine A.

Similarly, mutual information for the relational pattern be-
tween wind turbines A and B is represented as:

IAB= I(qB
n+1;qA

n) = H(qB
n+1)−H(qB

n+1|q
A
n)

where

H(qB
n+1|q

A
n) =−

QA

∑
i=1

P(qA
n = i)H(qB

n+1|q
A
n = i)

H(qB
n+1|q

A
n = i) =−

QB

∑
i=1

P(qB
n+1 = l |qA

n = i)·

log2P(qB
n+1 = l |qA

n = i)

Note, the quantityIAB signifies wind turbine A’s capability of
predicting wind turbine B’s outputs and vice versa forIBA. Such
mutual information based metric can be used as the weights as-
signed for the patterns, that can be used for rejecting patterns
with low information content (for network pruning) as well as
decision fusion. Interested readers can find more details in[28].

As described above, STPN provides an effective tool for
learning the spatiotemporal interactions among individual wind
turbines. In order to validate the model quality, this paper
presents prediction results using the learnt Markov modelsin
both symbolic and continuous domain. In the symbolic domain,
most likely symbol sequence for a turbineA given the symbol
sequenceB can be obtained via running the xD-Markov model

FIGURE 3. Geographical information for the studied wind turbines:
the selected wind turbines are located in the state of california, between
35.28-35.33n and 118.09-118.17w. they are numbered as 1-12and their
power capacities are more than 40%

2 3 41

5 6 7 8 9

10

11 12

FIGURE 4. Wind turbines as the sub-system nodes for the abstract
spatiotemporal network representation

(from B to A) a large number of times. The symbolic prediction
can be further converted to a continuous domain prediction in an
expected sense as follows:

E(Powerk) =
m

∑
j=1

Prk( j)E(Power| j)

where,E(Powerk) is the expected value of power at thekth

instant,Prk( j) is the probability ofjth symbol at thekth instant
evaluated using the large number of simulation runs of the learnt
Markov models andE(Power| j) is the expected value of power
in the discrete bin denoted by symbolj (there aremdiscrete sym-
bols).

RESULTS AND DISCUSSION
This section presents validation results and discussions

based on the Western Wind Integration data set available from
the National Renewable Energy Laboratory (NREL) [38]. There
are five types of wind turbines based on power capacity: larger
than 40%, 35% to 40%, 30% to 35%, 25% to 30% and less than
25%. In this study, 12 wind turbines (located in California)with
power capacity larger than 40% are used; IDs: 4494, 4495, 4496,
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FIGURE 5. Scatter plot of wind power and wind speed and the parti-
tioning using maximally bijective discretization (MBD)
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FIGURE 6. Symbolization of a typical wind turbine time series data

4497, 4423, 4424, 4425, 4426, 4427, 4361, 4313 and 4314 (num-
bered 1 - 12) and the power capacities range approximately from
41% to 45%. The wind turbines are located in an area where the
annual average wind speed is about 9 m/s, with the elevation of
1019 m - 1207 m. All the conditions for the data set correspond
to those of the year 2006.

Figure 3 provides the geographical information of twelve
wind turbines distributed in different locations. They areab-
stracted as nodes of the spatiotemporal pattern network (STPN)
as shown in fig. 4 for visualization simplicity. Figure 5 shows
the scatter plot with wind power output and wind speed of one
wind turbine (other wind turbines also follow nearly the same
pattern). The figure further shows the MBD where the partition-
ing of the wind power axis can be found given the partitioningof
the wind speed axis such that their correspondence in the contin-
uous domain is maximally preserved in the symbolic domain. In
this context, the discretization of the power curve is tailored to
create the symbols in order to find out the spatial and temporal
characteristics of wind turbines and interaction patternsbetween
them in the symbolic domain for wind power prediction task.
There are nine symbols generated based on the data partitioning.
Figure 6 shows an example symbol sequence for a typical wind
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FIGURE 7. Mutual information between multiple wind turbines de-
creases with the increment of time lag: seven pairs of wind turbines are
studied here

turbine. As it is evident from the discretization plot, mostof the
symbols are 1, 5, 8 and 9.

The mutual information based causality metric (for the re-
lational pattern) is calculated using the state transitionmatrices
of the xD-Markov machines. As the depth of Markov machine
is fixed as 1 in this paper, the current symbol for one wind tur-
bine is only dependent on the past one symbol of another wind
turbine. With this setup, we first investigate the effect of time lag
on the causal impact between two turbines. As shown in fig. 7,
mutual information between any pair of wind turbines decreases
along with increment of time lag from 1 to 10. This shows that
the choice of depth to be 1 maximizes the causality at time lag1
for every case.

Next we investigate the effect of spatial distance on the
causal dependency between turbines. We choose wind turbines 5,
6, 7, 1 and 10 for this purpose. The results in fig. 8 show that with
increase in spatial distance between wind turbines (along any di-
rection - latitude or longitude), causality quantified by mutual
information of the relational pattern decreases. Figure 9 shows
the general decreasing trend of mutual information based causal-
ity metric and the Euclidean distance between pairs of wind tur-
bines. Based on the above two observations, it is evident that the
mutual information based causality metric is able to capture both
temporal and spatial characteristics.

The efficacy of the xD-Markov machines in capturing causal
dependencies is further evaluated using prediction of windpower
production by one wind turbine using observed symbol sequence
of another turbine. Using the prediction process as described in
the previous section, fig. 10 and fig. 11 show the comparisons
between predicted and actual symbol sequences of wind turbine
5 using wind turbines 6 and 7 respectively. The results are ob-
tained by using half year data of 2006 to train and then using
the rest of the year data for testing. While the plots show strong
prediction capability of xD-Markov machines, most of the errors
come from the transient symbols as expected. Furthermore, vi-
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FIGURE 9. Mutual information of relational pattern decreases with
increase in Euclidean distance between turbine pairs

sual inspection can verify that turbine 7 performs slightlyworse
compared to predicting power generation by turbine 6 as sug-
gested by the mutual information based causality metric. Con-
tinuing the same prediction process with turbines 8 and 9, fig. 12
shows the monotonic increase in mean square errors (MSE) as
spatial distance between turbine pairs increases (or mutual infor-
mation decreases). Finally, an example of continuous domain
prediction (as discussed in the previous section) of wind turbine
5 power generation (using observed symbol sequence for wind
turbine 6) is shown in fig. 13. The plot shows that even with
significant coarse graining of the data space, the continuous do-
main prediction catches the major trends in data quite well.This
can be attributed to the efficacy of the MBD scheme as it aims
to preserve the functional relationship present in the continuous
domain while discretizing. While finer discretization improves
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S
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Predicted symbol
Actual symbol

FIGURE 10. Prediction of wind turbine 5 power using wind turbine
6 observation in the symbolic domain using the half year dataof 2006
for training and the rest of the year data for testing

prediction quality in the continuous domain, it increases model
and computational complexity as well as the need for data.

SUMMARY, CONCLUSIONS AND FUTURE WORK
This paper has proposed the use of a novel spatiotemporal

pattern network (STPN) framework to capture the interaction
characteristics between multiple wind turbines. While thedis-
cretization and symbolization steps of SDF performs data level
fusion of wind power and wind speed for a single wind turbine
system, aD-Markov machine captures its stationary temporal dy-
namics. Causal dependency between two turbines is modeled
using a variant called the xD-Markov machine. Moreover, the
causal dependency is quantified by a mutual information based
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FIGURE 11. Prediction of wind turbine 5 power using wind turbine 7
observation in the symbolic domain with same training and testing data
sets as in fig. 10
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FIGURE 12. Prediction MSEs increase as spatial distance between
turbine pairs increases or mutual information decreases

metric. The proposed scheme is validated using the Western
Wind Integration data set from NREL. The primary observation
made is that the Markov machines and the mutual information
based causality metric are able to capture both temporal andspa-
tial characteristics as causality decreases with increasein both
temporal lags and spatial distances. The STPN scheme is fur-
ther evaluated using prediction of wind power production byone
wind turbine using observed symbol sequence from another tur-
bine. Some of the future research directions currently being pur-
sued are:

1. Impact analysis of other physical variables, e.g., wind direc-
tion on model quality;

2. Systematic (short and long term) farm-wide wind power pre-
diction using STPN;

3. Simulating “what if” scenarios using STPN for distributed
optimization of farm-wide wind power production.
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FIGURE 13. Expected continuous domain prediction of wind power
for wind turbine 5 using observed symbol sequence from wind turbine 6
with same training and testing data sets as in fig. 10
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