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ABSTRACT

This paper presents a data-driven modeling framework to
understand spatiotemporal interactions among wind tuekim
a large scale wind energy farm. A recently developed proba-
bilistic graphical modeling scheme, namely the spatioteralp
pattern network (STPN) is used to capture individual tuebin
characteristics as well as pair-wise causal dependencidse
causal dependency is quantified by a mutual information dase
metric and it has been shown that it efficiently and correctly
captures both temporal and spatial characteristics of wind
bines. The causal interaction models are also used for ptie)
wind power production by one wind turbine using observation
from another turbine. The proposed tools are validated gifiire
Western Wind Integration data set from the National Renésvab
Energy Laboratory (NREL).

INTRODUCTION

Wind power is a significant alternate source of energy that
is clean and pollution-free and accurate wind power premict
is a critical need for the wind energy industry today in ortter
compete with the more traditional energy sources in theggner
market where both lower and surplus energy productionsofte
get penalized. Furthermore, reliable models are requireuksix-
imize global energy production. However, due to the stochas
tic nature and intermittence of wind source, improving modge
accuracy, reliability assessment and characterizatioineotvind
energy is a critical technical challenge. Various methoal#eh
been proposed to predict overall farm-wide wind energy pead

*Address all correspondence to this author.

tion that are primarily either physics-based or data-dariveth-
ods. Physics-based methods rely on local meteorologicatse

or numerical weather prediction (NWP) [1-4] model data esso
ated with specific geographical information [5] and windbine
fluid mechanics [6, 7]. However, they often lack scalabitityd
robustness while modeling complex spatiotemporal interas
among a large number of wind turbines. Data-driven methogls a
also widely used especially for short-term wind power pcgdin
such as, artificial neural networks (ANNS) [8—14], suppeittor
machines [15], Kalman filtering [16] and Bayesian method$.[1
More recently, hybrid methods have been put forward to ecdan
the accuracy of short-term wind energy prediction, suchldBlA
and imperialistic competitive algorithm (ICA) [18]; Kalmdil-
tering and NWP [19]; Gaussian process (GP) and NWP [2]; ge-
netic algorithm (GA) and ANN [20]; hybrid neural network and
computational fluid dynamics (CFD) [21]; wavelet transform
GA and SVM [22]; ANNs and Bayesian methods [23]; adaptive
Bayesian learning and GP [24]. Moreover, He et al. [25, 26} pr
posed a spatiotemporal analysis framework in which finggest
Markov models were developed for wind farm energy genematio
forecast where a short-term distributional forecasts apdiat
forecast were derived by using Markov chains and ramp tnend i
formation. Similar models were explored by Xie el al. [27i] &
short-term spatiotemporal wind power forecast with thgdinio-
metric Direction Diurnal (TDD) and geostrophic wind infoam
tion (TDDGW) to improve the forecasting performance. They
further integrated the improved performance and econoisic d
patch framework to improve economic benefits.

Based on the above discussion, it is evident that the current
state-of-the-art techniques mostly focus on predictiraytsterm
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farm-wide energy production. Therefore, they don’t neaess
ily capture various complex spatiotemporal interactionoeal
levels, such as turbine-turbine and turbine-wind patteterac-
tions. While physics-based methods explore such intenasti
using first principles, it becomes significantly complichée the
number of turbines increases. This is because althoughqgshys
based relationships can be constructed for a single tudiirze
small number of them, scaling such nonlinear relationsfops

a large number turbines becomes intractable due to highedegr
of uncertainty. Furthermore, such techniques may succumb t
the curse of dimensionalityHowever, using data-driven meth-
ods can effectively avoid directly figuring out the complefar
tions involving many physical variables. Modeling spagiopo-

ral interactions is crucial in order to monitor performaracel
diagnose issues related to individual turbines as well aeto
velop supervisory control schemes for individual wind {ngs

at a local level to maximize global energy production. Aedter
forecasting of overall farm production is of greatimporams it
can improve ability to manage dispatchable energy soumtés a
enable greater wind energy penetration. Although it is dut o
the scope of this paper currently, integrating the improped
formance of wind turbines over wind farms by using novel data
driven methods and economic dispatch framework is es$émtia
improve economic benefits and will be the future focus. Note,
high-fidelity modeling of isolated single turbine will noélsuf-
ficient in this context as the behavior of a turbine changgs si
nificantly based on the joint behavior of other turbines ainbw
patterns [26].

This paper proposes a novel way of capturing spatiotem-
poral interaction patterns among multiple wind turbinegha
form of a recently proposed probabilistic graphical modalled
the spatiotemporal pattern network (STPN) [28]. STPN idtbui
on the concept of Symbolic Dynamic Filtering (SDF) that has
been shown to be an efficient time-series feature extrattioin
for various applications, e.g., parameter estimation éctebnic
circuits [29], fatigue damage detection in polycrystadlial-
loys [30, 31], activity recognition [32], fault detection@isola-
tion in nuclear power plants [33], coal gasification syst¢ag
and aircraft gas turbine engines [35]. While most of the tra-
ditional uses of SDF tool focus on modeling individual sub-
systems using>-Markov machines [36], the key advancement
made in the STPN development was development of a variant,
called thexD-Markov machine [28, 35] to capture the causal

National Renewable Energy Laboratory (NREL) database [38]

The paper is organized in five sections including the present
one. In Section Il, a brief background on SDF along wiith
Markov andxD-Markov machines is provided for completeness.
Detail description of STPN construction and informatioedh
retic causality measure in the context of the wind turbingbpr
lem is presented in Section Ill. Section IV presents thedeali
tion results along with a comprehensive discussion. Theipap
summarized and concluded in Section V with recommendations
of future work.

BRIEF BACKGROUND ON SDF AND D-MARKOV MA-
CHINES

This section presents a brief background on SDF Bnd
Markov machines for completeness. Further details canuoedfo
in [39]. SDF is based on the concept of symbolic dynamics
where discretization and symbolization are two key stepishvh
yield symbol sequences from observed continuous data.efhis
ables study of dynamical systems in the symbolic space using
a language-theoretic approach with tools such as shiftsraad
sliding block codes in both deterministic and probabitistet-
ting. However, although there have been various methods pro
posed in literature for discretization or partitioninggté is not a
single standard way to approach it. In the present studyparsu
vised multi-variate discretization scheme called the mmeaiy
bijective discretization (MBD) [39] is used that was propds$or
modeling complex dynamical systems. MBD aims at maximally
preserving the input-outputrelationship presentin theiooous
domain for a dynamical system.

The discretization of time-series data is followed by the
symbolization process and constructiorbaMarkov machines.
An important assumption in SDF is that the symbol sequence
generated from a system observation can be approximated by a
Markov chain of ordeD (a positive integer), which is called the
D-Markov machine. AD-Markov machine can be used to model
the individual time-series data as it captures the temmivaiac-
teristics embedded in the symbol sequence. More formally,

Definition 1.  [28] (DFSA) A deterministic finite state automa-
ton (DFSA) is a 3-tuple G= (£,Q, &) where:

1. 2 is a non-empty finite set, called the symbol alphabet, with
cardinality |>| < oo;

dependencies between multiple sub-systems. Such modgels ar 2. Q is a non-empty finite set, called the set of states, with ca

shown to be sufficient to capture a fairly general class osahu
dependencies while correlation-based analysis fails téopa

the task [37]. Furthermore, information theoretic measwam

be used to quantify the spatiotemporal causality amonguari
sub-systems captured by the tki2-Markov machines. Hence,
the STPN technique is highly suited to capture spatioteaipor
interaction patterns among multiple wind turbines and tneep
validates the proposed method using wind farm data from the

2

dinality |Q| < oo;
3. 0:Qx Z— Qisthe state transition map;

and Z* is the collection of all finite-length strings with symbols
from Z including the (zero-length) empty strirgg

Definition 2.  [28] (PFSA) A probabilistic finite state automa-
ton (PFSA) is constructed upon a DFSA-G%,Q, ) as a pair

K =(G,M),i.e., the PFSAK is a4-tuple ¥ (%,Q,5,11), where:
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1. Z,Q, andd are the same as in Definition 1;

2.1:Qx3%— [0,1] is the symbol generation function (also
called probability morph function) that satisfies the condi
tion Xaezlzl(q, o) =1 Yqe Q, and7g; is the probability of
occurrence of a symbalj € > at the state ge Q.

Definition 3. [28] (D-Markov) A D-Markov machine is a
PFSA in which each state is represented by a finite history of
D symbols as defined by:

1. D s the depth of the Markov machine;
2. Q is the finite set of states with cardinalj| < |Z|°, i.e.,

the states are represented by equivalence classes of symbol

strings of maximum length D where each symbol belongs to
the alphabet;

. 0:QxZ— Qisthe state transition function that satisfies the
following condition if|Q| = |Z|P, then there existr, 3 € =
and xe X* such thatd(ax, 8) = xB andax,xB € Q.

Remark 4. It follows from Definition 3 that a D-Markov

machine is a statistically stationary stochastic process- S

---S 1%+, Where the probability of occurrence of a
new symbol s depends only on the last D symbols, i.e.,
Plsn[Sh-1°""S-p* So] = P[sn[Sh-1- - Sn-D]

The details oD-Markov machine construction can be found
in [28, 36], which may include state splitting that genesatgm-
bol blocks of different lengths and state merging that tssul
the reduction of the number of states.

While 1 denotes the symbol generation function or the prob-
ability morph function]1 denotes the state transition matrix, el-
ements of which captures the transition probabilities frome
symbolic state to another. For example, let the symbolie sif
wind turbineA at thek!" instant be denoted by. Then, thejt"
matrix elemenm,-’j* of the (stationary) state transition matfik*
is the probability ofq{j+1 beingi provided the past observation
o, wasj, i.e.,

2P (g1 =10 = j) foran arbitrary instark

D-Markov machines can be used for modeling individual
sub-systems. Recently, concept db-Markov machine was
proposed to capture the causal dependencies between leultip
sub-systems. Such models are shown to be sufficient to eaptur
a fairly general class of causal dependencies while cdivala
based analysis fails to perform the task [37]. Formal dedinit
of xD-Markov machine is as follows:

Definition 5.  [28] (xD-Markov) Let.#;, and .#> be the PF-
SAs corresponding to symbol streafss} and{s,} respectively.
Then a xD-Markov machine is defined as a 5-tuplg_,, =
(21,21,%7,01, ﬁlz) such that:

1. 53 ={0y,...,05, -1} is the alphabet set of symbol sequence
{s1}

QL= {ql,qz,...,q‘gﬂ} is the state set corresponding to
symbol sequencis; }

. 22={00,...,0j5,|—1} IS the alphabet set of symbol sequence
{2}

. O : Q1 x 21 — Qg is the state transition mapping that maps
the transition in symbol sequen¢s } from one state to an-
other upon arrival of a symbol ifis; }

. M1, is the symbol generation matrix of sig@| x |2|; the
ij’h element off11» denotes the probability of finding the
symboloj in the symbol string{s;} while making a tran-
sition from the stateign the symbol sequends; }

From the above definition, it is evident that while a regular
D-Markov machine encodes the probability of occurrence of a
new symbol given the lagd symbols for one symbol sequence,
a xD-Markov machine encodes the probability of occurrence of a
new symbol in one symbol sequence given thelasymbols for
another different symbol sequence (possibly from a diffesab-
system). Thus it can capture the causal effects of one sysebol
guence (sub-system) on another symbol sequence (sulvrgyste

STPN CONSTRUCTION FOR WIND ENERGY FARMS

This section presents the spatiotemporal pattern network
(STPN) construction process for the specific problem of unde
standing wind turbine interactions based on the conceB&6f
outlined above. We begin with data space abstraction that in
volves data partitioning/discretization and symboliaati

Data Space Abstraction

A wind turbine in a wind energy farm can be seen as a sub-
system in a multi-agent complex system. Among various mea-
sured variables, two key observations for each wind turbiee
wind speed and associated wind power. In the context of sym-
bolic modeling, a wind turbind is characterized by two sensor
observations namely, wind speed and wind power. Note, other
variables such as wind direction and humidity that may éffec
power can be included in the sub-system modeling as well. For
the data discretization step, there are many methods timat ca
be applied, such as the symbolic false nearest neighbar part
tioning [40], maximum entropy partitioning and uniform par
tioning [41]. In this paper, maximally bijective discredtion
(MBD) [39] is used to maintain the functional relationshige-b
tween wind speed and wind power present in the continuous do-
main. In this case, wind speed is discretized as an indepénde
variable and wind power discretization depends on it to maxi
mize bijectivity between discrete states of the two vagabiThe
second part of the abstraction step is symbolization oficaotis
data using the discretization. The symbolization processerts
the temporal evolution of in the multi-dimensional (2-D in this
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FIGURE 1.

Illustration of Symbolic Dynamic Filtering (SDF) procesppdied to a wind turbine: Steps to generate a D-Markov maehiRFSA

model) using heterogeneous data of wind power and wind sjp@eda wind turbine

case) space into a symbol sequence. An illustration is ptede

in fig. 1: heterogeneous data for wind speed and wind power is
obtained from wind turbin@ and using a discretization policy
time-series data are converted into a temporal symbol segue
Note, although the same discretization may be used forrdiffe
ent wind turbines, typically they would correspond to diffiet
symbol sequence characteristics. Also, this symbolingpio-
cess implicitly performs data-level information fusiorthvivind
speed and wind power data.

Symbolic Modeling of Wind Turbines and Interactions

The symbol sequences generated at the abstraction step are

modeled in the form of PFSA following the SDF approach as
shown in fig. 1. Note, AD-Markov machine is a PFSA in
which each state is represented by a finite historp giymbols.
Now we consider the two different wind turbines and quantify
their spatiotemporal relations. According to the defimtaf D-
Markov machine, the regular state transition matricésand

MB represent wind turbinesandB respectively. Similarly, cross
state transition matricd3”P andr®A are defined for B-Markov
machines representing the causal dependenci@&arf A and

of A on B respectively. Note, that such dependencies may not
be symmetric, i.e.[1"B andMBA are not necessarily the same.
Features (e.g., state transition matrix or stationaryritistion)
from D-Markov machines are known as atomic patterns (AP) and
those from 0-Markov machines are known as relational patterns
(RP) [28]. The elements of the cross-state transition wedri
MAB andMBA are shown as follows:

e 2P(q8 =0 gy =k) vn

AP (g =il a7 =1) vn

AA
Wind turbine A ‘qu‘qu‘qf‘qA“""““ ‘qA“ """" ‘
BA
4B
Wind turbine B ‘qu‘qu‘q;‘qB“"""“ ‘qB" """" ‘

55

Relational pattern
representing A to B

causal dependence (HAB 5 IAB ) Atomic pattern

representing B
(HA;IAA) (HB;]BB)

Atomic pattern
representing A

Relational pattern
representing B to A
causal dependence

(HBA ;]BA)

FIGURE 2. Extraction of atomic and relational patterns (using D-
Markov and xD-Markov machines respectively) to charaeteiindi-
vidual wind turbine behavior and interaction behavior argatifferent
wind turbines

wherej,k € Q" andi,? € QB. The cross-state transition matrix
is established from symbol sequences generated from two win
turbines and every elementin the matrix identifies the podina

of transition from a state in one wind turbine to anotherestat
the second wind turbine.

Furthermore, an information-theoretic measure can be used
guantify the information content of the atomic and relasiiea-
tures. As shown in fig. 2, denotes the mutual information based
importance metric for a feature. For example, mutual infarm
tion for the atomic pattern of wind turbirfeis expressed as:
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where

Qa

H(op,1) = — ZP(q{Ll =i)log,P(dp,1 =1)

H (qﬁﬂlq{?) =-> P(ga=i)H (QQ+1|QQ =1i) FIGURE 3. Geographical information for the studied wind turbines:
the selected wind turbines are located in the state of aalifg between
35.28-35.33n and 118.09-118.17w. they are numbered asahd their
power capacities are more than 40%

(Qn+1|Qn _I ZP ql’H—l —||qn - I) ‘ ‘ . ‘
1902 Gy = 16 =) ® ® @ ® ©

Note, the quantity®” signifies the temporal self-prediction ca- ‘
pability (self-loop) of the wind turbine A.
Similarly, mutual information for the relational pattere-b . ‘

tween wind turbines A and B is represented as:

FIGURE 4. Wind turbines as the sub-system nodes for the abstract

128 = 1(aB, 1;0n) = H(AB 1) — H(aB,q|dh) spatiotemporal network representation
where (from B to A) a large number of times. The symbolic prediction
can be further converted to a continuous domain predicti@ni
Qa expected sense as follows:

H(dR, 1laf) = — ZP(qﬁ =i)H(dn1lon =1)
i=

E(Powek) = Z Pry(j)E(Powel )

H (o, 1la0n =1) ZP Onpr =l]df =1)-

where,E (Powey,) is the expected value of power at tkié

log, P(cfy, 1 = I|aR = i) instant,Pry(j) is the probability ofjt" symbol at thek!" instant
evaluated using the large number of simulation runs of tamte

Note, the quantity“B signifies wind turbine A's capability of ~ Markov models andE(Powetj) is the expected value of power

predicting wind turbine B’s outputs and vice versal®t. Such in the discrete bin denoted by symhdthere arendiscrete sym-

mutual information based metric can be used as the weights as bols).

signed for the patterns, that can be used for rejecting npatte

with low information content (for network pruning) as well a

decision fusion. Interested readers can find more detajZ8h RESULTS AND DISCUSSION
As described above, STPN provides an effective tool for This section presents validation results and discussions
learning the spatiotemporal interactions among indiviiaviad based on the Western Wind Integration data set availabia fro

turbines. In order to validate the model quality, this paper the National Renewable Energy Laboratory (NREL) [38]. Enher
presents prediction results using the learnt Markov moutels  are five types of wind turbines based on power capacity: farge
both symbolic and continuous domain. In the symbolic domain than 40%, 35% to 40%, 30% to 35%, 25% to 30% and less than
most likely symbol sequence for a turbiBegiven the symbol 25%. In this study, 12 wind turbines (located in Californiadh
sequencd3 can be obtained via running thé&xMarkov model power capacity larger than 40% are used; IDs: 4494, 449%,449
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FIGURE 5. Scatter plot of wind power and wind speed and the parti-
tioning using maximally bijective discretization (MBD)
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FIGURE 6. Symbolization of a typical wind turbine time series data

4497,4423, 4424, 4425, 4426, 4427,4361, 4313 and 4314 (num-
bered 1 - 12) and the power capacities range approximataty fr
41% to 45%. The wind turbines are located in an area where the
annual average wind speed is about 9 m/s, with the elevation o
1019 m - 1207 m. All the conditions for the data set correspond
to those of the year 2006.

Figure 3 provides the geographical information of twelve
wind turbines distributed in different locations. They aie-
stracted as nodes of the spatiotemporal pattern networRN$ T
as shown in fig. 4 for visualization simplicity. Figure 5 show
the scatter plot with wind power output and wind speed of one
wind turbine (other wind turbines also follow nearly the gam
pattern). The figure further shows the MBD where the partitio
ing of the wind power axis can be found given the partitiorofg
the wind speed axis such that their correspondence in theeon
uous domain is maximally preserved in the symbolic domain. |
this context, the discretization of the power curve is taitbto
create the symbols in order to find out the spatial and tenhpora
characteristics of wind turbines and interaction patt®&etsveen
them in the symbolic domain for wind power prediction task.
There are nine symbols generated based on the data pamition
Figure 6 shows an example symbol sequence for a typical wind

6

—1-—>3

Mutual information (relational pattern)

4 5 6 7 10
Time lag in 10 minutes

FIGURE 7. Mutual information between multiple wind turbines de-

creases with the increment of time lag: seven pairs of winkites are

studied here

turbine. As it is evident from the discretization plot, mosthe
symbolsare 1, 5, 8 and 9.

The mutual information based causality metric (for the re-
lational pattern) is calculated using the state transiti@trices
of the XD-Markov machines. As the depth of Markov machine
is fixed as 1 in this paper, the current symbol for one wind tur-
bine is only dependent on the past one symbol of another wind
turbine. With this setup, we first investigate the effectiofd lag
on the causal impact between two turbines. As shown in fig. 7,
mutual information between any pair of wind turbines desesa
along with increment of time lag from 1 to 10. This shows that
the choice of depth to be 1 maximizes the causality at timé.lag
for every case.

Next we investigate the effect of spatial distance on the
causal dependency between turbines. We choose wind tsrbjne
6, 7, 1 and 10 for this purpose. The results in fig. 8 show thtt wi
increase in spatial distance between wind turbines (alagga
rection - latitude or longitude), causality quantified bytoal
information of the relational pattern decreases. Figura@®s
the general decreasing trend of mutual information basesada
ity metric and the Euclidean distance between pairs of wimd t
bines. Based on the above two observations, it is evidentttha
mutual information based causality metric is able to caphath
temporal and spatial characteristics.

The efficacy of the B-Markov machines in capturing causal
dependencies is further evaluated using prediction of wowler
production by one wind turbine using observed symbol secgien
of another turbine. Using the prediction process as desgiiit
the previous section, fig. 10 and fig. 11 show the comparisons
between predicted and actual symbol sequences of wincheirbi
5 using wind turbines 6 and 7 respectively. The results are ob
tained by using half year data of 2006 to train and then using
the rest of the year data for testing. While the plots shoanstr
prediction capability of ©-Markov machines, most of the errors
come from the transient symbols as expected. Furthermore, v

Copyright © 2015 by ASME



FIGURE 8. Mutual information of relational pattern between pairs ofihal turbines at different locations: overall observationthat Causality
decreases with increase in spatial distance

T 0.6 = = —_— et
[}
% S+ - " s KWK W PR,
o
To. * Predicted symbol
2 6 « Actual symbol
< —
g, .é i S = - S S SN A I
é A4 — - -
]
£
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E *
E * * -_— -
2 04 . . . . . . . . . . . .
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Spatial distance between turbines Time (min)

FIGURE 9. Mutual information of relational pattern decreases with  FIGURE 10. Prediction of wind turbine 5 power using wind turbine
increase in Euclidean distance between turbine pairs 6 observation in the symbolic domain using the half year @ét2006
for training and the rest of the year data for testing

sual inspection can verify that turbine 7 performs slighttyrse
compared to predicting power generation by turbine 6 as su
gested by the mutual information based causality metricn-Co
tinuing the same prediction process with turbines 8 and 91flg
shows the monotonic increase in mean square errors (MSE) as

g- prediction quality in the continuous domain, it increasexiei
and computational complexity as well as the need for data.

spatial distance between turbine pairs increases (or rrinfoa SUMMARY, CONCLUSIONS AND FUTURE WORK
mation decreases). Finally, an example of continuous domai This paper has proposed the use of a novel spatiotemporal
prediction (as discussed in the previous section) of wimblitie pattern network (STPN) framework to capture the interactio

5 power generation (using observed symbol sequence for wind characteristics between multiple wind turbines. While die
turbine 6) is shown in fig. 13. The plot shows that even with cretization and symbolization steps of SDF performs datel le

significant coarse graining of the data space, the contsidou fusion of wind power and wind speed for a single wind turbine
main prediction catches the major trends in data quite Walils system, &-Markov machine captures its stationary temporal dy-
can be attributed to the efficacy of the MBD scheme as it aims namics. Causal dependency between two turbines is modeled
to preserve the functional relationship present in theinoptus using a variant called theD¢eMarkov machine. Moreover, the
domain while discretizing. While finer discretization inopes causal dependency is quantified by a mutual informationase
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Prediction of wind turbine 5 power using wind turbine 7
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FIGURE 13. Expected continuous domain prediction of wind power

for wind turbine 5 using observed symbol sequence from wirlirte 6
with same training and testing data sets as in fig. 10
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