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Abstract— This paper presents a novel distributed optimiza-
tion framework to achieve energy efficiency in large-scale
buildings. The modular problem formulation presented in this
paper decouples the supervisory optimization scheme from the
data-driven micro-level modeling aspect leading to significant
scalability and flexibility. Recently developed generalized gossip
protocol is used as a robust distributed optimization technique.
A supervisory control design problem for multi-zone temper-
ature regulation and energy usage minimization is considered
as a case study to describe the generic framework. Numerical
simulation results, presented based on a physical testbed in
the Iowa Energy Center, demonstrate the advantages of the
distributed optimization methodology compared to a typical
baseline strategy. The paper also outlines a software architec-
ture based on the VOLTTRON platform, recently developed by
the Pacific Northwest National Laboratory (PNNL), for real-life
implementation of the proposed framework.

1. INTRODUCTION

Today, approximately 40% of the total energy usage in
the U.S. is consumed by the building sector (residential
22%, commercial 18%) [1]. Among various sub-systems,
the performance of heating, ventilation, and air-conditioning
(HVAC) systems significantly affects the amount of building
energy consumed. Various control and optimization tech-
niques have been developed by the community to min-
imize energy consumption while maintaining comfort re-
quirements. For example, model predictive control (MPC)
based approaches have been broadly used. While Bengea
et al [2] demonstrated the effectiveness of centralized MPC
for energy efficiency in large buildings, such schemes can
be prohibitive due to modeling/computational complexity
and commissioning cost. Various distributed control schemes
have been proposed to alleviate some of these issues [3], [4].
Liang et al [5] presented an auto-regressive moving average
exogenous model (ARMAX) and developed a MPC tech-
nique to minimize the energy consumption in air handling
unit (AHU). Furthermore, various other policies were also
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proposed for building energy consumption optimization, such
as cost-optimal analysis [6], event-based optimization [7],
and metamodeling the heating and cooling energy needs
and simultaneous building envelop optimization [8]. In order
to achieve such self-learning and self-configuring schemes
for building energy optimization, the community is increas-
ingly focusing on data-driven, multi-agent networked sys-
tems based approaches [9]. For example, Cai [10] developed
a hierarchical multi-agent framework to find the optimal
operating points by using consensus-based distributed op-
timization algorithms.

This paper adopts a similar multi-agent hierarchical op-
timization framework for building energy efficiency. The
supervisory optimization scheme is completely decoupled
from the data-driven micro-level modeling aspect leading to
a significantly scalable and flexible architecture. Moreover,
a generalized gossip-based subgradient optimization algo-
rithm [11] is applied to solve the energy-comfort optimiza-
tion problem. This paper combines the generalized gossip
algorithm with the subgradient approach to solve distributed
optimization problems related to building energy efficiency.
Finally, we also introduce a scalable implementation process
for the proposed supervisory control scheme on an agent-
based platform called VOLTTRON [12] that was recently
developed by the Pacific Northwest National Laboratory
(PNNL) for distributed control applications in energy sys-
tems such as buildings and power grid.

2. PROBLEM FORMULATION

This section presents a formulation of the proposed
methodology with regards to an illustrative example scenario
for air-side heating, ventilation and air-conditioning (HVAC)
system as presented in Fig. 1. In this energy supply-demand
problem, individual zones become energy consumers that are
served with conditioned air by an air handling unit (AHU).

A. Air-side HVAC (AHU-VAV) System

The general layout of a typical AHU-VAV HVAC system is
shown in Fig. 1. While a central AHU provides conditioned
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Fig. 1. Typical layout of an AHU-VAV HVAC system

air to each variable-air-volume (VAV) box, VAVs in turn
supplies conditioned air to each zone. VAVs in this case have
two types of actuators - a damper to control air flow rate
and a reheat coil to heat up the air. Return air from zones
circulates back to AHU (typically using a return air fan)
and gets mixed with fresh outside air. Fractions of return
and outside air get determined by the positions of AHU
(outside, mixed and exhaust air) dampers. Mixed air then
passes through both heating and cooling coils and eventually
flows to VAVs (using a supply air fan) as supply air. Supply
air temperature is controlled to a setpoint by controlling the
cooling/heating coil. Supply and return fans aim to maintain
a certain static pressure in the ducts. From a supervisory
decision-making perspective, a few setpoints (e.g., supply air
temperature (SAT) setpoint, mixed air temperature setpoint
and duct static pressure setpoint) need to be determined for
energy usage minimization while maintaining zone comfort
levels. For simplicity, we consider SAT setpoint as the
optimization variable to demonstrate the effectiveness ofthe
proposed algorithm.

B. Optimization Problem Description

Consider a situation where every zone in a building has
the same comfort requirement and the same external/internal
loads. In that case, a common SAT setpoint can be de-
termined that satisfies requirement of each zone. However,
in reality due to the diversity among zones, AHU SAT is
typically kept at a very low value (e.g.,55◦F ) such that VAVs
can reheat the supply air as needed before it enters the zones.
Therefore, optimization can help decide a variable setpoint
that reduces the excess energy use in this ‘first cooling
and then reheating’ process. On the air-side HVAC, this
paper considers the cooling and heating energy consumed
in AHU, the reheat energy consumed in VAV boxes and the
power consumptions by return air and supply air fans. Some
relevant notations are provided in Table I before the problem
formulation is presented mathematically.

Cooling/heating Energy: Between the cooling and heating
modes in the AHU, we take the cooling mode to describe
the formulation. The cooling energy consumed at the cooling
coil in the AHU can be described as

EC = αcṁcp(TSA − TMA) = αc

∑

i∈V

ṁicp(TSA − TMA)

(1)

Variables Definition
α Ideal energy coefficient
αc Cooling coefficient
αh Heating coefficient
ṁ Mass flow rate

T
i
DA Discharge air temperature (for zonei)

TMA Mixed air temperature
TSA Supply air temperature
TRA Return air temperature
TOA Outside air temperature
T

i Zone temperature (for zonei)
THSP Heating set point
TCSP Cooling set point
cp Specific heat capacity

EIdl Ideal energy
EAct Actual energy
EExs Excess energy
EC Cooling energy
EH Heating energy (including reheat energy)
EF Fan power

TABLE I

Table I: Variable nomenclature

In the heating mode, similar formula can be used with
heating coefficient.

Reheat Energy: The reheat energy is consumed at the
reheat coil of a VAV box and it can be described as

EH = αh

∑

i∈V

ṁicp(T
i
DA − TSA) (2)

Fan Power: The fan power can be simplified as the
function with respect to air flow rate and it can be given
as a second order polynomial

EF = a0 + a1ṁ+ a2ṁ
2 (3)

wherea0, a1 anda2 are the polynomial coefficients.
Ideal Energy: According to the discussion above, we can

obtain the expression of ideal energy as follows

EIdl = α
∑

i∈V

ṁicp(T
i
DA − TMA) + EF (4)

Actual Energy: The total amount of actual energy can be
written as

EAct = EC + EH + EF (5)

Excess Energy: Finally, the excess energy is obtained as
follows

EExs = EAct − EIdl

=
∑

i∈V

ṁicp[(α − αc)TMA

+ (αc − αh)TSA + (αh − α)T i
DA]

(6)

As the mixed air consists of return air and outside air
then the relation among these three variables, i.e.,TMA, TRA

andTOA can be written asTMA = δTRA + (1 − δ)TOA =

δ
∑

i∈V
ṁiT i

∑
i∈V

ṁi + (1− δ)TOA, whereδ is fraction of return air
in mixed air.

Moreover, the relation betweenT i
DA andTSA associated

with a reheat coil in a VAV box can be correspondingly
represented byT i

DA = TSA + ∆T i
DA, where ∆T i

DA is



the temperature difference between supply air and discharge
air which is a function of VAV reheat coil parameters -
inlet water temperature (Twi), inlet hot water flow rate
(ṁi

w), inlet air temperature (i.e.,TSA) and air flow rate
(ṁi). Also, the zone thermal dynamics can be described as:
T i = f(TSA, ṁ

i,∆T i
DA, TOA). The constraints related to

actuators and comfort requirements are as follows:ṁi ∈
[ṁi

min, ṁ
i
max]: the air flow rate is bounded due to the VAV

damper actuator;TSA ∈ [(TSA)min, (TSA)max]: the supply
air temperature is bounded due to the heating/cooling coil
capacity;T i

ref ∈ [THSP , TCSP ]: the zone temperature is
in between a deadband of temperature setpoints;∆T i

DA ∈
[(∆TDA)min, (∆TDA)max]: the discharge air temperature is
bounded due to the reheat coil capacity.

The goal of the distributed optimization framework is to
minimize the building energy consumption as well as to
satisfy the zone comfort conditions. The cost function with
the above constraints to determine optimal AHU supply air
temperature can be obtained as follows

T ∗
SA = argmin

TSA

J, where,

J = ωE2
Exs + (1 − ω)ρ

∑

i∈V

ṁi‖T i − T i
ref‖

2
2

(7)

where, ω is the trade-off factor between the energy cost
and zone comfort cost. To deal with the issue of scaling
between energy and comfort cost values, a scalar parameter
ρ is introduced. The corresponding distributed optimization
formulation can be described as follows.

T ∗
SA = argmin

TSA

N∑

i=1

J i, where

J i = ω{ṁicp[(α− αc)[δ

∑
i∈V

ṁiT i

∑
i∈V

ṁi
+ (1− δ)TOA]

+(αc − α)TSA + (αh − α)∆T i
DA]}

2

+(1− ω)ρ‖T i − T i
ref‖

2
2

(8)

Note, during optimization every zonei needs to calculate
return air temperature which in turn requires mass flow rate
and zone temperature information from all other zones.

3. GENERALIZED GOSSIP BASEDDISTRIBUTED

OPTIMIZATION

In this section, a solution approach is presented for the
distributed building energy optimization problem formulated
above. The approach uses a recently proposed generalized
gossip-based algorithm. The main results of the proposed
algorithm is provided in the sequel. However, further details
can be found in [11].

A. Background of Generalized Gossip protocol

Consider an undirected graphG = (V ,A) consisting of
N agents, whereV = {1, 2, ..., N} and A ⊆ V × V . If

(i, j) ∈ A, then agenti can communicate with agentj.
Let the distributed building energy optimization problem be
defined on the network as follows:

minimize , f(x) =

N∑

i=1

f i(x)

subject to, x ∈ X

(9)

wheref i : RM −→ R are agent level objective functions
(possibly convex or non-convex),X is a nonempty, closed,
and compact subset ofRM . x is a vector whoseith compo-
nent is represented byxi.

The basic definitions [13], [14] and assumptions used in
this paper are:

Definition 1: A vector g ∈ R
M is a subgradient of a

convex functionf : R
M −→ R at a point z ∈ R

M if
f(y) ≥ f(z) + gT (y − z), ∀y ∈ R

M .
Definition 2: The set of all subgradients of a convex

function of f at z ∈ R
M is called the subdifferential of

f at z, and is denoted by∂f(z): ∂f(z) = {g ∈ R
M |f(y) ≥

f(z) + gT (y − z), ∀y ∈ R
M}.

Assumption 1 (Subgradient boundedness): There exists a
scalar G for all i = 1, ..., N such that ‖gi(x)‖2 ≤
G, ∀gi(x) ∈ ∂f i(x), ∀x ∈ X.

Assumption 2: The optimal solution setx∗ is nonempty.

A vector notation of the update law for the proposed
algorithm (derived from [15] and [16]) for the optimization
variable is as follows:

x(k + 1) = (1 − θ)Π(k)x(k) + θ(x(k) −∇(k)). (10)

where∇(k) is the subgradient off i at xi(k) computed by
agenti. Π ∈ R

N × R
N is the agent interaction matrix.θ is

the user-defined control parameter.
For first moment analysis, ensemble average (over agents)

of x(k) and∇(k) are denoted bȳx(k) and∇̄(k) respectively.
They are defined as:̄x(k) = 1

N
1x(k) = 1

N

∑N

i=1 x
i(k);

∇̄(k) = 1
N
1∇(k) = 1

N

∑N
i=1 ∇

i(k), where1 is a row
vector with all elements being 1.

Note, multiplying the update rule described in eqn. 10
by 1

N
1 yields the following relationship (asΠ is doubly

stochastic):̄x(k + 1) = x̄(k)− θ∇̄(k).
Next, optimal function values are denoted byf∗, that are

assumed to be finite. Without loss of generality the optimal
set is represented byx∗, i.e., x∗ = {x ∈ R|

∑N
i=1 f

i(x) =
f∗}. Next we present the main results obtained in conver-
gence analysis.

Theorem 1: If Assumptions 1, 2holds, then, for a sequence
{xi(k)}, ∀k and i = 1, . . . , N ,

f∗ ≤ f(xi(k))min ≤ f∗ +
N‖x̄(1)− x∗‖22

2mθ

+3NGσ +
NθG2

2

(11)
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wheref(xi(k))min = min{f(xi(1)), . . . , f(xi(m))}, m is
the number of iterations,G is the upper bound of subgra-
dients,σ is the upper bound of Euclidean distance between
xi(k) and x̄(k) andθ is the control parameter.

Next, the convergence characteristics can be analyzed as
the control parameter approaches extreme values0 or 1. Let
a sequence{θk}, k = 1, 2, . . . ,m be defined as follows.

Definition 3:{θk} is a sequence that satisfies the fol-
lowing properties: (1):θk converges to 0; (2):{θk} is
a nonsummable sequence. Hence,θk>0; limk→∞ θk =
0; limm→∞

∑m
k=1 θk = ∞.

There exists an integerN1, that satisfies θk ≤
δ

NG2 , δ>0, ∀k>N1. Then there exists another integer
N2 such that

∑m

k=1 θk ≥ 1
δ
(N‖x̄(1) − x∗‖22 +

NG2
∑N1

k=1 θ
2
k), ∀m>N2. This inequality holds because

limm→∞

∑m
k=1 θk = ∞. Now, letN = max{N1, N2}, and

the following Theorem 2can be stated.
Theorem 2: If Assumptions1,2holds, then, for a sequence

{xi(k)}, if θk satisfiesDefinition 3, ∀k, andi = 1, . . . , N ,

f(xi(k))min ≤ f∗ + δ + 3NGσ, ∀m>N. (12)

Now, the case whereθ → 1 is analyzed by presenting the
following theorem.

Theorem 3: If Assumptions1,2holds, then, for a sequence
{xi(k)}, with θ → 1, ∀k and i = 1, . . . , N ,

f(xi(k))min ≤ f∗ +
N‖x̄(1)− x∗‖22

2m
+ 3NGσ +

NG2

2
.

(13)

B. Optimization algorithm overview

The proposed supervisory optimizer aims to determine
optimal AHU supply air temperature based on information
exchange among local zones. The crucial advantage of this
framework is that local zones can use any local controllers
and suitable modeling scheme. However, as long as they can
compute subgradient for local cost function (J i) for energy
optimization and achieving comfort, the supervisory control
layer can run the generalized gossip protocol for global
energy optimization.

In this context, each local zone needs modeling of thermal
dynamics in order to compute subgradients for their local
cost functions (as outlined in Eqn. 8). Currently, simple PI
controllers are used for these local controllers (which is
common for most of the HVAC equipment in commercial
buildings [2]). However, more sophisticated controllers can
be used without any major change in the framework. The

basic workflow of the supervisory control framework is
illustrated in Fig. 2. In summary, the optimization framework
is presented in an algorithmic format.

Algorithm : Supervisory Control Algorithm
1: initialize ∆, θ, TSA(1),Π(1)
2: set u = 1
3: loop overu (until building operation schedule expires)
4: set k = 1
5: loop over k
6: for i = 1 to N do
7: calculateJ i(k − 1), J i(k + 1)

8: gi(k) ≅ Ji(k+1)−Ji(k−1)
2∆

9: end for
10: TSA(k+1) = (1−θ)Π(k)TSA(k)+θ(TSA(k)−g(k))
11: if (termination criterion met)then
12: Break
13: else
14: k = k + 1
15: end if
16: end loop
17: Run the building operation withTSAsp

= TSA(k+1)
over the span of one optimization interval
18: TSA(1) = TSAact

at the last time instant of building
operation
19: u = u+ 1
10: end loop
Π(k) here is set as a uniform stochastic matrix as defined

in [11] to signify a complete collaboration among zones.
u indicates the number of cycles; each cycle includes one
optimization process and building operation over one op-
timization interval.k signifies the number of iterations in
optimization. TSAact

is the actual supply air temperature
whileTSAsp

is the supply air temperature setpoint.∆ denotes
the step size for the numerical differentiation.

4. RESULTS AND DISCUSSION FOR ACASE STUDY

The case study in this paper is performed on a simulation
platform (one AHU, six zones) that is based on the physical
Energy Resource Station testbed developed and maintained
by the Iowa Energy Center [17]. Please find further de-
tails of the test bed in [18]. A typical baseline supply air
temperature schedule is considered where the setpoint is
kept constant at55◦F in order to explore the efficacies
of the proposed algorithm. Furthermore, the zone thermal
modeling was performed using actual historical data from
the testbed during winter season and similarly, all the test
days (i.e., outside air conditions) were taken from the winter
season. A one month testing period is studied in order to
validate the algorithm under different outside conditions. To
maintain the reliability of the zone temperature predictions
and supply air temperature setpoint optimality, the opti-
mization interval is taken to be 15 minutes. As shown in
Fig. 3, optimized supply air temperature setpoint turns out
to be quite different from the constant baseline condition
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Fig. 3. AHU supply air temperature under supervisory control and baseline control with different outside air temperatures
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Fig. 4. Zone temperature regulation during days with different outside air temperatures under supervisory control

under different outside air conditions. Figure 4 shows zone
temperature regulation performance for all 6 zones with
different heating/cooling setpoints during unoccupied (wider
temperature band) and occupied (narrower temperature band)
hours. As the testing was performed in the winter season
local zone temperature control aims at approaching heating
setpoint as closely as possible in order to save energy
under both baseline and optimized strategies. To study
the supervisory control performance under heterogeneous
disturbances, different outside air temperature patternsare
used. By observing the AHU supply air temperatures and
zone temperature regulation during different days, it can
be concluded that the supervisory control scheme is robust
to different external/internal disturbances while minimizing
excess energy. For zone temperatures, it can also be seen
that there were no violation of comfort setpoints. Figure 5
shows that in all 28 days, zone temperature regulation by
the proposed supervisory control scheme consumes less
energy compared to baseline control. Figure 6 shows the
energy consumption during 6 representative days by AHU
heating/cooling coils, VAV reheat coils and AHU fans under
baseline and supervisory control. The results indicate that the
difference in cooling/heating energy consumed in AHU and
the fan energy to a certain extent causes the energy usage
reduction in the supervisory framework. The energy savings
and zone temperature regulation validate the effectiveness
of both the proposed generalized gossip-based subgradient
algorithm and the modular, distributed supervisory control
framework for HVAC systems.

5. ARCHITECTURE FORVOLTTRON BASED

IMPLEMENTATION

A new open source language-agnostic agent platform
called VOLTTRONTM has been recently developed by PNNL
[12], [19] for smart city applications with built-in security
and resource management. Customized applications can be
built on this platform for efficiently managing energy usage
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among appliances and devices, including HVAC systems,
lighting and electric vehicles. Key features include: (i) real-
time data processing, (ii) automatic adjustment of data
resolution and sampling frequency, (iii) data correlation
from multiple domains, and (iv) support for distributed
sensing, optimization and control applications. A software
architecture for VOLTTRONTM based implementation of the
proposed application is shown in Fig. 7. While data being
used by applications live on the message bus, historical data
can be stored in a cloud service (with a RESTful web service
called the simple Measuring and Actuation Profile (sMAP) or
other processes) for future on- or off-line uses. Furthermore,
it provides resource guarantees for agents in the platform,
including memory and processor utilization, authentication
and authorization services, directory services for agent and
resource location. These capabilities make VOLTTRONTM

an ideal candidate to implement our proposed modular, data-
driven, hierarchical control scheme via deploying intelligent



Fig. 7. VOLTTRONTM based implementation of the proposed framework
for supervisory control of Building HVAC system; the Message Bus provides
a common platform for sharing information between applications, e.g.,
actuator scheduler, weather forecast service and distributed optimizer;
historical data can be stored in a cloud service built on sMAPor otherwise
for future use

Fig. 8. Zone Model Implementation in VOLTTRON

agents for heterogeneous energy supply and demand entities
to perform decentralized decision making. In this context,we
have developed VOLTTRON agents related to zone model
(which publishes the predicted temperature values onto the
message bus by subscribing to the outside air temperature
from the weather agent, given initial values of temperature)
and distributed optimizer (which can compute subgradients
and run generalized gossip algorithms). A sample template
showing the predicted temperature values by the zone model
agent in the output console is shown in Fig. 8. Note, due to
the enormous flexibility of the agent based implementation
framework, it will be extremely easy to plug or remove
zone(s).

6. CONCLUSIONS ANDFUTURE WORKS

This paper proposes a novel distributed optimization
framework for building energy efficiency. A recently de-
veloped generalized gossip-based subgradient algorithm was
used to solve this problem. A six-zone simulated usecase
based on the physical testbed in Iowa Energy Center is
used to validate the proposed framework. Simulation results
show that the proposed supervisory control scheme is able
to reduce the building energy consumption while maintain-
ing zone comfort compared to a typical baseline strategy.
The paper also presents an implementation scheme for the

proposed framework on a recently developed agent-based
data management platform, called VOLTTRON. A few other
future research directions are: (1) the application of more
advanced local controllers for guaranteeing the robustness
of local zone temperature regulation, (2) inclusion of more
optimization variables, such as mixed air temperature set-
point, static pressure setpoint (3) inclusion of chillers/boilers
in the optimization loop.
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