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~ Abstract— This paper presents a novel distributed optimiza-  proposed for building energy consumption optimizatiorchsu
tion framework to achieve energy efficiency in large-scale as cost-optimal analysis [6], event-based optimizatiop [7
buildings. The modular problem formulation presented in this and metamodeling the heating and cooling energy needs

paper decouples the supervisory optimization scheme fromhe . . N
data-driven micro-level modeling aspect leading to signiant ~1d simultaneous building envelop optimization [8]. Inerd

scalability and flexibility. Recently developed generalied gossip {0 achieve such self-learning and self-configuring schemes
protocol is used as a robust distributed optimization techique.  for building energy optimization, the community is increas
A supervisory control design problem for multi-zone temper  ingly focusing on data-driven, multi-agent networked sys-
ature regulation and energy usage minimization is considexd tems based approaches [9]. For example, Cai [10] developed

as a case study to describe the generic framework. Numerical hi hical It tf k to find th timal
simulation results, presented based on a physical testbeahj & Ni€rarchical muiti-agent framework o tind the optima

the lowa Energy Center, demonstrate the advantages of the Operating points by using consensus-based distributed op-
distributed optimization methodology compared to a typicd timization algorithms.

baseline strategy. The paper also outlines a software ardeic- This paper adopts a similar multi-agent hierarchical op-
ture based on the VOLTTRON platform, recently developed by  imization framework for building energy efficiency. The

the Pacific Northwest National Laboratory (PNNL), for real-life . timizati h . letelv d led
implementation of the proposed framework. supervisory op |m|za |qn scheme 1S cpmp etely ecqup €
from the data-driven micro-level modeling aspect leading t
a significantly scalable and flexible architecture. Morepve

1. INTRODUCTION a generalized gossip-based subgradient optimization- algo

Today, approximately 40% of the total energy usage iEr]|thm [11] is applied to solve the energy-comfort optimiza-

the U.S. is consumed by the building sector (residenti ||on problem. This paper combines the generalized gossip

22%, commercial 18%) [1]. Among various sub-systemglgomhm with the subgradient approach to solve distedut

the performance of heating, ventilation, and air-conditig optimization problems related to building energy efficignc

S .=. Finally, we also introduce a scalable implementation pssce
(HVAC) systems significantly affects the amount of buildin or the proposed supervisory control scheme on an agent-

energy consumed. Various control and optimization tec sased platform called VOLTTRON [12] that was recently
nigues have been developed by the community to mirH

o ) . S eveloped by the Pacific Northwest National Laboratory
imize energy consumption while maintaining comfort re-5

quirements. For example, model predictive control (MPC :ﬂ?;ﬁéﬁrailsgﬂﬁgifgs?nn(;rgloagfl;?élons N energy sys-
based approaches have been broadly used. While Bengea ‘

et al [2] demonstrated the effectiveness of centralized MPC 2. PROBLEM FORMULATION
for energy efficiency in large buildings, such schemes can This section presents a formulation of the proposed

be prohibitive due to modeling/computational complexity,aihsdology with regards to an illustrative example sdenar

and commissioning cost. Varjous distributed cor!trol sodmemf f air-side heating, ventilation and air-conditioning\AC)
have been proposed to alleviate some of these issues [3], [éistem as presented in Fig. 1. In this energy supply-demand

Liang et al [S] presented an auto-regressive moving averag?oblem, individual zones become energy consumers that are
exogenous model (ARMAX) and developed a MPC techgg e with conditioned air by an air handling unit (AHU).
nigue to minimize the energy consumption in air handling

unit (AHU). Furthermore, various other policies were alsqy  Ajr-side HVAC (AHU-VAV) System

The authors would like to thank lowa Energy Center for suppgrthis The gene.ral |ay0uF ofa typical AHU-VAV HVAC SySt.e_m is
work-Opportunity Grant No.OG-15-005. shown in Fig. 1. While a central AHU provides conditioned
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Fig. 1. Typical layout of an AHU-VAV HVAC system p Specific heat capacity
. . . . Eraq Ideal energy
air to each variable-air-volume (VAV) box, VAVs in turn Eact Actual energy
supplies conditioned air to each zone. VAVs in this case have ng CEXCrESS energy
] : c ooling energy
two types of act_uators a damper. to control air flow rate o Heating energy (including reheat energy)
and a reheat coil to heat up the air. Return air from zones Ep Fan power
circulates back to AHU (typically using a return air fan) TABLE |

and gets mixed with fresh outside air. Fractions of return
and outside air get determined by the positions of AHU
(outside, mixed and exhaust air) dampers. Mixed air theim the heating mode, similar formula can be used with
passes through both heating and cooling coils and eventualieating coefficient.

flows to VAVs (using a supply air fan) as supply air. Supply Reheat EnergyThe reheat energy is consumed at the
air temperature is controlled to a setpoint by controllihg t reheat coil of a VAV box and it can be described as
cooling/heating coil. Supply and return fans aim to maimtai v i

a certain static pressure in the ducts. From a supervisory En = O‘hzm cp(Tpa = Tsa) @
decision-making perspective, a few setpoints (e.g., sugipl i

temperature (SAT) setpoint, mixed air temperature setpoin Fan Power The fan power can be simplified as the
and duct static pressure setpoint) need to be determined fonction with respect to air flow rate and it can be given
energy usage minimization while maintaining zone comfor@s a second order polynomial

levels. For simplicity, we consider SAT setpoint as the

Table I: Variable nomenclature

. .92
optimization variable to demonstrate the effectivenesthef Er = ao + ari + azi (3)
proposed algorithm. whereag, a; anday are the polynomial coefficients.

Ideal Energy According to the discussion above, we can
B. Optimization Problem Description obtain the expression of ideal energy as follows

Consider a situation where every zone in a building has . i
the same comfort requirement and the same external/itterna Erar = o %; m'cy(Tpa = Tra) + Ep )
3

loads. In that case, a common SAT setpoint can be de-
termined that satisfies requirement of each zone. However,Actual Energy The total amount of actual energy can be
in reality due to the diversity among zones, AHU SAT iswritten as

typically kept at a very low value (e.gi5° F)) such that VAVs Eact = Ec + Ex + Ep (5)
can reheat the supply air as needed before it enters the.zone

Therefore, optimization can help decide a variable setpoi?o%xcess EnergyFinally, the excess energy is obtained as

that reduces the excess energy use in this ‘first coolingIIOWS

and then reheating’ process. On the air-side HVAC, this Epes = Eact — Erai

paper considers the cooling and heating energy consumed — Zmicp[(a —ae)Tha ©)
in AHU, the reheat energy consumed in VAV boxes and the ey

power consumptions by return air and supply air fans. Some

relevant notations are provided in Table | before the proble

formulation is presented mathematically. As the mixed air consists of return air and outside air
Cooling/heating EnergyBetween the cooling and heating then the relation among these three variables, :g.4, Tra

modes in the AHU, we take the cooling mode to describ@Nd 7o can be written ad'y 4 = 6Tra + (1 = 0)Toa =

the formulation. The cooling energy consumed at the coolin@% + (1 —=0)Toa, whered is fraction of return air

+ (ae — an)Tsa + (an — ) Th 4]

coil in the AHU can be described as in mixed air.
Ec = aginey(Tsa — Tara) = e Z " ¢p(Tsa — Thra) .Moreover, the (elgtlon betweeri}, , andT’s 4 assomatgd
=/ with a reheat coil in a VAV box can be correspondingly

(1) represented byl'},, = Tsa + AT} ,, Where AT}, is



the temperature difference between supply air and diseharg, j) € A, then agenti can communicate with agent
air which is a function of VAV reheat coil parameters -Let the distributed building energy optimization problee b
inlet water temperature{,;), inlet hot water flow rate defined on the network as follows:
(m;), inlet air temperature (i.e.Js4) and air flow rate N

(W)' Also, the zone thermal dynamics can be described as: minimize , f(z) = Z Fi(z)
T" = f(Tsa,m", AT} ,,Toa). The constraints reIat_ed to ’ P
actuators and comfort requirements are as follows: €
[mt .l ]:the air flow rate is bounded due to the VAV

damper actuatorfsa € [(Tsa)min, (Tsa)maz|: the SUPPlY  \yhere fi . RM _, R are agent level objective functions

air temperature is bounded due to the heating/cooling Ccliﬂ)ossibly convex or non-convexy, is a nonempty, closed,

capacity; T}y € [Tusp,Tcspl: the zone temperature is ang compact subset 8. = is a vector whosé!" compo-
in between a deadband of temperature setpoifs5;, , €  ent is represented by .

[(ATpA)min, (ATpA)maz]: the discharge air temperature is 0 pasic definitions [13], [14] and assumptions used in
bounded due to the reheat coil capacity. this paper are:

The goal of the distributed optimization framework is to Definition1: A vector g € RM is a subgradient of a
minimize the building energy consumption as well as t%onvex functionf : RM —» R at a pointz € RM if
satisfy the zone comfort conditions. The cost function with (y) > f(2) + g% (y — 2),Vy € RM
the above constraints to determine optimal AHU supply a'r( y) = g\ 7Y )
temperature can be obtained as follows

)

subject to,z € X

Definition2: The set of all subgradients of a convex
function of f at = € RM is called the subdifferential of

T, = argminJ, where f atz, and is denoted by f(2): 9f(z) = {g € RM|f(y) >
Toa 7 S+ (y—2), vy eRY}
J=wE%,  +(1— w)pinZHTl —Trfll3 Assumption 1 (Subgradient boundedned)ere exists a
=Y scalar G for all i@ = 1,..,N such that|g‘(z)|2 <

where, w is the trade-off factor between the energy cosf: V9" (z) 6_3fi($)7vx G_X- _ .
and zone comfort cost. To deal with the issue of scaling Assumption2The optimal solution set* is nonempty.
between energy and comfort cost values, a scalar paramete actor notation of the update law for the proposed

pis intrqduced. The corr_esponding distributed optimizratioa|gorithm (derived from [15] and [16]) for the optimization
formulation can be described as follows. variable is as follows:

N o z(k+1)=(1-0OU(k)x(k) +0(x(k) — V(k)). (10)
T, = argminz J',  where . ‘
Tsa =1 whereV (k) is the subgradient of* at z*(k) computed by
ey i agenti. IT € RY x R is the agent interaction matriX. is

i i icy M
J' = wlm'eyl(a — ao)[fEF—— + (1~ 0)Toa] (8) the user-defined control parameter.

Diey M . .
i 12 For first moment analysis, ensemble average (over agents)
Hae —a)Tsa + (an - Q?ATD_A]}Q of z(k) andV (k) are denoted by (k) and?(k}lrespectively.
FA = w)pl|T* = Tyl They are defined asi(k) = & 1x(k) = & SiL, 2 (k);
Note, during optimization every zoneneeds to calculate  V(k) = +1V(k) = £+ I, Vi(k), wherel is a row
return air temperature which in turn requires mass flow rateector with all elements being 1.

and zone temperature information from all other zones. Note, multiplying the update rule described in eqn. 10
by %1 yields the following relationship (a$l is doubly
3. GENERALIZED GOSSIP BASEDDISTRIBUTED stochastic)z(k + 1) = z(k) — 0V (k).
OPTIMIZATION Next, optimal function values are denoted pY, that are

or th%ssumed to be finite. Without loss of generality the optimal
a4 Setis represented by", i.e., 2” = {z € R| vazl fi(z) =

above. The approach uses a recently proposed generalizfe(}' Next we present the main results obtained in conver-

gossip-based algorithm. The main results of the proposeg(?nce analysis.

algorithm is provided in the sequel. However, further dstai 'il'heorem 1If Assumptions 1, Bolds, then, for a sequence
can be found in [11]. {z'(k)}, vk andi = 1,..., N,

In this section, a solution approach is presented f
distributed building energy optimization problem fornte

A. ground of Generalized Gossip protocol f* < f(a"(k))min < [f+ ———=

Consider an undirected gragh = (V,.A) consisting of NOG?
N agents, where) = {1,2,..,N}and A C V x V. If +3NGo +




e basic workflow of the supervisory control framework is

Tonom Tonsme Tonoms M T“: illustrated in Fig. 2. In summary, the optimization framewo
optimic T wl B is presented in an algorithmic format.

ml Generalized Gossip based Distributed Optimization l Algorlthm . SUperVISOI'y Control Algorlthm

e 1: initialize A, 0, Ts(1),TI(1)

2:setu=1
3: loop over u (until building operation schedule expires)

where f (2% (k))min = min{f(z(1)),..., f(z'(m))}, mis 4  Setk=1

Fig. 2. Workflow of the supervisory control framework

the number of iterations(? is the upper bound of subgra-9:  00p overk
dients,o is the upper bound of Euclidean distance betweeﬁ for i =1to N do
#'(k) andz(k) and# is the control parameter. calculate J'(k — 1), J'(k + 1)
Next, the convergence characteristics can be analyzed &s g'(k) = %
the control parameter approaches extreme valuasl. Let  9: end for
a sequencéf,}, k =1,2,...,m be defined as follows. 10: Tsa(k+1) = (1-0)I(k)Tsa(k)+0(Tsa(k)—g(k))
Definition3{f;} is a sequence that satisfies the fol-l1:  if (termination criterion metjhen
lowing properties: (1):6, converges to 0; (2){6;} is 12 Break
a nonsummable sequence. Hendg>0;limy . 0, = 13 else
0; iMoo Y opeq Ok = 00. 14: k=k+1
There exists an integerN;, that satisfiesd, < 15 end if
~27,6>0,Vk>Ny. Then there exists another integerl6:  endloop _ _
Ny such that >7", 60, > (NHCU( )y — o3 + 1T Run the building operation withs »,, = T'sa(k+1)

NG2SNM 62) Ym>N,. This mequallty holds because Over the span of one optimization interval
limy 500 > 1, O = 00. Now, let 0t = maz{Ny, N}, and 18 Tsa(l) = Tsa,., atthe last time instant of building
the following Theorem 2can be stated. operation

Theorem 21f Assumptionsl, Bolds, then, for a sequence 19: u=u+1

{2i(k)}, if 0), satisfiesDefinition3 Vk, andi = 1,...,N,  10:end loop . _ _ _
I1(k) here is set as a uniform stochastic matrix as defined

F(@ (k) min < f*+ 0 + 3NGo, Ym>N. (12) in [11] to signify a complete collaboration among zones.
u indicates the number of cycles; each cycle includes one
optimization process and building operation over one op-
. timization interval.k signifies the number of iterations in
'il'r;feorerrjtﬁ l; As?ur;wlgt|or:js;;ﬁflds, tR[en, fora Sequenceoptimization.TSAW is the actual supply air temperature
{a'(k)}, wi 4 ande = 4,..., IV, while T’s 4, is the supply air temperature setpoiatdenotes

N||z(1) — z*|2 NG? the step size for the numerical differentiation.
+—”x(2) 2 +3NGo + —. P
m

Now, the case wheré — 1 is analyzed by presenting the
following theorem.

F@ (k))min < f*

(13) 4., RESULTS ANDDISCUSSION FOR ACASE STUDY

o ) ) The case study in this paper is performed on a simulation

B. Optimization algorithm overview platform (one AHU, six zones) that is based on the physical

The proposed supervisory optimizer aims to determinEnergy Resource Station testbed developed and maintained
optimal AHU supply air temperature based on informatiomy the lowa Energy Center [17]. Please find further de-
exchange among local zones. The crucial advantage of thils of the test bed in [18]. A typical baseline supply air
framework is that local zones can use any local controlletemperature schedule is considered where the setpoint is
and suitable modeling scheme. However, as long as they ckept constant ab5°F in order to explore the efficacies
compute subgradient for local cost functiaff) for energy of the proposed algorithm. Furthermore, the zone thermal
optimization and achieving comfort, the supervisory cohtr modeling was performed using actual historical data from
layer can run the generalized gossip protocol for globahe testbed during winter season and similarly, all the test
energy optimization. days (i.e., outside air conditions) were taken from the @rint

In this context, each local zone needs modeling of thermakason. A one month testing period is studied in order to
dynamics in order to compute subgradients for their localalidate the algorithm under different outside conditiofis
cost functions (as outlined in Eqgn. 8). Currently, simple Pmaintain the reliability of the zone temperature preditsio
controllers are used for these local controllers (which iand supply air temperature setpoint optimality, the opti-
common for most of the HVAC equipment in commercialmization interval is taken to be 15 minutes. As shown in
buildings [2]). However, more sophisticated controlleesic Fig. 3, optimized supply air temperature setpoint turns out
be used without any major change in the framework. Tho be quite different from the constant baseline condition
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Fig. 3. AHU supply air temperature under supervisory control andddame control with different outside air temperatures
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Fig. 4. Zone temperature regulation during days with differentsade air temperatures under supervisory control

under different outside air conditions. Figure 4 shows zone
temperature regulation performance for all 6 zones with
different heating/cooling setpoints during unoccupiediéx
temperature band) and occupied (narrower temperature band
hours. As the testing was performed in the winter season a
local zone temperature control aims at approaching heating “
setpoint as closely as possible in order to save energy ° s " ® *
under both baseline and optimized strategies. To studFy ] o
the supervisory control performance under heterogeneofd > ENeroy costin 28 test days in winter
disturbances, different outside air temperature pattanes
used. By observing the AHU supply air temperatures and *
zone temperature regulation during different days, it can
be concluded that the supervisory control scheme is robust
to different external/internal disturbances while mirdmg
excess energy. For zone temperatures, it can also be seen
that there were no violation of comfort setpoints. Figure 5 ©Sup. B suw. e, Sw. Bas Sup Ba Sup Bas, Sup, g

shows that in all 28 days, zone temperature regulation by

the proposed supervisory control scheme consumes lg€dg 6. Within 6 days energy consumed in AHU, VAV and by fans by
energy compared to baseline control. Figure 6 shows tifdPervisory control and baseline control

energy consumption during 6 representative days by AHmong appliances and devices, including HVAC systems,
heating/cooling coils, VAV reheat coils and AHU fans undefighting and electric vehicles. Key features include: @ak
baseline and supervisory control. The results indicateti®a time data processing, (i) automatic adjustment of data

difference in cooling/heating energy consumed in AHU angesojution and sampling frequency, (i) data correlation
the fan energy to a certain extent causes the energy usagsm multiple domains, and (iv) support for distributed
reduction in the supervisory framework. The energy savinggensing, optimization and control applications. A sofevar
and zone temperature regulation validate the effecti®@negchitecture for VOLTTRONM based implementation of the
of both the proposed generalized gossip-based subgradigéposed application is shown in Fig. 7. While data being
algorithm and the modular, distributed supervisory cdntrq,sed py applications live on the message bus, historical dat
framework for HVAC systems. can be stored in a cloud service (with a RESTful web service
called the simple Measuring and Actuation Profile (SMAP) or
other processes) for future on- or off-line uses. Furtheéano
it provides resource guarantees for agents in the platform,
A new open source language-agnostic agent platformcluding memory and processor utilization, authentarati
called VOLTTRONM has been recently developed by PNNLand authorization services, directory services for agent a
[12], [19] for smart city applications with built-in sectyi resource location. These capabilities make VOLTTR®N
and resource management. Customized applications candweideal candidate to implement our proposed modular, data-
built on this platform for efficiently managing energy usagelriven, hierarchical control scheme via deploying intglit

[~~Supervisory control
| Baseline control

5
8
)
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3

IMEnergy cousumed by AHU coils
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Energy cost(kWh)
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5. ARCHITECTURE FORVOLTTRON BASED
IMPLEMENTATION



Distributed
Optimizer (DO) (™)

£ £ 3

‘ Message Bus ‘

Zone Model

Archiver Weather

VOLTTRON

Actuator Agent
- ions, Listener

Agent

(0
AHU setpol
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for supervisory control of Building HVAC system; the MegsBgs provides
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Fig. 8. Zone Model Implementation in VOLTTRON

agents for heterogeneous energy supply and demand entitigs

to perform decentralized decision making. In this context,
have developed VOLTTRON agents related to zone mod

(which publishes the predicted temperature values onto thm)

proposed framework on a recently developed agent-based
data management platform, called VOLTTRON. A few other
future research directions are: (1) the application of more
advanced local controllers for guaranteeing the robustnes
of local zone temperature regulation, (2) inclusion of more
optimization variables, such as mixed air temperature set-
point, static pressure setpoint (3) inclusion of chillbaslers

in the optimization loop.

(1]

(2]

(31

(4

(5]

(6]

(7]

(8]

el

message bus by subscribing to the outside air temperature

from the weather agent, given initial values of tempergtur
and distributed optimizer (which can compute subgradien

§11)

ts

and run generalized gossip algorithms). A sample template

showing the predicted temperature values by the zone mo

agent in the output console is shown in Fig. 8. Note, due 3]
the enormous flexibility of the agent based implementatiotd4]
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