
Proceedings of the ASME 2016 Dynamic Systems and Control Conference
DSCC 2016

October 12-14, 2016, Minneapolis, Minnesota, USA

DSCC2016-9907

DRAFT: DETECTION AND ANALYSIS OF COMBUSTION INSTABILITY FROM
HI-SPEED FLAME IMAGES USING DYNAMIC MODE DECOMPOSITION

Sambuddha Ghosal1∗, Vikram Ramanan2, Soumalya Sarkar3, Satyanarayanan R Chakravarthy4 and Soumik Sarkar5

1,5 Department of Mechanical Engineering, Iowa State University, Ames, IA
2,4 Indian Institute of Technology Madras, Chennai, India

3 United Technologies Research Center, East Hartford, CT

Emails: {1sghosal@iastate.edu, 2vikrambest@yahoo.co.in, 3sms388@gmail.com, 4src@ae.iitm.ac.in, 5soumiks@iastate.edu}

ABSTRACT
Flame dynamics and combustion instability is a complex

problem involving different non-linearities. Combustioninsta-
bility has several detrimental effects on flight-propulsion dynam-
ics and structural integrity of gas turbines and any such spaces
where combustion takes places internally, primarily in internal
combustion engines. The description of coherent features of fluid
flow in such cases is essential to our understanding of the flame
dynamics and propagation processes. A method that is able toex-
tract dynamic information from flow fields that are generatedby
a direct numerical simulation or visualized in a physical experi-
ment (like in the case discussed in this paper) is Dynamic Mode
Decomposition. This paper presents such a feature extraction
and stability analysis of hi-speed combustion flames using Dy-
namic Mode Decomposition and it’s sparsity promoting variant.
Extensive experimental data was collected in a swirl-stabilized
dump combustor at various operating conditions (e.g. premixing
level and flow velocity) for analysing the flame stability condi-
tions.

I. INTRODUCTION
In the present day, flame dynamics is an important topic of

study owing to the complexities involved and also because of
its immense applications. The non-linear and chaotic behaviour
of flames and the physics associated with it arouses significant

∗Address all correspondence to this author.

interest for many researchers. Flame dynamics is a result of
coupling between turbulence, combustion and acoustics which
lead to combustion instabilities. Such fluid flows are infinite
dimensional systems governed by nonlinear partial differential
equations. Even so, the essential features of their dynamical
responses can be effectively approximated by models of lower
complexity. These models utilize the concept of coherent struc-
tures. Coherent structures are organized fluid elements that,
along with dynamic processes, are primarily responsible for most
of the energy and momentum transfer in the flow. These struc-
tures are those whose generation mechanisms vary from system
to system, and cause velocity oscillations and flame shape oscil-
lations by curling and stretching. Of the more popular methods
used for detecting these coherent structures are Proper Orthog-
onal Decomposition (POD) [1] and Dynamic Mode Decompo-
sition (DMD) [2, 3], which utilises tools from spectral theory to
derive spatial coherent structures. Application of POD andDMD
on laminar flames has been shown in [4].

Dynamic Mode Decomposition is a relatively new technique
proposed in [2]. It has been shown in [3] that DMD can be used
to successfully analyse experimental data as well. It is based
on Koopman Modes [5] and extracts data from snapshots asso-
ciating a frequency to each mode. For combustion dynamics,
frequency plays an important role and hence it is crucial that it
is studied. Apart from the temporal frequency, the growth rate
associated with a specific frequency can also be obtained from
DMD analysis. Both POD and DMD are snapshot-based post-
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processing algorithms which may be applied equally well to data
obtained in simulations or experiments. POD modes are char-
acterized by spatial orthogonality and multi-frequentialtemporal
content. DMD modes may be non-orthogonal with each of them
possessing a single temporal frequency.

The basic idea behind using DMD is to construct the lin-
ear system matrix, that best explains the time-evolving data
set of images. Spectral analysis of the said matrix helps
us identify spatiotemporal coherent structures which are im-
portant from dynamical systems perspective. DMD is ap-
plied on specific zones approximated and pre-designated by an-
other data-driven framework, ”ConvolutionalNeural Network+
Symbolic Time Series Analysis” (”CNN+STSA”) [6] and thus
also acts as a tool for its verification.

While DMD has been previously applied on PIV (Particle
Image Velocimetry) data and laminar flame images, it is yet to
be directly applied on time-varying complex flame images and
extract coherent features from such images only. Also, tech-
niques previously used to detect instability in such fluid flows
such asrms variation of the pressure of the fluid prove insuffi-
cient in detecting said features. The work stated in this paper
addresses this issue using DMD and its sparsity promoting vari-
ant, DMDSP (Sparsity Promoting Dynamic Mode Decomposi-
tion) [7] and studies how well it can determine the stabilityof
a fluid flow from only its images captured at very high speeds
which simplifies the instability detection procedure to a great ex-
tent.

To collect training data for determining flame stability con-
ditions and learning coherent structures, thermo-acoustic insta-
bility was induced in a laboratory-scale combustor. The combus-
tion images were captured using a hi-speed camera. The images
captured for a particular flame-air flow mix conditions were then
analysed using DMDSP by taking an optimal number of frames
at every step by identifying five distinct zones of analysis pre-
determined by running the ”CNN+STSA” framework.

II. PROBLEM FORMULATION AND EXPERIMENTAL
SETUP
A. Problem Statement

Thermo-acoustic instability relates to the excitement of
acoustics in a resonator with heat release rate fluctuationsas the
amplifier and source of such acoustics. The heat release ratefluc-
tuations can be positively coupled to the pressure fluctuations
through various mechanisms. Such mechanisms in general, are:
1. Velocity coupling and 2. Fuel concentration fluctuations. Ve-
locity coupling is a broad term for different mechanisms, that
involve both hydrodynamic and flame response to the former.

A prominent sustainer of combustion instabilities, especially
in turbulent combustors is flame vortex interaction [2]. In fact, a
number of studies on bluff body and rearward facing step com-
bustors have highlighted in a qualitative manner (visual inspec-

tion) over a pressure cycle, the formation, evolution and inter-
action with flames [8, 9]. Reports in [10] have shown the on-
set of combustion instability as ”lock-on” of the system acous-
tics to Karman vortex shedding mode, thus clearly marking such
structures as the drivers of combustion instability. It must be
noted that in any highRe(Reynold’s Number) turbulent system,
vortices of varying scales and intensity are present all thetime,
which however do not drive combustion instability. This is due
to them not being coherent vortices as opposed to the vortices re-
sulting from hydrodynamic instabilities. Coherent motions cause
”in phase” or ”uniform modulation” of the flames, thus causing
large scale heat release rate fluctuations and consequently, com-
bustion instability.

Detection of these coherent structures has been convention-
ally through visual inspection on flame images or through linear
splitting techniques like POD [11]. The former is subjective and
the latter though well tested, is applicable to only statistically sta-
tionary data. There are also concerns on POD modes being en-
tirely physical in nature, although POD naturally identifies field
data having high correlation values - a definitive property of co-
herent motion.

In the present work, we have attempted to characterize a tur-
bulent swirl combustor for its thermo-acoustic propertiesby con-
tinuously varying a parameter(Re orΦ), (Φ is the equivalence
ratio) thus operating from stable to unstable states. By virtue
of the data being transient before having steady statistical val-
ues, application of the afore-mentioned mode extraction tool(s)
is not possible. In order to estimate the growth and decay as well
as possible exchange of energies between modes which are co-
herent, we apply Dynamic Mode Decomposition (DMD) [12] to
analyse the transition data and find a suitable metric (defined in
Section V) for the prediction of combustion instability. The met-
ric is based on the lines of stability analysis and is seen to predict
well the onset of combustion instability.

B. Experimental Setup and Description
The swirl combustor test bed used in this study has a swirler

of diameter 30 mm with 60 degree vane angles, thus yielding
a geometric swirl number of 1.28. Air to the combustor is fed
through a settling chamber of diameter 280 mm with a sudden
contraction leading to a square cross section of side 60 mm. This
provides an area ratio of around 17, which thus acts as an acous-
tically open condition at the contraction. A mesh and honey-
comb are mounted in immediate downstream of the contraction
to provide uniform flow to the swirler. The combustor, shown
in figure 1(a) consists of an inlet section of length 200 mm, an
inlet optical access module (IOAM) of length 100 mm to provide
optical access to the fuel tube, a primary combustion chamber of
length 370 mm, and secondary duct of the same length. Exten-
sion ducts of the same cross section are added to provide length
flexibility. The overall length of the constant area ducts was cho-
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FIGURE 1. (a) Schematic of the experimental setup. 1 - settling chamber, 2 - inlet duct, 3 - IOAM, 4 - test section, 5 - big extension duct, 6 - small
extension ducts, 7 - pressure transducers,Xs - swirler location measured downstream from settling chamber exit,Xp - transducer port location measured
downstream from settling chamber exit,Xi - fuel injection location measured upstream from swirler exit, (b) Swirler assembly used in the combustor.

sen to be 1340 mm.
The fuel injection is done by injecting it coaxially with the

air in a fuel injection tube with slots on the surface as shownin
Figure 1(b). The fuel injection tube is coaxial to a mixing tube
which has the same diameter as that of the swirler. The bypass
air that does not enter the mixing tube passes through slots on
the swirl plate. The slots on the fuel injection tube are drilled
at designated distance upstream of the swirler. The larger this
distance, more fuel mixes with the primary air in the mixing tube
thus leading to more premixedness. Two upstream distances of
X1 = 90mmandX2 = 120mmwere chosen for this work. The
upstream distance of 120 mm provides for full premixing of the
fuel with the air. The 90 mm upstream injection case causes
partial premixing of the fuel with air. The images were acquired
at 3 kHz using Photron High speed star with a spatial resolution
of 1024×1024 pixels.

Figure 2 presents sequences of images of dimension 392×
1000 pixels for both stable (Re= 7,971,FFR= 0.495g/s and
full premixing) and unstable (Re= 15,942, FFR = 0.495g/s
and full premixing) states. The flame inlet is on the right side
of each image and the flame flows downstream to the left. It can
be observed that the flame does not have any prominent coherent
structure when the combustion is stable. While the combustion
is unstable, vortex shedding along the flow is observed. Bottom
segment of the figure 2 shows formation of mushroom-shaped
vortex att = 0,0.001s and the shedding of that towards down-
stream fromt = 0.002s to t = 0.004s.

III. BRIEF BACKGROUND ON DMD AND DMDSP
A. Dynamic Mode Decomposition (DMD)

This section presents a brief background on DMD and
DMDSP. For details refer to [2, 7]. DMD is a data processing
technique that extracts coherent structures with a single temporal
frequency from a numerical or experimental data-sequence.The
primary steps of DMD and DMDSP are stated as follows:

The first step is to abstract a sequence of snapshots from a
numerical simulation or physical experiments. In our case,phys-

ical experiments have been performed and these snapshots have
been collected using a high-speed camera capturing the combus-
tion flame images at3kHz. The next step is to form a data matrix
whose columns represent the individual data samples. The data
might need preprocessing to eliminate inherent noise. In this pa-
per, although we deal with temporal evolution processes, itis
noteworthy to mention that DMD can take into account a variety
of other evolution processes and analyse them effectively.In our
analysis of combustion flames, we assume that the image data
are equispaced in time, with a time-step of say,∆t,

[
ψ0,ψ1, ...,ψN

]

,
where, in general, eachψi := ψ(i∆t) is a complex vector

with M measurement points (components), i.e.,ψi ∈ CM. After
this, we form from the snapshot sequence, two data matrices:

Ψ0 :=
[
ψ0,ψ1, ...,ψN−1

]
∈ C

MXN,

Ψ1 :=
[
ψ1,ψ2, ...,ψN

]
∈ C

MXN,

and propose a hypothesis that the snapshots were generated by
a discrete-time time-invariant system which is governed bythe
relation:

ψt+1 = Aψt , t = 0,1, ...,N−1. (1)

Typically, in case of mass transfers (fluid flows), the matrix
A contains a large number of entries which are complex numbers
in general. DMD provides a procedure for determining a low-
order representation of this matrixA ∈ CMXN that captures the
dynamics inherent in the flow data. In case of problems deal-
ing with fluid flows, the number of measurement points (com-
ponents) in each snapshot,ψi is typically much larger than the
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t = 0 t = 0.001 s t = 0.002 s t = 0.003 s t = 0.004 s

t = 0 t = 0.001 s t = 0.002 s t = 0.003 s t = 0.004 s

FIGURE 2. Combustion images used for flame stability analysis, captured at 3000f ps( f rames/second) i.e.3kHz; Top: greyscale images atRe=
7,971 and full premixing for a fuel flow rate of 0.495 g/s, bottom: greyscale images atRe= 15,942 and full premixing for a fuel flow rate of 0.495 g/s.
(Image Source: [13])

number of snapshots themselves, i.e.,M ≫ N, implying thatΨ0

andΨ1 are all tall matrices. Using the linear relation (1) between
the snapshots at two consecutive time steps, the two data matri-
cesΨ0 andΨ1 can be linked via the matrixA andΨ1 can be
expressed as:

Ψ1 =
[
ψ1,ψ2, ...,ψN

]
=
[
Aψ0,Aψ1, ...,AψN−1

]
= AΨ0 (2)

Given a rank-r matrix of snapshotsΨ0, the DMD algorithm
provides us with an optimal representationF ∈ Cr×r of the ma-
trix A in the basis spanned by the POD modes ofΨ0,

A≈UFU⋆.

Here,U⋆ refers to the complex-conjugate-transpose of the matrix
of POD modes ofU which is obtained from an economy-size
singular value decomposition (SVD) ofψ0 ∈ CMXN i.e.,

Ψ0 =UΣV⋆,

whereΣ is anr× r diagonal matrix with non-zero singular values
σ1, ...,σr on its main diagonal, and

U ∈ C
M×r with U⋆U = I ,

V ∈ C
r×N with V⋆V = I .

F can be determined from the matrices of snapshotsΨ0 andΨ1

by minimizing the Frobenius norm of the difference betweenΨ1

andAΨ0 with A=UFU⋆ andΨ0 =UΣV⋆,

min
F

‖ Ψ1−UFΣV⋆ ‖2
F , (3)

where the Frobenius norm of a given matrix,Q is can be
obtained as follows:

‖ Q ‖2
F = trace(Q⋆Q) = trace(QQ⋆).

It is trivial to show that the optimal solution to (3) is givenby

Fdmd=U⋆Ψ1VΣ−1

which is identical to the expression provided in [2] and it imple-
ments the DMD algorithm, initializing from the two basic matri-
ces of snapshots,Ψ0 andΨ1. For further discussion on DMD,
we refer to [2].

B. Determining the optimal amplitudes of DMD modes
The matrix Fdmd ∈ Cr×r determines an optimal low-

dimensional representation ofA ∈ C
M×M on the subspace

spanned by the POD modes odΨ0. The dynamics on this r-
dimensional subspace are governed by the equation:

xt+1 = Fdmdxt (4)

The matrix of POD modesU can be used to mapxt into a
higher dimensional spaceCM as,

Ψt ≈ Uxt .

The matrix,Fdmd can be brought into a diagonal coordinate form
if it has a full set of linearly independent eigenvectors{y1, ...,yr},
with corresponding set of eigenvalues{µ̄1, ..., µ̄r}:

Fdmd =
[
y1 · · · yr

]

︸ ︷︷ ︸

Y






µ1
. . .

µr






︸ ︷︷ ︸

Dµ






z⋆1
...

z⋆r






︸ ︷︷ ︸

Z⋆
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where, eachy j is of unit length, y⋆j y j = 1, and {z1, ...,zr}
are the eigenvectors ofF⋆

dmd, corresponding to the eigenval-
ues{µ̄1, ..., µ̄r}, scaled suitably to agree with the following bi-
orthogonality condition:

z⋆i y j =

{
1 if i = j
0 if i 6= j.

The solution to (4) is now determined by -

xt = YDt
µZ⋆x0 =

r

∑
i=1

yiµ t
i z

⋆
i x0 =

r

∑
i=1

yiµ t
i αi ,

Hereαi := z⋆i x0 represents theith modal contribution of the
initial condition x0. Thus, we can approximate experimental
or numerical snapshots using a linear combination of the DMD
modes,φ :=Uyi ,

ψt ≈Uxt =
r

∑
i=1

yiµ t
i αi , t ∈ 0, ...,N−1, (5)

where eachαi can be interpreted as the “amplitude” of the
corresponding DMD mode [2]. The selection of the amplitudes
αi can be interpreted as the selection of the Koopman modes that
have the strongest influence on the system’s response resulting
from the use of the particular initial condition and the timeinter-
val on which the snapshots are collected. In matrix form,

[
ψ0 ψ1 · · · ψN−1

]

︸ ︷︷ ︸

Ψ0

≈
[
φ1 φ2 · · · φr

]

︸ ︷︷ ︸

Φ








α1

α2
. . .

αr








︸ ︷︷ ︸

Dα := diag(α)








1 µ1 · · · µN−1
1

1 µ2 · · · µN−1
2

...
...

.. .
...

1 µr · · · µN−1
r








︸ ︷︷ ︸

Vand

,

The above expression demonstrates that the temporal evolution
of the dynamic modes is governed by the Vandermonde matrix,
Vand ∈ Cr×N. This matrix is determined by ther complex eigen-
values ofµi of Fdmd which contain information about the under-
lying temporal frequencies and growth/decay rates. Determina-
tion of the unknown vector of amplitudesα :=

[
α1 · · ·αr

]T
then

boils down to finding the solution to the following optimization
problem:

min
α

‖ Ψ0−ΦDαVand ‖
2
F .

which upon using the economy-size SVD ofΨ0 =UΣV⋆ and the
definition of the matrixΦ :=UY, can be rewritten as:

min
α

J(α) :=‖ ΣV⋆−YDαVand ‖
2
F , (6)

This is a convex optimization problem that can be solved
using standard methods as mentioned in [14]. We note that this
optimization problem does access the POD modes of the matrix
of snapshotsΨ0; the problem data in (6) are the matricesΣ and
V, which are obtained from the economy-size SVD ofΨ0 and the
matricesY andVand, which results from the eigenvalue decompo-
sition ofFdmd. Thus,J(α) in (6) can be equivalently represented
as

J(α) = α⋆Pα −q⋆α −α⋆q+ s, (7)

where

P := (Y⋆Y)◦(VandV⋆
and), q := diag(VandVΣ⋆Y), s:= trace(Σ⋆Σ).

The complex-conjugate-transpose of a matrix (vector) is denoted
here by an asterisk. An overline denotes the complex-conjugate
of a matrix (vector), “diag” of a vector is a diagonal matrix
with its main diagonal determined by the elements of the vector,
“diag” of a matrix is a vector determined by the main diagonal
of the matrix, and◦ is the elementwise multiplication of two ma-
trices. The optimal vector of DMD amplitudes that solves the
optimization problem (6) can therefore be obtained by minimiz-
ing the quadratic function (7) with respect toα,

αdmd= P−1q= ((Y⋆Y)◦ (VandV⋆
and))

−1diag(VandVΣ⋆Y).

Superposition of all DMD modes, properly weighted by their
amplitudes and advanced in time according to their temporal
growth/decay rate, optimally approximates the entire datase-
quence.

C. Sparsity-Promoting Dynamic Mode Decomposition
(DMDSP)

In this paper, a modified form of DMD, its sparsity promot-
ing variant, termed Sparsity Promoting Dynamic Mode Decom-
position (DMDSP) has been used to define the instability mea-
sures defined in Section V. DMDSP is used to determine the per-
formance of different number of frame sizes when compared to
DMD and choosing the optimum frame size from the said anal-
ysis. It has also been used to develop and define a metric that
gives us a measure of instability of the combustion flame dy-
namics that has been studied in this paper. DMDSP selects the
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subset of DMD modes that has the most profound influence on
the quality of approximation of a given sequence of snapshots. It
provides a hierarchical description of the data sequence interms
of a set of dynamic modes. Further details and descriptions on
DMDSP can be found in [7].

IV. RESULTS AND DISCUSSION
This section presents validation results and discussions

along with pre-processing techniques applied on the snapshot se-
quence for applying DMDSP on it. For this study, the 60050to35

case is considered. The nomenclature refers to an air flow rate of
600 lpm (litres per minute) with fuel flow rate changing from an
initial of 50 lpm to a final of 35 lpm.

First 7 seconds of the data for the given air and fuel flow
rate is captured with the hi-speed camera. The image sequence
taken for this time period is analyzed for its spectral content (in-
tegrated heat release rate) through Fast Fourier transform(FFT)
over the entire duration to identify dominant frequencies present
in the system. Although being transient in nature, the rise in
amplitudes of the system at certain frequencies make FFT a con-
venient and easy choice to detect the same. We choose the op-
timum frame size for DMD analysis by detecting the dominant
frequency (most amplified mode) by carrying out simple FFT on
the data and observing the plot of the amplitude spectrum, as
shown in Figure 3. It is observed to be≈ 120.6Hz, which cor-
responds to that of the duct natural mode of 120Hz. DMD is
performed on integral multiples of this duct mode time period
with a minimum of five acoustic cycles [2] to start with. In this
work, 25 images were grabbed per acoustic cycle, hence DMD
is done on the snapshot sequence, whose length is varied start-
ing from 150 (6 cycles) to 250 (10 cycles) frames in steps of 25
frames.

Within the image sequence, we obtain five zones based on
analysis by theCNN+STSAframework, which is further dis-
cussed in [6]. By means of Deep Learning which combines
Conventional Neural network (CNN) with Symbolic Time Series
Analysis (STSA) the method aims to extract coherent features
from the transition data, by utilising pre-trained unstable flame
images, thus aiming to predict combustion instability. It was ob-
served that even before apparent transition to combustion insta-
bility, there were crests on the instability measure. Thesecrests
were labeled as intermittent regions for their non-monotonic be-
haviour. Two such intermittent regions were seen. Here, we pri-
marily aim to identify the intermittent behaviour, througha DMD
based metric. For this, DMD was performed on five regions - 1.
Stable 2. First Intermittence 3. Second Intermittence 4. Tran-
sition and 5. Unstable based on operating conditions. These
five zones are shown in Figure 4. The figure also shows therms
variation of pressure, which is one of the most commonly used
measure of instability. It is to be noted that the pressure sensor
by itself is unable to detect the instabilities.

Based on the aforementioned classification, we analyse the
image sequence to choose the best frame size above 125 that ide-
ally performs for the DMD and DMDSP algorithms. We choose
multiples of 25 frames viz., 150, 175, 200, 225 and 250 framesto
work on and determine frame sensitivity. We define a metric to
determine the performance of DMDSP based on the number of
frames chosen. The metric gives us, in percentage (%), how well
DMDSP approximates the entire data sequence based on num-
ber of frames when evaluated across all the five designated zones
under study. The plot is shown in Figure 4. With this figure as
reference, the convergence behavior is evaluated by calculating
the percentage reproduction of the initial snapshot of the image
sequence from the summation of DMD eigenvectors calculated
from the sparse DMD algorithm. The differences are then esti-
mated by taking the difference of the Euclidean norm of the ini-
tial snapshot vector and the summed up eigenvectors. The results
are plotted in Figure 5.

From Figure 5, it is clearly seen that there is little per-
formance index change across the different snapshot lengthse-
quences. This establishes the fact that any frame size beyond
125 frames (starting from 150 in this case) will yield the same
qualitative results, which will be independent of the number of
frames. Since there is no preference for the number of frames, we
perform DMDSP for each of these frame sizes and evaluate them
based on the instability prediction performance. It is seenthat
150 frames perform best overall with 79.73%, followed by 175
frames with 79.33%, 200 frames with 77.41%, 225 frames with
77.68% and 250 frames with 76.69%. We perform the sparse
DMD algorithm by choosing 200 frames for the analysis, as the
zones around which the analysis is carried out is approximated.
We get a sound estimate of flame stability conditions for eachof
the five zones for the sequence of snapshots by choosing a win-
dow size of 200 frames. Performing this analysis, we define the
flame instability measure which also verifies whether the defined
metrics agree with the instability measure shown in Figure 4and
vice-versa.

Figure 6 shows the eigenvalues resulting from the standard
DMD algorithm (black circles) along with the subset ofNz eigen-
values selected by the sparse DMD algorithm (red crosses) for
the five different zones under consideration. Here,Nz represents
the optimal number of sparse DMD modes. It is a well estab-
lished fact that eigenvalues, when they lie outside the unitcircle,
depict unstable modes. When they lie inside the unit cirle, they
are stable and when they lie on the unit circle itself, they are
marginally stable.

A stability measure is thus defined from the information we
get from Figure 6 regarding the position of the sparse DMD
modes with respect to the unit circle. This metric is defined as
the cumulative sum of the distances of each of theNz DMDSP
modes for each of the five zones, normalized overNz. The insta-
bility measure defined by this metric is shown in Figure 8.
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(a) (b)

FIGURE 3. Fourier Analysis of the temporal image data to determine the dominant frequency: (a) Single side amplitude spectrum, plotted up to 200
Hz, showing the dominant frequency as≈ 120.6Hz, (b) Single side amplitude spectrum of the image data sequence (plotted up to half of the sampling
frequency i.e. up to 1500Hz

FIGURE 4. Variation of the proposed instability measure with time for the transition video named 60050to35. Multiple regions on the measure curve
denote different combustion states such as stable, temporary intermittency (a significant precursor to persistent instability) and unstable . They are
corresponded to varied coherent structures (bounded by redbox) that are detected by the CNN+STSA framework. On the right, rmsvariation of the
pressure is shown as it is one of the most commonly used instability measures. Progression ofPrms can not detect the aforementioned precursors(Image
Source: [6])
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FIGURE 5. Performance of DMDSP subject to different frame sizes

The first Instability measure,M1, is defined as:

M1 =
Nz

∑
i=1

(δi)/Nz

where,δi is the distance of the individual DMDSP modes from
the unit circle. The sum is normalized over the number of sparse
DMD modes,Nz for each of the five zones. This normalization
is done, as in case of the stable zone,Nz = 27 while for the other
4 zones,Nz = 26.

The stem-plot ofM1 for the different zones is shown in Fig-
ure 8. It gives us a broad idea of the flame stability conditions.
We see that for the stable zone, the value ofM1 is the least,
followed by the first intermittence zone, which has a slightly
higher value than that of the stable zone, followed by second
intermittence zone, which has a value≈ 0. All of these three
zones have negative values ofM1. Positive value ofM1 is shown
only by the zones designated as “Transition” and “Unstable”by
CNN+STSA. It is seen that the transition zone exhibits a higher
value ofM1 than Unstable. This can be attributed to the frequent
changes in flame behaviour with abrupt shedding and formation
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(a) (c)(b)

(d) (e)

FIGURE 6. Eigenvalues resulting from the standard DMD algorithm (represented by black circles) along with the subset ofNz eigenvalues selected
by the sparsity-promoting DMD algorithm (represented by red crosses) for (a) Stable Zone (Nz= 27), (b) First Intermittence Zone (Nz= 26), (c) Second
Intermittence Zone (Nz = 26), (d) Transition Zone (Nz = 26) and (e) Unstable Zone (Nz = 26). The blue dashed curve identifies the unit circle.

(a) (c)(b)

(d) (e)

FIGURE 7. Dependence of the absolute value of the amplitudesαi on the frequency (imaginary part) of the corresponding eigenvaluesµi for (a)
Stable Zone (Nz= 27), (b) First Intermittence Zone (Nz= 26), (c) Second Intermittence Zone (Nz= 26), (d) Transition Zone (Nz= 26) and (e) Unstable
Zone (Nz = 26). The results are obtained using the standard DMD algorithm (black ircles) and the sparsity-promoting DMD algorithm(red crosses)
with Nz DMD modes.
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FIGURE 8. Variation of Instability measure,M1 along the five zones
under investigation

of intermittent vortices within the fluid flow that increasesthe
value of the instability measure, registering a higher value ofM1

than the Unstable zone.

As discussed above,M1 gives us a sense of stability for dif-
ferent zones in the fluid flow, by simply analysing the temporal
image sequence by DMD and DMDSP. But, this analysis can
only be attributed as a necessary but not a sufficient condition
to detect stability. From Figure 8 alone, we cannot surely say
whether a zone is stable or not. To get a better sense of the flame
stability, the energy of each of these modes (determined by the
amplitude of the modes) has tobe looked at. The amplitude vs
frequency plot for the five zones are shown in Figure 7.

From Figure 7, we get the amplitudes (energies) correspond-
ing to each of the modes (eigenvalues) determined in Figure 6.
Knowing the weights of each of the sparse DMD modes, we now
define a metric that gives us a sense of stability of the flame as
it evolves with time. The metric is defined as the product of the
distance to the unit circle of each of the DMDSP modes with the
weight each of the mode carries with it. This gives more im-
portance to the modes that represents and approximates the fluid
flow to a greater extent than the modes whose weights are com-
paratively less. In defining this metric, the assumption is that
the distance to the unit circle is considered as positive when the
modes are outside of the unit circle and negative when the modes
are inside the unit circle. The stability measure is given bythe
cumulative sum of this product for each of the modes (eigenval-
ues) obtained by running the DMDSP algorithm on the snapshot
dataset for each of the five zones of investigation.
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FIGURE 9. Variation of Instability measure,M2 along the five zones
under investigation

Now, we define our second instability measure,M2 as:

M2 =
Nz

∑
i=1

(δiλi)/Nz

where,δi is the same as defined before andλi is the amplitude
(or energy or weight) of corresponding DMDSP mode.

Stability (or instability) measure of the flame for a specific
zone, determined by the value ofM2 is shown in Figure 9.

As seen in Figure 9, the values ofM2 for stable, first and sec-
ond intermittencies and transition zones are all negative.Only
positive value ofM2 is exhibited by the unstable zone. This
shows that, compared to the other four zones, true flame insta-
bility exists in only this region, when flame instability is most
prominent, more so than the other zones which fail to exhibit
when measured with respect toM2. This is also verified from the
experiment conditions where from it is noted that the conditions
within the combustion chamber were tweaked to unstable condi-
tions at the time instant when the flame instability was detected.
This validates DMD and DMDSP as an effective analysis and
verification tool for instability detection for combustionflames
and also verifies the CNN+STSA approach proposed in [6].

V. SUMMARY, CONCLUSIONS AND FUTURE WORK
Pivoting on the spatio-temporal patterns exhibited by a tur-

bulent combustor, and developed based on the sparse Dynamic
Mode Decomposition algorithm, this paper proposes an effec-
tive analysis and verification tool that can be used for making
online data-driven combustion instability detection techniques
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such as CNN+STSA more accurate and robust by providing a
solid physics-based understanding of combustion flame dynam-
ics. The performance and prediction characteristics was carried
out for varying number of frames and sparse DMD modes. The
aforementioned analysis was done on five regions, with differ-
ent dynamics as seen from a Convolutional Neural Network and
Symbolic time series analysis approach.

Two metrics were devised based on the fundamental idea
of the l2 − norm (spectral radius). It was seen that the instabil-
ity measure for stable operations carries the most negativevalue
compared to other selected regions as expected, indicatinglocal
stability. Furthermore, for the intermittent regions thatwere not
seen to be either exhibiting stable or unstable behaviour from
pressure data only, show negative values as well but these val-
ues registered higher than that for the stable zone, with theM1

value for second intermittency being≈ 0. This implied that in-
stability for the driving regions of the flame to excite acoustics
in the flow were much more compared to the stable region but
not enough(still < 0) to transit to instability. Further, the tran-
sition region showed the highest positive value forM1 compared
to the other four regions, including the unstable region. This
could be attributed to the fact that, at high pressure amplitudes
(which corresponds to the unstable zone in this case), high levels
of damping become significant and thus saturate the growth as
well as reduce the instability measure.

DMD can be extended to extract spatial modes. These spa-
tial modes, either at specific eigenvalues or to the full reconstruc-
tion can help in identifying changes in flame shape/ length and
stabilization as the combustor approaches instability. Knowledge
of this would eventually provide vital inputs to stability of flows
and their instabilities that are critical in altering flame response
and ultimately as the primary drivers of combustion instability.

Future work will include the development of a detection
threshold that can be effectively used to detect label instabilities
in not only combustion flames, but also in complex fluid flows.
Furthermore, a challenge problem is to run the analysis at each
and every step of the image data, by using a sliding window ap-
proach where we obtain the instability measures as a continu-
ous variable instead of a discrete measure like the ones discussed
here. The immediate next step is to visualise the data by recon-
struction after identifying the most prominent coherent structures
by detecting the sparse DMD modes which offer major contribu-
tion to the flow dynamics.
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