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ABSTRACT

Flame dynamics and combustion instability is a complex
problem involving different non-linearities. Combustimsta-
bility has several detrimental effects on flight-proputsttynam-
ics and structural integrity of gas turbines and any suchcgsa
where combustion takes places internally, primarily ireintal
combustion engines. The description of coherent featuribsio
flow in such cases is essential to our understanding of theeflam
dynamics and propagation processes. A method thatis abbe to
tract dynamic information from flow fields that are generalbgd
a direct numerical simulation or visualized in a physicapex-
ment (like in the case discussed in this paper) is DynamiceMod
Decomposition. This paper presents such a feature extrmacti
and stability analysis of hi-speed combustion flames usipg D
namic Mode Decomposition and it's sparsity promoting vatia
Extensive experimental data was collected in a swirl-sizdai
dump combustor at various operating conditions (e.g. pxémi
level and flow velocity) for analysing the flame stability don
tions.

I. INTRODUCTION

In the present day, flame dynamics is an important topic of
study owing to the complexities involved and also because of
its immense applications. The non-linear and chaotic bebav
of flames and the physics associated with it arouses sigmifica

*Address all correspondence to this author.

interest for many researchers. Flame dynamics is a result of
coupling between turbulence, combustion and acousticstwhi
lead to combustion instabilities. Such fluid flows are inénit
dimensional systems governed by nonlinear partial diffeaé
equations. Even so, the essential features of their dyrsmic
responses can be effectively approximated by models ofrlowe
complexity. These models utilize the concept of coherentst
tures. Coherent structures are organized fluid elements tha
along with dynamic processes, are primarily responsilylenost

of the energy and momentum transfer in the flow. These struc-
tures are those whose generation mechanisms vary fronmsyste
to system, and cause velocity oscillations and flame shagk os
lations by curling and stretching. Of the more popular mdto
used for detecting these coherent structures are Propeo@rt
onal Decomposition (POD) [1] and Dynamic Mode Decompo-
sition (DMD) [2, 3], which utilises tools from spectral thyato
derive spatial coherent structures. Application of PODRMD

on laminar flames has been shown in [4].

Dynamic Mode Decomposition is a relatively new technique
proposed in [2]. It has been shown in [3] that DMD can be used
to successfully analyse experimental data as well. It iedbas
on Koopman Modes [5] and extracts data from snapshots asso-
ciating a frequency to each mode. For combustion dynamics,
frequency plays an important role and hence it is crucidlitha
is studied. Apart from the temporal frequency, the growtle ra
associated with a specific frequency can also be obtaineal fro
DMD analysis. Both POD and DMD are snapshot-based post-
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processing algorithms which may be applied equally wellg@d

tion) over a pressure cycle, the formation, evolution andrin

obtained in simulations or experiments. POD modes are char- action with flames [8, 9]. Reports in [10] have shown the on-

acterized by spatial orthogonality and multi-frequerteahporal
content. DMD modes may be non-orthogonal with each of them
possessing a single temporal frequency.

The basic idea behind using DMD is to construct the lin-
ear system matrix, that best explains the time-evolving dat
set of images. Spectral analysis of the said matrix helps
us identify spatiotemporal coherent structures which ame i
portant from dynamical systems perspective. DMD is ap-
plied on specific zones approximated and pre-designated-by a
other data-driven frameworkConvolutional Neural Network
Symbolic Time Series Analysis’CNN+ ST SA) [6] and thus
also acts as a tool for its verification.

While DMD has been previously applied on PIV (Particle
Image Velocimetry) data and laminar flame images, it is yet to
be directly applied on time-varying complex flame images and
extract coherent features from such images only. Also,-tech
nigues previously used to detect instability in such fluidvio
such agms variation of the pressure of the fluid prove insuffi-
cient in detecting said features. The work stated in thisepap
addresses this issue using DMD and its sparsity promotirig va
ant, DMDSP (Sparsity Promoting Dynamic Mode Decomposi-
tion) [7] and studies how well it can determine the stabibfy
a fluid flow from only its images captured at very high speeds
which simplifies the instability detection procedure to eagrex-
tent.

To collect training data for determining flame stability eon
ditions and learning coherent structures, thermo-acoussia-
bility was induced in a laboratory-scale combustor. Theloosa

set of combustion instability as "lock-on” of the system aso0
tics to Karman vortex shedding mode, thus clearly markirgpsu
structures as the drivers of combustion instability. It o
noted that in any higiRe(Reynold’s Number) turbulent system,
vortices of varying scales and intensity are present altithe,
which however do not drive combustion instability. This ised
to them not being coherent vortices as opposed to the ventice
sulting from hydrodynamicinstabilities. Coherent mos@ause
"in phase” or "uniform modulation” of the flames, thus caugsin
large scale heat release rate fluctuations and consequzattly
bustion instability.

Detection of these coherent structures has been convention
ally through visual inspection on flame images or througédin
splitting techniques like POD [11]. The former is subjeetand
the latter though well tested, is applicable to only sttty sta-
tionary data. There are also concerns on POD modes being en-
tirely physical in nature, although POD naturally idensffeeld
data having high correlation values - a definitive propeftgam
herent motion.

In the present work, we have attempted to characterize a tur-
bulent swirl combustor for its thermo-acoustic propertiggon-
tinuously varying a paramet¢Re ord), (® is the equivalence
ratio) thus operating from stable to unstable states. Biueir
of the data being transient before having steady statistala
ues, application of the afore-mentioned mode extractioh($p
is not possible. In order to estimate the growth and decayedls w
as possible exchange of energies between modes which are co-
herent, we apply Dynamic Mode Decomposition (DMD) [12] to

tion images were captured using a hi-speed camera. The $mage analyse the transition data and find a suitable metric (cebfime

captured for a particular flame-air flow mix conditions weren
analysed using DMDSP by taking an optimal number of frames
at every step by identifying five distinct zones of analysis-p
determined by running theCNN+ ST SA framework.

Il. PROBLEM FORMULATION AND EXPERIMENTAL
SETUP
A. Problem Statement

Thermo-acoustic instability relates to the excitement of
acoustics in a resonator with heat release rate fluctuatieise
amplifier and source of such acoustics. The heat releasuate
tuations can be positively coupled to the pressure fluanati
through various mechanisms. Such mechanisms in genegal, ar
1. Velocity coupling and 2. Fuel concentration fluctuatiovis-
locity coupling is a broad term for different mechanismstth
involve both hydrodynamic and flame response to the former.

A prominent sustainer of combustion instabilities, espkci
in turbulent combustors is flame vortex interaction [2]. dctf a
number of studies on bluff body and rearward facing step com-
bustors have highlighted in a qualitative manner (visugpet-

Section V) for the prediction of combustion instability. & met-
ric is based on the lines of stability analysis and is seemedipt
well the onset of combustion instability.

B. Experimental Setup and Description

The swirl combustor test bed used in this study has a swirler
of diameter 30 mm with 60 degree vane angles, thus yielding
a geometric swirl number of 1.28. Air to the combustor is fed
through a settling chamber of diameter 280 mm with a sudden
contraction leading to a square cross section of side 60 niis. T
provides an area ratio of around 17, which thus acts as arsacou
tically open condition at the contraction. A mesh and honey-
comb are mounted in immediate downstream of the contraction
to provide uniform flow to the swirler. The combustor, shown
in figure 1(a) consists of an inlet section of length 200 mm, an
inlet optical access module (IOAM) of length 100 mm to previd
optical access to the fuel tube, a primary combustion chawibe
length 370 mm, and secondary duct of the same length. Exten-
sion ducts of the same cross section are added to providtleng
flexibility. The overall length of the constant area ductswho-
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(a)

FIGURE 1. (a) Schematic of the experimental setup. 1 - settling cleanib- inlet duct, 3 - IOAM, 4 - test section, 5 - big extensiarcyg 6 - smalll
extension ducts, 7 - pressure transducsgs swirler location measured downstream from settling chemekit, X, - transducer port location measured
downstream from settling chamber exft,- fuel injection location measured upstream from swirlet,€k) Swirler assembly used in the combustor.

sen to be 1340 mm. ical experiments have been performed and these snapsivets ha
The fuel injection is done by injecting it coaxially with the  been collected using a high-speed camera capturing theummb

air in a fuel injection tube with slots on the surface as shawn  tion flame images é8kHz The next step is to form a data matrix

Figure 1(b). The fuel injection tube is coaxial to a mixindpéu whose columns represent the individual data samples. Tiae da

which has the same diameter as that of the swirler. The bypassmight need preprocessing to eliminate inherent noise.isnpti-

air that does not enter the mixing tube passes through stots o per, although we deal with temporal evolution processes it

the swirl plate. The slots on the fuel injection tube areledil noteworthy to mention that DMD can take into account a vgriet
at designated distance upstream of the swirler. The laliert  of other evolution processes and analyse them effectilretyur
distance, more fuel mixes with the primary air in the mixinge analysis of combustion flames, we assume that the image data

thus leading to more premixedness. Two upstream distarfces o are equispaced in time, with a time-step of qsty,
X1 = 90mmand Xy = 120mmwere chosen for this work. The
upstream distance of 120 mm provides for full premixing & th [lllo7 yn, ..., WN]
fuel with the air. The 90 mm upstream injection case causes
partial premixing of the fuel with air. The images were acqdi
at 3 kHz using Photron High speed star with a spatial resoiuti
of 1024x 1024 pixels.

Figure 2 presents sequences of images of dimensiorx392
1000 pixels for both stableRe= 7,971, FFR = 0.495y/s and
gjrild %ﬁlngi(gr:?&i?\g? sutgtséiblﬁg flaﬁlegﬁlzlétl: iiF;n tgf ?iggh/ésid Wo = [Yo, Yn,.... Yn-1] € CN,
of each image and the flame flows downstream to the left. It can
be observed that the flame does not have any prominent caheren
structure when the comb_ustion is stable. While the combuisti Wy = [, W, U] € CMXN.
is unstable, vortex shedding along the flow is observed.oRott
segment of the figure 2 shows formation of mushroom-shaped
vortex att = 0,0.001s and the shedding of that towards down-
stream front = 0.002tot = 0.004s.

where, in general, eaclp; := ((iAt) is a complex vector
with M measurement points (components), ifa.e CM. After
this, we form from the snapshot sequence, two data matrices:

and propose a hypothesis that the snapshots were geneyated b
a discrete-time time-invariant system which is governedhsy

relation:
lIl. BRIEF BACKGROUND ON DMD AND DMDSP Yp1=Al, t=01.. . N-1 1)
A. Dynamic Mode Decomposition (DMD)

This section presents a brief background on DMD and Typically, in case of mass transfers (fluid flows), the matrix
DMDSP. For details refer to [2,7]. DMD is a data processing A contains a large number of entries which are complex numbers
technique that extracts coherent structures with a sieghgoral in general. DMD provides a procedure for determining a low-
frequency from a numerical or experimental data-sequerite. order representation of this matix e CMXN that captures the
primary steps of DMD and DMDSP are stated as follows: dynamics inherent in the flow data. In case of problems deal-

The first step is to abstract a sequence of snapshots from aing with fluid flows, the number of measurement points (com-
numerical simulation or physical experiments. In our cabg's- ponents) in each snapshdgt, is typically much larger than the
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t=0

t= 00015

t=0.001s

t=0.002s

t=0.002s

t=0.003s t=0.004s

t=0.003s t= 00045

FIGURE 2. Combustion images used for flame stability analysis, captat 3000 ps(framegsecondi.e. 3kHz Top: greyscale images &e=
7,971 and full premixing for a fuel flow rate of 0.495 g/s, bottogneyscale images &e= 15,942 and full premixing for a fuel flow rate of 0.495 g/s.

(Image Source: [13])

number of snapshots themselves, iM > N, implying thatWq

andW¥; are all tall matrices. Using the linear relation (1) between
the snapshots at two consecutive time steps, the two data mat

cesWy andW; can be linked via the matriA andW¥; can be
expressed as:

W= [LplaLpZa"wLI"N} = [AWO7A’~I’1;---7A’~I’N—1] :ALIJO (2)

Given a rankr matrix of snapshot¥y, the DMD algorithm
provides us with an optimal representatiere C'*" of the ma-
trix A'in the basis spanned by the POD mode%gf

A~UFU*.

Here U* refers to the complex-conjugate-transpose of the matrix

of POD modes ofJ which is obtained from an economy-size
singular value decomposition (SVD) g¢f € CM*Nj.e.,

Wo =U3V*,

whereX is anr x r diagonal matrix with non-zero singular values
01, ..., 0y ONn its main diagonal, and

U e CM*" with U*U =1,

V e CN with V*V = 1.

F can be determined from the matrices of snapskhgtand¥;
by minimizing the Frobenius norm of the difference betwdgn
andAWy with A=UFU* andWy = U2V™,

min || W —UFZV* |2, (3)

where the Frobenius norm of a given matr@,is can be
obtained as follows:

IQIf = traceQ'Q) = trace(QQ").
It is trivial to show that the optimal solution to (3) is givey
Famg=U*W;vz 1

which is identical to the expression provided in [2] and ipist
ments the DMD algorithm, initializing from the two basic mat
ces of snapshots¥y andW;. For further discussion on DMD,
we refer to [2].

B. Determining the optimal amplitudes of DMD modes
The matrix Fymg € C™*" determines an optimal low-
dimensional representation & € CM*M on the subspace
spanned by the POD modes &8¢. The dynamics on this r-
dimensional subspace are governed by the equation:

X1 = FamdX (4)

The matrix of POD moded can be used to may into a
higher dimensional spad@V as,

Y ~ Ux.

The matrix,Fgmg can be broughtinto a diagonal coordinate form
if it has a full set of linearly independent eigenvect{ys,...,yr },
with corresponding set of eigenvalugs, ..., i }:

H1 Z
Fama = [yl Yr}
h,—/ "
4 M| |4
—————
Dy 7
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where, eachy; is of unit Iength,yj*yj =1, and{z,...,.z}
are the eigenvectors d¥,, corresponding to the eigenval-
ues{Hy,..., lr }, scaled suitably to agree with the following bi-
orthogonality condition:

Zy) = {

The solution to (4) is now determined by -

1ifi=]
0ifi#].

r r
x = YDO,Z% = Y Vikizxo = yiHiai,
u P 1M W 1M Y

Herea; := Z'xg represents thi¢th modal contribution of the
initial condition xg. Thus, we can approximate experimental
or numerical snapshots using a linear combination of the DMD
modesp :=Uy;,

r
Lpt%uxt:;yiuitaiateoa"'7N_1a (5)
i=

where eacho; can be interpreted as the “amplitude” of the
corresponding DMD mode [2]. The selection of the amplitudes

which upon using the economy-size SVD¥§ = U ZV* and the
definition of the matrix® := UY, can be rewritten as:

min J(a) :=| 2V* Y DaVand |12, (6)

This is a convex optimization problem that can be solved
using standard methods as mentioned in [14]. We note that thi
optimization problem does access the POD modes of the matrix
of snapshot&/y; the problem data in (6) are the matricesind
V, which are obtained from the economy-size SVDHfand the
matricesy andVang, Which results from the eigenvalue decompo-
sition of Fymg. Thus,J(a) in (6) can be equivalently represented
as

J(a) = a*Pa—q‘a—a*q+s,

(7)
where
P:=(Y*Y)o (VandVng), d:= diag(VandVZ*Y), s:=trace(X*z).

The complex-conjugate-transpose of a matrix (vector) itk
here by an asterisk. An overline denotes the complex-ceaigug
of a matrix (vector), “diag” of a vector is a diagonal matrix
with its main diagonal determined by the elements of thearect
“diag” of a matrix is a vector determined by the main diagonal

a; can be interpreted as the selection of the Koopman modes thatof the matrix, and is the elementwise multiplication of two ma-

have the strongest influence on the system’s responseingsult
from the use of the particular initial condition and the timeer-
val on which the snapshots are collected. In matrix form,

a1 Tpg - ppt
as 1u2 ué\lfl
(o - Una] = [ @ @] R
Yo ® ar] [Tpr o Mt
Dg := diag(a) Vand

The above expression demonstrates that the temporal evolut
of the dynamic modes is governed by the Vandermonde matrix,
Vang € C™N. This matrix is determined by threcomplex eigen-
values ofy; of Fymg Which contain information about the under-
lying temporal frequencies and growth/decay rates. Deaterm
tion of the unknown vector of amplitudes: = [al---ar}T then
boils down to finding the solution to the following optimizat
problem:

min || Wo — ®DaVang [? -

trices. The optimal vector of DMD amplitudes that solves the
optimization problem (6) can therefore be obtained by mimim
ing the quadratic function (7) with respectdo

Qdmd = Pilq = ((Y*Y) o (VandV},

=) tdiag(VandVZ*Y).
Superposition of all DMD modes, properly weighted by their
amplitudes and advanced in time according to their temporal
growth/decay rate, optimally approximates the entire data
guence.

C. Sparsity-Promoting Dynamic Mode Decomposition
(DMDSP)

In this paper, a modified form of DMD, its sparsity promot-
ing variant, termed Sparsity Promoting Dynamic Mode Decom-
position (DMDSP) has been used to define the instability mea-
sures defined in Section V. DMDSP is used to determine the per-
formance of different number of frame sizes when compared to
DMD and choosing the optimum frame size from the said anal-
ysis. It has also been used to develop and define a metric that
gives us a measure of instability of the combustion flame dy-
namics that has been studied in this paper. DMDSP selects the
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subset of DMD modes that has the most profound influence on
the quality of approximation of a given sequence of snaysshbt
provides a hierarchical description of the data sequentarins

of a set of dynamic modes. Further details and descriptions o
DMDSP can be found in [7].

IV. RESULTS AND DISCUSSION

Based on the aforementioned classification, we analyse the
image sequence to choose the best frame size above 125¢hat id
ally performs for the DMD and DMDSP algorithms. We choose
multiples of 25 frames viz., 150, 175, 200, 225 and 250 fratmes
work on and determine frame sensitivity. We define a metric to
determine the performance of DMDSP based on the number of
frames chosen. The metric gives us, in percentage (%), hdw we
DMDSP approximates the entire data sequence based on num-

This section presents validation results and discussions ber of frames when evaluated across all the five designatezszo

along with pre-processing techniques applied on the smagsh
quence for applying DMDSP on it. For this study, the §38ss
case is considered. The nomenclature refers to an air fl@wfat
600 Ipm (litres per minute) with fuel flow rate changing from a
initial of 50 Ipm to a final of 35 Ipm.

First 7 seconds of the data for the given air and fuel flow

under study. The plot is shown in Figure 4. With this figure as
reference, the convergence behavior is evaluated by adilcgl

the percentage reproduction of the initial snapshot of negie
sequence from the summation of DMD eigenvectors calculated
from the sparse DMD algorithm. The differences are then esti
mated by taking the difference of the Euclidean norm of the in

rate is captured with the hi-speed camera. The image sequenc tial snapshot vector and the summed up eigenvectors. Thkses

taken for this time period is analyzed for its spectral conh{a-
tegrated heat release rate) through Fast Fourier trangfeifin)
over the entire duration to identify dominant frequenciesspnt

in the system. Although being transient in nature, the nise i
amplitudes of the system at certain frequencies make FFTH-a co

are plotted in Figure 5.

From Figure 5, it is clearly seen that there is little per-
formance index change across the different snapshot lesggth
guences. This establishes the fact that any frame size Heyon
125 frames (starting from 150 in this case) will yield the sam

venient and easy choice fo detect the same. We choose the opyyajitative results, which will be independent of the numake

timum frame size for DMD analysis by detecting the dominant
frequency (most amplified mode) by carrying out simple FFT on

frames. Since there is no preference for the number of frames
perform DMDSP for each of these frame sizes and evaluate them

the data and observing the plot of the amplitude spectrum, as 3564 on the instability prediction performance. It is sé

shown in Figure 3. It is observed to be120.6 Hz which cor-
responds to that of the duct natural mode of H20 DMD is
performed on integral multiples of this duct mode time perio
with a minimum of five acoustic cycles [2] to start with. Inghi
work, 25 images were grabbed per acoustic cycle, hence DMD
is done on the snapshot sequence, whose length is varieéd star
ing from 150 (6 cycles) to 250 (10 cycles) frames in steps of 25
frames.

150 frames perform best overall with .73%, followed by 175
frames with 7983%, 200 frames with 741%, 225 frames with
77.68% and 250 frames with 7&%. We perform the sparse
DMD algorithm by choosing 200 frames for the analysis, as the
zones around which the analysis is carried out is approxicdhat
We get a sound estimate of flame stability conditions for exch
the five zones for the sequence of snapshots by choosing a win-
dow size of 200 frames. Performing this analysis, we defiee th

Within the image sequence, we obtain five zones based 0n fj3me instability measure which also verifies whether thenebefi

analysis by theCNN+ ST SAframework, which is further dis-
cussed in [6]. By means of Deep Learning which combines
Conventional Neural network (CNN) with Symbolic Time Serie
Analysis (STSA) the method aims to extract coherent feature
from the transition data, by utilising pre-trained unsgaffame
images, thus aiming to predict combustion instability. #swob-
served that even before apparent transition to combusi&ia-i
bility, there were crests on the instability measure. Thassts
were labeled as intermittent regions for their non-moniatbe-
haviour. Two such intermittent regions were seen. Here, five p
marily aim to identify the intermittent behaviour, throug®MD
based metric. For this, DMD was performed on five regions -
Stable 2. First Intermittence 3. Second Intermittence andr

1.

metrics agree with the instability measure shown in Figuaed
vice-versa.

Figure 6 shows the eigenvalues resulting from the standard
DMD algorithm (black circles) along with the subset\feigen-
values selected by the sparse DMD algorithm (red crosses) fo
the five different zones under consideration. H&kerepresents
the optimal number of sparse DMD modes. It is a well estab-
lished fact that eigenvalues, when they lie outside theairdte,
depict unstable modes. When they lie inside the unit cileyt
are stable and when they lie on the unit circle itself, they ar
marginally stable.

A stability measure is thus defined from the information we

sition and 5. Unstable based on operating conditions. These get from Figure 6 regarding the position of the sparse DMD

five zones are shown in Figure 4. The figure also showsrtise
variation of pressure, which is one of the most commonly used
measure of instability. It is to be noted that the pressunsae

by itself is unable to detect the instabilities.

modes with respect to the unit circle. This metric is defined a
the cumulative sum of the distances of each of lhedMDSP
modes for each of the five zones, normalized dNerThe insta-
bility measure defined by this metric is shown in Figure 8.
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FIGURE 3. Fourier Analysis of the temporal image data to determieedthminant frequency: (a) Single side amplitude spectrlottgal up to 200
Hz, showing the dominant frequency=sl206Hz, (b) Single side amplitude spectrum of the image data segugotted up to half of the sampling
frequency i.e. up to 1500z
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FIGURE 4. Variation of the proposed instability measure with timetfee transition video named 6§,35. Multiple regions on the measure curve
denote different combustion states such as stable, temypiotarmittency (a significant precursor to persistentabgity) and unstable . They are
corresponded to varied coherent structures (bounded bgaedthat are detected by the CNN+STSA framework. On thet righs variation of the
pressure is shown as it is one of the most commonly used ifistabeasures. Progression Bins can not detect the aforementioned precur§lonsige

Source: [6])

where,§; is the distance of the individual DMDSP modes from
the unit circle. The sum is normalized over the number ofspar

2175 frames
o 3-200 frames

§ e DMD modes,N; for each of the five zones. This normalization
is done, as in case of the stable zoNg= 27 while for the other
4 zonesN, = 26.

Performance of DMDSP bsed on different frame sizes
T T

] The stem-plot oMl; for the different zones is shown in Fig-

7 ure 8. It gives us a broad idea of the flame stability cond#ion

] We see that for the stable zone, the valueMafis the least,

7 followed by the first intermittence zone, which has a slightl

] higher value than that of the stable zone, followed by second

° . : . intermittence zone, which has a valee0. All of these three

zones have negative valuesMf. Positive value oM is shown

. . . only by the zones designated as “Transition” and “Unstabie”

FIGURE 5. Performance of DMDSP subject to different frame sizes CNN+STSA. Itis seen that the transition zone exhibits a éigh
The first Instability measuré/, is defined as: value ofM; than Unstable. This can be attributed to the frequent

changes in flame behaviour with abrupt shedding and formatio

Nz
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7. Dependence of the absolute value of the amplitumlesn the frequency (imaginary part) of the corresponding reigkiesy; for (a)

Stable Zonel{; = 27), (b) First Intermittence Zond&lf = 26), (c) Second Intermittence Zons,(= 26), (d) Transition ZoneN; = 26) and (e) Unstable
Zone (N; = 26). The results are obtained using the standard DMD alguriblack ircles) and the sparsity-promoting DMD algorited crosses)

with N DMD modes.
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FIGURE 8. Variation of Instability measuréyl; along the five zones FIGURE 9. Variation of Instability measuréyl, along the five zones
under investigation under investigation

Now, we define our second instability measuvi,as:

of intermittent vortices within the fluid flow that increast® Nz
value of the instability measure, registering a higher ealtM, M = Z\(G)\i)/Nz
than the Unstable zone. =

As discussed abov#); gives us a sense of stability for dif-
ferent zones in the fluid flow, by simply analysing the tempora
image sequence by DMD and DMDSP. But, this analysis can
only be attributed as a necessary but not a sufficient camditi
to detect stability. From Figure 8 alone, we cannot surely sa
whether a zone is stable or not. To get a better sense of the flam
stability, the energy of each of these modes (determinedhéy t
amplitude of the modes) has tobe looked at. The amplitude vs
frequency plot for the five zones are shown in Figure 7.

where,d is the same as defined before ahds the amplitude
(or energy or weight) of corresponding DMDSP mode.

Stability (or instability) measure of the flame for a specific
zone, determined by the value Mg is shown in Figure 9.

As seen in Figure 9, the valuesid for stable, first and sec-
ond intermittencies and transition zones are all negat@ely
positive value ofM, is exhibited by the unstable zone. This
shows that, compared to the other four zones, true flame-insta
bility exists in only this region, when flame instability isost

From Figure 7, we get the amplitudes (energies) correspond- prominent, more so than the other zones which fail to exhibit
ing to each of the modes (eigenvalues) determined in Figure 6 when measured with respectiéy. This is also verified from the
Knowing the Weights of each of the sparse DMD modes, we now experiment conditions where from it is noted that the cood#
define a metric that gives us a sense of stability of the flame as Within the combustion chamber were tweaked to unstableieond
it evolves with time. The metric is defined as the product ef th  tions at the time instant when the flame instability was det&c
distance to the unit circle of each of the DMDSP modes with the This validates DMD and DMDSP as an effective analysis and
weight each of the mode carries with it. This gives more im- Verification tool for instability detection for combustidlames
portance to the modes that represents and approximatesithe fl and also verifies the CNN+STSA approach proposed in [6].
flow to a greater extent than the modes whose weights are com-
paratively less. In defining this metric, the assumptiorhist t
the distance to the unit circle is considered as positivervthe V. SUMMARY, CONCLUSIONS AND FUTURE WORK
modes are outside of the unit circle and negative when theemod Pivoting on the spatio-temporal patterns exhibited by a tur
are inside the unit circle. The stability measure is giverthsy bulent combustor, and developed based on the sparse Dynamic
cumulative sum of this product for each of the modes (eigenva Mode Decomposition algorithm, this paper proposes an effec
ues) obtained by running the DMDSP algorithm on the snapshot tive analysis and verification tool that can be used for mgkin
dataset for each of the five zones of investigation. online data-driven combustion instability detection teclues
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such as CNN+STSA more accurate and robust by providing a

solid physics-based understanding of combustion flamerdyna merical and experimental dataJournal of Fluid Mechan-

ics. The performance and prediction characteristics weaseda ics, 656, pp. 5-28.

out for varying number of frames and sparse DMD modes. The [3] Schmid, P. J., 2011. “Application of the dynamic mode de-

aforementioned analysis was done on five regions, with rdiffe composition to experimental dataExperiments in Fluids,

ent dynamics as seen from a Convolutional Neural Network and 50(4), pp. 1123-1130.

Symbolic time series analysis approach. [4] Chatterjee, S., Mukhopadhyay, A., and Sen, S., 2013-“St
Two metrics were devised based on the fundamental idea bility study of laminar flame using proper orthogonal de-

of thel, — norm (spectral radius). It was seen that the instabil- composition and dynamic mode decomposition3l - In-

[2] Schmid, P. J., 2010. “Dynamic mode decomposition of nu-

ity measure for stable operations carries the most negadive
compared to other selected regions as expected, indidatiag
stability. Furthermore, for the intermittent regions thegre not

ternational Summer School and Workshop on Non-Normal
and Nonlinear Effects in Aero- and Thermoacoustics, June
18-21, Munich

seen to be either exhibiting stable or unstable behaviam fr [5] Bagheri, S., 2013. “Koopman-mode decomposition of the
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not enoughstill < 0) to transit to instability. Further, the tran- proaches, Montreal, Canada
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could be attributed to the fact that, at high pressure aogsis
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of damping become significant and thus saturate the growth as

well as reduce the instability measure.
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