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ABSTRACT
Detecting the transition to an impending instability is im-

portant to initiate effective control in a combustion system. As
one of the early applications of characterizing thermoacoustic
instability using Deep Neural Networks, we train our proposed
deep convolutional neural network (CNN) model on sequential
image frames extracted from hi-speed flame videos by inducing
instability in the system following a particular protocol- varying
the acoustic length. We leverage the sound pressure data to de-
fine a non-dimensional instability measure used for applying an
inexpensive but noisy labeling technique to train our supervised
2D CNN model. We attempt to detect the onset of instability in a
transient dataset where instability is induced by a different pro-
tocol. With the continuous variation of the control parameter, we
can successfully detect the critical transition to a state of high
combustion instability demonstrating the robustness of our pro-
posed detection framework, which is independent of the combus-
tion inducing protocol.

I. INTRODUCTION
Many early warning measures have been developed over the

years to detect the onset of critical transitions in dynamical sys-
tems. Early detection of critical transitions can help in devel-
oping adequate strategies to prevent unwanted events. Although
we are far from being able to develop accurate models to predict
critical threshold, early warning signals may be a significant step
to judge whether the probability of such an event is increasing

∗Address all correspondence to this author.

for complex dynamical systems ranging from ecosystems to fi-
nancial markets and climate which may show a sudden shift to a
contrasting dynamical regime [1]. Critical transitions can occur
in turbulent combustors which are widely used in propulsion and
power systems. These transitions can have many adverse effects
on the performance of combustion dependent power generating
systems resulting in enormous revenue loss.

The unsteady flow perturbations resulting in heat release rate
fluctuations in a combustor makes it susceptible to thermoacous-
tic instabilities characterized by large amplitude pressure oscil-
lations with sharp tones. The oscillations arising as a result of
nonlinear coupling between the flame and the acoustic field can
cause an intense growth of pressure fluctuations and increased
heat transfer on the combustor surfaces [2–4]. These oscillations
can result in structural damage and catastrophic failures of the
engine [5]. The positive feedback mechanism established be-
tween the sound waves and heat release rate gives rise to this tran-
sition to large amplitude oscillations. Characterizing combustion
instability is therefore important for early detection of this tran-
sition which can lead to effective control and performance mon-
itoring of the engines.

In order to characterize combustion instabilities, full-scale
computational-fluid-dynamic (CFD) models and/or reduced-
order models have been developed, but these models may have
imperfect validation due to several restrictions which include
simplifying assumptions, inherent complexities, and computa-
tional restrictions. Many researchers have conducted studies on
physics-based modeling of instabilities (e.g., [6–8]). Coherent
structures are fluid mechanical phenomena associated with the
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coherent phase of vorticity and having high levels of vorticity
among others [9] which can cause large-scale velocity oscilla-
tions and overall flame shape oscillations by curling and stretch.
The commonly used methods for detection of coherent structures
are proper orthogonal decomposition (POD) [10] and dynamic
mode decomposition (DMD) [11]. The abundant presence of co-
herent structure indicates instability [12] but lack of physical un-
derstanding of these structures makes it difficult to identify the
precursors of instability.

Researchers have also explored precise control of fuel flow
in order to suppress or avoid thermo-acoustic instabilities [13,
14]. An alternative is to use dynamic data-driven application
systems [15] based on time series data of physical sensors and
images to identify the features that can characterize combustion
instabilities (e.g., [16–19]). Gotoda et al. [20] investigated the
dynamic behavior of the combustion instability using non-linear
time series analysis in combination with a surrogate data method.

With recent advancements in deep learning, neural network
approaches can effectively extract features from raw data for au-
tomated learning and discriminative tasks and deep learning is
found to be apparently superior to other state-of-the-art machine
learning tools for handling very large-dimensional data spaces
and learning features [21]. A deep convolutional neural net-
work (CNN) can learn meaningful patterns from images [22].
The concepts of deep learning have been used in the domains
of image, video and speech processing extensively. Farabet et
al. [23] used a multiscale convolutional network to extract fea-
tures for scene labeling. Others applications based on convo-
lutional neural network include gradient-based learning applied
to handwritten digit recognition task [24], multitask learning for
natural language processing [25], natural low-light image en-
hancement [26]. Applications of deep learning in studying com-
bustion instability have been very limited. Sarkar et al. [27] ap-
plied a deep learning-based framework to extract features from
hi-speed flame images for early detection of combustion insta-
bility. A neural-symbolic framework can be used to first extract
low-dimensional features from sequential hi-speed flame images
using a deep convolutional neural network (CNN) and then the
temporal variation can be captured using Symbolic Time Series
Analysis (STSA) [28]. Akintayo et al. [29] designed an end-to-
end convolutional selective autoencoder which encodes the co-
herent structure information from the unstable frames. 3D CNN
architecture can be applied to leverage the temporal correlations
among the consecutive frames and classify flame images into two
classes- stable and unstable [30].

Extracting features from a large volume of sequential hi-
speed frames for conditions falling in the regime of instability is
essential for characterizing combustion instability. Developing
a robust instability detection framework is crucial for applying
effective control strategies to mitigate the probabilities of occur-
rence of such events at an early stage. However, the previous
works are mostly concentrated on testing the model for detecting

the onset of instability induced by the same mechanism as that
for the training set. In this paper, we propose for the first time
an image-based detection framework which is independent of the
combustion inducing protocol. Also, we leverage both the sound
pressure data and hi-speed images to train our model. We in-
duce instability in the system by varying the acoustic length and
use the sequential image frames extracted from hi-speed flame
videos to train our 2D CNN model. For training our supervised
model, the labels are generated with an inexpensive but noisy la-
beling technique using a moving window approach on the sound
pressure time series data. To demonstrate the robustness of the
framework, we attempt to detect the critical transition where the
combustion instability is induced by a different protocol. We use
equivalence ratio as the control parameter keeping the acoustic
length fixed. With the continuous variation of the control param-
eter, the framework successfully detects the impending transition
and we define a non-dimensional expected instability measure
which aids in estimating the extent of instability pertaining to a
particular condition. This may be a significant step towards ac-
curate detection of the onset of transition which can eliminate
adverse effects on the performance of combustion systems.

II. EXPERIMENTAL SETUP, DATASET COLLECTION
AND PRE-PROCESSING

This section presents a brief description of the experimen-
tal setup followed by the details of dataset collection and data
preprocessing.

Experimental Setup
A Rijke tube having two open ends and a heat source shows

instability when the heat source is in a certain region within the
upstream half of the tube and with an unsteady transfer of energy
from the heat source to the air [31]. To depict an acoustically
coupled instability, we use a vertically placed open-ended Rijke
tube setup with the mean flow of a premixed fuel as shown in
Fig. 1. The Pyrex glass tube is 24 inches long with a diameter of
3 inches. The burner is a stainless steel tube of diameter 0.375
inches placed concentric to the Pyrex tube. We use a conical steel
bluff body (inner diameter= 7 mm, outer diameter= 9.525 mm)
with an approximate distance of 10.38 mm measured from the
burner to the tip of the bluff body. Air at ambient temperature,
used as the oxidizer and ethylene are premixed at stoichiometric
conditions. The flow rates of the fuel and air are controlled us-
ing Alicat M-Series flow controllers. A Photron Fastcam is used
for capturing hi-speed flame images and a Sony microphone con-
nected to a Tektronix oscilloscope records the acoustic signal.

Data Collection
In the present work, we vary the position of the burner tip

with respect to the ends of the Rijke tube by changing the x/L
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FIGURE 1. SCHEMATIC OF THE EXPERIMENTAL SETUP.

ratio (Fig. 1) from 0.125 to 0.5 keeping the air and fuel flow
rates constant at 18 SLPM and 1.5 SLPM respectively. We pose
our characterizing problem based on the data collected at five
different flame positions.

The hi-speed camera (Photron FASTCAM SA5 1000K-M2)
captures 5000 frames per second with an exposure of 1/5000
seconds and resolution of 192 x 352 pixels2. The microphone
placed in the field of sound (approximately 12 inches from the
tube) starts recording after triggering of the oscilloscope with
the Photron camera. The oscilloscope (Tektronix MSO 70404C)
has a sampling rate of 5 MS/s and total record length of 100 Mil-
lion data points. The three channels of the oscilloscope record
the trigger signal from the camera, microphone signal and the
camera frame rate respectively.

For each location after igniting the flame, we wait 10 sec-
onds to trigger the oscilloscope. Datasets are captured non-
sequentially with x/L. We start the experiment at burner loca-
tion(x) 3” instead of starting at location 0”. We then move to
location 12” for recording the next dataset followed by locations
6”, 0” and 9” as shown in Table 1.

Due to the limitation of the camera memory, we can store
33.88 secs of video data at a time. At a particular burner loca-
tion, we use two partitions to capture images each with a time
length of 16.94 secs. Thus we record two separate datasets (each
having 84700 images) corresponding to every location. We si-
multaneously record the acoustic pressure signal and capture the

TABLE 1. THE DIFFERENT BURNER LOCATIONS.

Burner Location (in inches) x/L

3 0.125

12 0.5

6 0.25

0 0

9 0.375

hi-speed flame images so that the two datasets can be correlated.
The data recorded at 5 different burner locations is used for train-
ing the 2D CNN model.

We perform the experiment at the burner location 6” by con-
tinuously varying the control parameter to record the transient
data for capturing the transition to a state of high combustion in-
stability. Keeping the fuel flow rate constant at 1.5 SLPM, we
increase air flow rate every 4 secs by 2 SLPM starting from 16
SLPM and ending at 22 SLPM. Therefore, the control param-
eter is the equivalence ratio which is decreased gradually from
1.5 to 0.95 by increasing the air flow rate. We use this dataset
for testing to show the robustness of our image-based detection
framework.

Data Preprocessing
For each burner location, we have a total record length of

33.88 secs for two partitions each with a record length of 16.94
secs. The resolution of the flame chemiluminescence images ex-
tracted from the hi-speed video is 192 x 352 as shown in Fig. 2.
We crop the images to remove most of the dark background por-
tion and concentrate on the flame. Each cropped image has a
resolution of 160 x 130. The cropped images are then resized
to dimensions of 128 x 128 to be used as input to our 2D CNN
model.

A moving window approach has been used previously to
investigate the dynamic characteristics of a combustion system
[18]. We utilize a moving window approach by splitting the en-
tire sound pressure time series recorded at each burner location
into consecutive windows of length 0.1s (100 ms) each and an-
alyze the windows sequentially one-by-one as shown in Fig. 3.
For each window power spectral density plot is computed and
each 0.1s window corresponds to 500 images with the hi-speed
camera fps at 5000. At a particular location, we consider 16 secs
time series data at the beginning of each partition from a total
record length of 16.94 secs and thus yielding 320-time windows
for both partitions. In total for five locations, we have 1600 time
windows and we compute FFT plots for all the time windows
separately.
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FIGURE 2. PRE-PROCESSING OF A SAMPLE FLAME IMAGE
CAPTURED AT x/L=0.125. THE IMAGES ARE CROPPED TO RE-
MOVE MOST OF THE DARK BACKGROUND PORTION AND THE
CROPPED IMAGES ARE RESIZED.

FIGURE 3. MOVING WINDOW APPROACH - SELECTING A
WINDOW OF 0.1 SECS FROM PRESSURE TIME SERIES AND
THE CORRESPONDING POWER SPECTRAL DENSITY PLOT AT
x/L=0.125.

III. PROBLEM FORMULATION AND METHOD USED
In this section, we state our problem formulation by defining

instability measure and thereafter applying Maximum Entropy
Partitioning to generate the labels. We also describe our proposed
2D CNN model used for classification.

FIGURE 4. TWO DIFFERENT FREQUENCY RANGES (200 - 500)
AND (2000 - 5000) HIGHLIGHTED IN THE FIGURE - USED TO
COMPUTE INSTABILITY MEASURE.

Instability Measure and Labeling using Maximum En-
tropy Partitioning

From the FFT plot, we choose a frequency range 2000-
5000 Hz and calculate the mean of all corresponding amplitudes
falling in that range. This gives us an estimate of the amplitude
of the noise in the system. The frequency range (2000-5000 Hz)
is chosen as it is far away from the range where the dominating
frequencies exist, thus giving an estimate of the noise. We ob-
serve that the dominating frequencies with very high correspond-
ing amplitudes generally fall in the frequency range 200-500 Hz
for all the 1600 time windows. We select this frequency range
(200- 500 Hz) and add all the amplitudes in this range to get an
idea of the overall energy content of the instability existing in the
system. We illustrate the two chosen frequency ranges in Fig. 4.

IM =
∑Amplitudes in the range 200-500 Hz

Mean of the amplitudes in the range 2000-5000 Hz
(1)

We define the Instability Measure (IM) in Eqn. (1). The scat-
ter plot of instability measure values for all the 1600 time win-
dows is shown in Fig. 5. We observe that the values of IM vary
from 183.79 to 3959.30 and thus comprise a large range of val-
ues illustrating low to high instability. We partition the IM values
into 5 partitions using the maximum entropy principle [32]. Each
discretized partition comprises of 320-time windows correspond-
ing to data of length 32 secs. We correlate the captured hi-speed
flame images with the time windows and therefore we aggregate
160,000 images per partition. The classes are defined based on
the range of IM values as illustrated in Table 2. The label for a
particular image is generated based on the IM of the correspond-
ing time window it belongs to. We use this dataset as input for
training our image-based 2D CNN model where a higher value
of label indicates higher instability. With a total of 800,000 im-
ages, maximum entropy partitioning ensures we have an equal
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FIGURE 5. VALUES OF INSTABILITY MEASURE FOR ALL
TIME WINDOWS AND SHOWING 5 PARTITIONS COMPUTED
FROM MAXIMUM ENTROPY PARTIONING.

TABLE 2. VALUES OF INSTABILITY MEASURES FOR FIVE
CLASSES .

Instability Measure Range Class

(183.79 - 507.49) 1

(507.49 - 988.24) 2

(988.24 - 1223.80) 3

(1223.80 - 1786.60) 4

(1786.60 - 3959.30) 5

number of images (160,000) per class. This labeling technique
is inexpensive as it does not involve manual labeling of all the
images and also consumes less time. The technique can be inter-
preted noisy as it involves aggregation of images in a particular
class from images corresponding to different burner locations.
But it helps in further generalizing our problem formulation as
we don’t restrict ourselves to the dynamic characteristics of a
particular experimental condition for labeling.

Method
2D Convolutional Neural Network. In an image, par-

tial edges and corners are low-level features and the combina-
tion of edges and corners are high-level features. With the focus
on learning features from the data, deep learning is an emerg-
ing branch of machine learning being used nowadays for a wide
range of applications. The field of computer vision is advancing

rapidly with developments in deep learning. Deep learning com-
puter vision finds many applications including self-driving cars,
face recognition, etc. Rapid advancement in computer vision is
now enabling new applications that were not possible earlier.

Convolutional neural networks(CNN) are discriminative
models which use nonlinear mapping to perform dimension re-
duction of data primarily from the local neighborhood. Com-
pared to fully connected layers, convolutional (conv.) networks
have fewer trainable parameters as there exists shared weights
in each unit of the feature maps. Conv. nets are specifically
designed to deal with the variability of 2D shapes and can out-
perform all other techniques for an image recognition task like
handwritten digit recognition [24]. Shared weights and subsam-
pling result in the invariance property of convolutional nets [33].

In a traditional feedforward neural network, the flattening of
the image to a one-dimensional vector results in loss of all spatial
structure in the image. Traditional networks are also hard to train
when the images are not perfectly resized. For large images, the
number of parameters in fully connected networks become very
large and that makes it difficult to get enough data to prevent
the neural network from overfitting. Also, the computational and
memory requirements increase multifariously. To use large im-
ages, the convolution operation is used which is one of the funda-
mental building blocks in a CNN. Conv. nets preserve the spatial
relationship between pixels by learning features across the whole
image. The kernels(filters) in a CNN are the neurons of the layer
having input weights. In the first layer, the input values are the
pixel values of the image. Deeper in the network architecture,
the convolutional layer takes input from a feature map of the pre-
vious layer.

Following a sequence of one or more conv. layers, pooling
layer is used to down-sample the feature map from the previous
layers. Pooling layers compress the feature representations and
reduce the overfitting of the training data by the model. Pool-
ing layers speed up computation as well and make some features
more robust. We use max-pooling layers in our model which take
the maximum of the input value to create its own feature map.
Max Pooling has a set of hyperparameters (filter size and stride)
but no parameters to learn. After the convolutional and pool-
ing layers extract the features, fully connected layers are used at
the end to generate non-linear combinations of the features and
finally to predict the classes. Fully connected layers generally
have a non-linear activation function or a softmax activation to
output the class prediction probabilities.

We propose a Convolutional Neural Network framework to
classify flame chemiluminescence images into 5 classes. The
network architecture is illustrated in Fig. 6. Our proposed CNN
architecture is different from the ones used by previous re-
searchers [22, 34]. We use fixed-sized 128 x 128 grayscale im-
ages as input to our supervised model. A conv. layer is used
following the first convolutional layer. Both layers have 32 fil-
ters each and a receptive field of width 7 pixels and height 7
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FIGURE 6. PROPOSED DEEP CONVOLUTION NEURAL NETWORK ARCHITECTURE

pixels. Instead of using small receptive fields throughout the net-
work [34], we start with 7 x 7 receptive fields for first two conv.
layers and for the next two conv. layers we use 5 x 5 receptive
fields. The conv. layers deeper in the network have 3 x 3 re-
ceptive fields. Our configuration is less deep than VGG-16 [34],
though it is deeper than AlexNet [22]. We increase the number of
filters from 32 for the first two conv. layers to 256 in the deeper
layers.

Six max-pooling layers are used, but not all the conv. lay-
ers are followed by max-pooling as shown in Fig. 6. All max-
pooling layers have a 2 x2 receptive field and a stride of 2 to
avoid any overlap. The resulting feature maps from a max-
pooling layer are one half the size of the input feature maps. The
fully-connected (FC) layers are used after the stack of convolu-
tional and max-pooling layers. The first two FC layers have 128
channels each and the third layer contains 5 channels for 5- class
classification. We use softmax as the final layer. Rectified Linear
Unit (ReLU) non-linearity [22] is used for all the conv. layers
and we perform Batch Normalization [35] at each layer.

To prevent overfitting, we use dropout regularization method
[36] where neurons need to learn more robust features rather than
relying on the presence of, particularly other neurons. We use
dropout regularization after the max-pooling layers, flatten layer
and the first two FC layers. We gradually increase the dropout
regularization probability from 0.1 in the first layers to 0.5 in the
FC layers. This helps in avoiding much loss of information in
the first layers. With the use of dropout, we require an additional
number of epochs to converge. The total number of trainable pa-

rameters for this model is about 1.54 million (1,544,933) while
there are 2,432 non-trainable parameters. The framework is per-
formed on NVIDIA GPUs and implemented using Keras [37]
with the TensorFlow backend [38].

IV. RESULTS AND DISCUSSIONS
We use categorical cross-entropy as the loss function for our

experiments. Adam optimization technique [39] is used with all
the default parameters (learning rate of 0.001) and we train our
model with a batch size of 128 samples. To decrease the training
time, we randomly select 264,000 images out of 800,000 im-
ages and then split it into training and test sets: 250,800 training
examples and 13200 test examples. Therefore we have 50,160
training images for each class. The validation set is used as the
test set for the experiments.

The accuracy plot is illustrated in Fig. 7. We achieve the
training set accuracy of 98.04% which can improve after training
for more epochs as evident from its slowly converging nature.
The validation/test set accuracy is 83.02% with our proposed 2D
CNN model. The class-wise accuracies on validation set are tab-
ulated in Table 3. For Class 1, our model achieves 100% accu-
racy while for Class 5 it shows 96% accuracy. It indicates that
the model can predict the two extreme conditions of instability
measures (Class 1 and Class 5) with high accuracy.

The performance of a classification algorithm can be exam-
ined using a confusion matrix. Here, element (i,j) gives a mea-
sure of the empirical probability of predicting class j when the
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TABLE 3. PERFORMANCE ON VALIDATION/TEST SET.

Class Accuracy

1 100%

2 81%

3 69%

4 69%

5 96%

FIGURE 7. ACCURACY PLOT FOR TRAINING AND VALIDA-
TION/TEST SET AFTER 450 EPOCHS

true label is i.The diagonal elements represent the number of
points for which the predicted label is equal to the true label thus
indicating correct predictions, while off-diagonal elements are
those that are mislabeled by the classifier [40]. The normalized
confusion matrix is shown in Fig. 8. When the true Class is 4, the
2D CNN model confuses mainly with Class 3 as observed in row
4. The confusion between true Class 3 with Class 2 and Class 4 is
manifested in row 3 of the confusion matrix. The model has an
accuracy of 81% while predicting Class 2 with the mislabeling
occurring mostly with Class 3. Thus the errors of our model for
Classes 2, 3 and 4 mainly come from mislabeling with the near-
est classes and it signifies that our model can predict the classes
with intermediate values of instability measures fairly well.

E =
∑

5
class=1(IM)class(No. of predictions)class

∑class=1(No. of predictions)class
(2)

FIGURE 8. CONFUSION MATRIX SHOWING PERFORMANCE
ON VALIDATION/TEST SET

We define the Expected Instability Measure (E) in Eqn. (2)
to search for forewarning signals of the critical transition to a
state of high combustion instability. The (IM)class value is the
mean of the instability measures for all training samples cor-
responding to each class as shown in Table 2. The values of
(IM)class for five classes are 345.64, 747.87, 1106, 1505.20 and
2872.90 respectively. To test the performance of our model on
a transient dataset, we study the change in the values of E by
varying the control parameter continuously. The trained model
is used for prediction on the hi-speed images captured at the con-
ditions corresponding to each value of the control parameter. The
results comprise the number of predictions for each class which
is leveraged to calculate the value of expected instability measure
(E) at that particular condition as defined in Eqn. (2).

Keeping the fuel flow rate constant and increasing the air
flow rate, our control parameter is the equivalence ratio which
is decreased gradually from 1.5 to 0.95 as shown in Fig. 9. The
value of E is reasonably low when we start our experiment at
equivalence ratio 1.31 indicating less chance of the presence of
instability. We observe a large increase in the value of E when the
equivalence ratio is decreased to 1.17. This significant increase
in the expected instability measure indicates the possibility of
critical transition to a state of higher expected combustion insta-
bility and may help in robust detection of the impending condi-
tion of maximum combustion instability observed with a further
decrease of the equivalence ratio to 1.05. Going more towards
the leaner side from the condition of maximum instability, the
value of E decreases demonstrating a decrease in the extent of
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FIGURE 9. VARIATION OF EXPECTED INSTABILITY MEASURE (E) WITH EQUIVALENCE RATIO

the existing instability of the system.

V. SUMMARY, CONCLUSIONS AND FUTURE WORK
In this paper, we propose an image-based detection frame-

work using deep convolutional neural networks to characterize
combustion instability. The robust framework, independent of
the combustion inducing protocol may be a significant step to-
wards accurately detecting the onset of transition to an impend-
ing instability.

We induce an instability in the system by varying the acous-
tic length and leverage the sound pressure time series data to
define a non-dimensional instability measure. We apply an in-
expensive but noisy labeling technique on the values of this
measure using Maximum Entropy Partitioning, to generate la-
bels for hi-speed flame images to train our supervised 2D CNN
model. We use a different combustion inducing protocol to test
our model and we define a non-dimensional expected instability
measure to estimate the extent of instability existing at a partic-
ular condition. We continuously vary equivalence ratio as the
control parameter and capture sequential hi-speed flame images
to detect the critical transition. The framework demonstrates ro-
bustness by successfully detecting the sudden transition to a state
of higher combustion instability.

Robust detection of the critical transition can help in initi-
ating effective control actions in a combustion system as it ap-
proaches a state of instability. The expected instability measure
value may indicate whether the probability of occurrence of such
an impending instability is increasing and early warning signals
are crucial for mitigation of such events to avoid the adverse ef-
fects on the performance of combustion systems.

One of the immediate next steps is to achieve a higher val-
idation accuracy. The future work will involve the incorpora-
tion of temporal knowledge in the model to improve the detec-
tion framework further and this can be achieved using Convolu-
tional LSTM and 3D CNN architectures which are designed for
sequence prediction problems with spatial inputs.
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