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Abstract: Thermoacoustic instabilities are prevalent in a variety of combustion systems including 

gas turbine combustors and liquid-fueled rocket motors. The limited ability to predict when and how 

the onset of significant thermo-acoustic instabilities will occur in these systems limits the ability 

implement active control approaches. The lack of predictive capability and sensing of the onset of 

instability typically requires the inclusion of passive damping in the combustor design. One possible 

avenue towards new paradigms in combustor design and optimization is the active control of 

combustion instabilities. In order to assess the capabilities for detection of combustion instabilities, 

proper orthogonal decomposition (POD) and a convolutional neural network (CNN) approach are 

being examined for classification of important dynamics. In this study, high-speed image sequences 

are collected for a turbulent premixed, bluff-body-stabilized flame in a Rijke tube. The level of 

thermoacoustic instability is varied through positioning of the flame in the tube. A deep 

convolutional neural network (CNN) classifies flame images via automatic visual feature. The CNN 

model is trained on sequential image frames extracted from hi-speed flame videos and demonstrates 

high accuracy for different flame characteristics from the perspective of instability.  The 

performance of CNN and POD in identifying unstable and stable behavior is evaluated. 

Keywords: Thermoacoustic instability, proper orthogonal decomposition, convolutional neural 

network 

 

1. Introduction  

 

Unstable combustion oscillations have long been of an area of interest, especially for propulsion 

systems. It has been found that such instabilities can lead to catastrophic failures within a 

combustion chamber due to the intense pressure fluctuations and excessive heat transfer on the 

chamber surfaces [1]. Rijke was the first to characterize the coupling between acoustic oscillations 

and unsteady heat release using a vertical tube open at both ends with a flame or hot gauze in the 

bottom half of the tube [2]. Rayleigh mathematically modeled this phenomena, and Rayleigh's 

criterion is used to determine the presence of a combustion instability. If the pressure fluctuation 

and the unsteady heat release are in phase, then the Rayleigh index will yield a positive value 

which indicates an instability [1]. 

 

Active control systems coupled with an ability to predict the onset of an instability would prove 

useful in a number of combustion systems in order to mitigate catastrophic failures. Prior work has 

been done by [3]–[8] of the active control theory and characterization of the onset of 

thermoacoustic combustion instabilities. Most of these methods have relied on open-loop control 
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or utilized single-point pressure transducers to provide feedback. Although these techniques are 

promising, the coupled spatio-temporal dynamics present in turbulent combustion systems may 

require more advanced capabilities in the detection of the onset of instabilities.  Techniques 

capturing this spatio-temporal behavior offer the potential for improved understanding of this 

complex dynamical system behavior in order to inform active control strategies [9], [10]. 

 

Mode decomposition methods have been used extensively in fluid mechanics and combustion 

applications to examine relevant dynamics. The use of proper orthogonal decomposition has been 

applied widely in velocimetry data from both experiments and modeling, and a comprehensive 

review is given by the monograph of Holmes et al. [11]. POD methods have also been applied in 

combustion to examine transient multidimensional processes[12]. Schmid et al. have demonstrated 

the application of dynamic mode decomposition (DMD) in additional fluid mechanics applications 

[10], [13], where sparsity-promoting DMD has been used to identify the most important dynamical 

modes [13]. Ghosal et al. analyzed combustion instabilities in a swirl-stabilized dump combustor 

using sparsity-promoting DMD to identify the most prominent dynamical features of the 

experimental test data. These techniques have shown promising applications in analysis and 

dynamical system modeling when applied to both numerical and experimental data [10], [14], [15]. 

 

2. Methods / Experimental 

 

Experimental setup 

 

Figure 1 depicts the experimental setup for a Rijke tube configuration coupled with high-speed 

imaging of the instability region and sound pressure levels in the far-field. An optically-accessible 

Pyrex tube with an overall length of 2 feet and an outer diameter of 3 inches serves as a Rijke tube. 

A 3/8-inch stainless steel tube with a conical bluff body attached 0.4 inch above the end of the tube 

was placed concentric with the Pyrex tube, and served as the burner. The Pyrex tube was attached 

to a dovetail rail section which allowed adjustment of the Pyrex tube in relation to the fixed burner 

location. The burner consisted of a premixed composition of ethylene and air with an equivalence 

ratio of 1.2 and a total flow rate of 19.5 SLPM. The jet exit Reynolds number was approximately 

18,000 and the turbulent flame was stabilized using a conical bluff body attached to the tube exit 

via a sting. The bluff-body stabilized premixed flame resulted in a short flame brush and repeatable 

behavior of the Rijke tube configuration. 
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Figure 1: Experimental setup for a Rijke tube configuration with high speed imaging and 

pressure level acquisition. 

The instability was recorded with a high speed camera (Photron FASTCAM SA5) and a 

microphone (Sony). The high speed camera had a frame rate of 5000 fps with an exposure of 200 

μs and a time length of 17 seconds. The microphone was set approximately 12 inches away from 

the Rijke tube, and connected to and oscilloscope (Tektronix, 4 GHz, 5 MS/s) to measure pressure 

fluctuations. The oscilloscope also measured the total acquisition time and frame rate of the high 

speed camera. 

 

In order to ensure steady state conditions within the Rijke tube, data acquisition was delayed by 

10 seconds after the flame was ignited. The burner location was changed for each of the five 

conditions, which can be found in Table 1. Two datasets were acquired for each condition, which 

produced 34 seconds worth of data. The burner location was changed randomly in order to prevent 

pattern development between conditions for deep learning training algorithms.  The location of 

burner will be referred to as a non-dimensional value x/L because the amplitude of pressure 

oscillation is correlated to the location of the heat release in relationship to the overall length of 

the tube. 
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Table 1: Experimental conditions for burner locations in relationship to the bottom of the Pyrex 

tube, and the associated non-dimensional location. 

Condition Number Burner Location x/L 

1 3 in. 0.125 

2 12 in. 0.500 

3 6 in. 0.250 

4 0 in. 0.000 

5 9 in. 0.375 

 

Proper orthogonal decomposition algorithm 

 

The first step in the POD algorithm is the construction of snapshots by rearranging the images into 

a series of columns where each image snapshot corresponds to a column of the matrix 𝑋 and has 

length corresponding to the number of pixels in the image. The following algorithm is a method 

of snapshots as commonly used [11], [15]. From the snapshot matrix 𝑋, a correlation matrix C can 

be formed by taking the correlation or covariance between the snapshots making up 𝑋. For real-

valued data, 𝑋 ∈ 𝑅𝑚×𝑛 where the number of snapshots is given by the number of columns 𝑛 and 

the data from each snapshot is a column of length 𝑚.  Typically, the length of each snapshot will 

greatly exceed the number of total snapshots. For example, a sequence of 1000 images where each 

image is 512×512 pixel2 will result in dimensions for 𝑋 of (𝑚 = 512 ∗ 512) × (𝑛 = 1000) or 

262144 × 1000. 

 

The covariance matrix is defined as 𝐶 = 𝑋∗𝑋, where 𝑋∗ represents the complex-conjugate of 𝑋. 
Since the elements are real, 𝐶 can be computed using the transpose: 𝑋𝑇𝑋. In order to determine 

the POD basis spanning 𝑋, the eigenvalue problem for the covariance matrix is solved and the 

eigenmodes are then projected onto 𝑋 to form the POD basis. The eigenvalue problem 𝐶𝑣 = 𝐶𝜆 is 

determined using a singular value decomposition 𝐶 = 𝑈𝛴𝑉∗where the columns of 𝑈 are the 

eigenmodes of 𝐶 and 𝛴 is a diagonal matrix consisting of the corresponding eigenvalues. To find 

the optimal basis spanning 𝑋, the eigenmodes are given by 𝜓𝑘 = 𝜙𝑘𝑋, where 𝜙𝑘 are the columns 

of 𝑈. This can be represented by the matrix product 𝛹 =  𝑋𝑈 to give the full set of eigenmodes 

forming the POD basis. The eigenvalues are given by the diagonal of 𝛴. 

 

The energy contained for each mode is often represented by normalizing each eigenvalue 𝜆𝑘 by 

the sum of all eigenvalues: 

𝐸𝑘 = 𝜆𝑘/ ∑ 𝜆𝑗

𝑛

𝑗=0

  

The cumulative energy fraction including only the first 𝑝 modes can then be determined by 

summing over the energy fraction for theses modes 

𝐸𝑐𝑢𝑚 = ∑ 𝐸𝑘

p

𝑘=0
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representing the amount of ‘energy’ contained in these modes. This principle is often used to down-

select the number of modes required to accurately represent the flow, although typical values for 

the flame chemiluminescence examined here do not exhibit a clear cutoff. A typical cumulative 

energy fraction is shown in Figure 2. 

 
Figure 1: Cumulative energy fraction contained in the first modes included for a POD analysis of 

500 consecutive images. 

To further examine the POD algorithm, we can look at the spatial modes corresponding to the first 

few eigenvalues. As explained previously, these are the columns of the matrix product of Ψ =
 ΦX. The individual eigenmodes are ranked in order of energy content and to display, can be 

reshaped to the image dimensions to give spatial modes as shown in Figure 2.  

 
Figure 2: The POD spatial modes 0 through 7. 

Using the POD modes, we can also find the content of each spatial mode to each individual time 

snapshot represented in the collection of snapshots X. The kth snapshot can be fully represented by 

a linear combination of the eigenmodes as 
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xk = ∑ 𝑎𝑗ϕ𝑗

𝑛

𝑘=0

 

where coefficients 𝑎𝑗 are conveniently available as the rows of the transpose of the second unitary 

matrix from the SVD, 𝑉∗. To get an idea of how much information (‘energy’) is lost by truncating 

to a few modes, an instantaneous chemiluminescence image is shown in Figure 3(a) and compared 

to panels (b) and (c) where a subset of the first 10 and first 20 POD modes are used to approximate 

the image. As can be seen here, the first 10 modes capture the large scale structure, and the 

additional modes continue to provide additional structure. 

 
Figure 3: (a) Instantaneous image showing the flame chemiluminescence for a XX ms exposure. 

(b) The reconstructed single-frame representation using the first 10 POD modes, and (c) the 

representation using the first 20 POD modes. 

For the POD analysis presented in the results section, the thermoacoustic instabilities are examined 

in the context of the frequency content of the individual POD modes. The time-sequence of content 

for individual frames for a 0.1 s span is shown in Figure 4(a). Here the coefficients are shown as a 

function of time as described by x(t) = ∑ 𝑎𝑗(t)ϕ𝑗
7
𝑘=0 . To examine the actual frequency content of 

each mode, we present the fast-Fourier transform (FFT) of each mode in Figure 4(b). For this case, 

the dominant frequency content is evident in mode 0, 1, and 2, with some harmonics prevalent 

through higher modes. As the mode number continues to increase, the amplitude of these FFT 

values continues to decrease and in the subsequent analysis only modes 0 to 7 are considered. 
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Figure 4: (a) A sample sequence of the mode coefficients ak for a 0.1 second period. (b) The FFT 

of these mode coefficients showing the predominant narrow-band frequency oscillations are 

captured by the first few modes. 

 

3. Results and Discussion 

 

In order to characterize the level of thermo-acoustic instability exhibited by the Rijke tube, the 

acoustic transducer data was analyzed using a windowed FFT. The FFT was run on every 0.1 s 

interval of the oscilloscope-collected acoustic transducer data. In order to define a metric for the 

level of sound pressure level, a background-level-normalized instability measure is defined using 

the integrated FFT between 200-500 Hz and normalized by the background level from 2000-5000 

Hz: 

, 

where P̂(f) is the FFT of the sound transducer signal P(t). The resulting FFT from a 0.1 s duration 

window is shown in Figure 5(a) and (b). 
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Figure 5: Spectra for the 0.1 s duration windowed FFT are shown with integration regions near (a) 

the peak thermoacoustic instability frequency and (b) the higher frequency background level. (c) 

Classification of CNN was made based on this acoustic signal level, dividing into 5 classes shown 

in. 

Details on the algorithm for the convolutional neural network will not be discussed in detail here, 

but a brief sketch will be given. See [9] and [16] for additional details. A Convolutional Neural 

Network framework is used to classify images into the 5 classes identified based on the instability 

measure. The architecture consists of 128 x 128 input images to a supervised model. Two 

convolutional layers are used, followed by a pooling layer to down-sample features from the 

previous layers. In this approach [17], max-pooling layers use hyper parameters (non-trained). 

After the convolutional and pooling layers extract features, fully-connected layers are used to 

generate non-linear combinations of features and to predict classes. Training of the CNN model is 

performed with 50,160 training images per class. To examine the accuracy of training, a confusion 

matrix showing correct and improper classification based on the sound pressure levels (instability 

measure) is shown in Figure 6. The classification errors for both the strongly unstable and fully 

stable cases (Class 1 and 5) are excellent, with some degree of confusion (< 20%) between the 

other classes. 
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Figure 6: Confusion matrix showing true and predicted classification based noisy classification 

using sound pressure levels identified from the acoustic measurements. 

Figure 7 depicts the relationship between the maximum values for the sum of the first three POD 

coefficients from the respective FFT and the maximum FFT peak of the sound pressure signal. A 

window from 150 Hz to 500 Hz was used to capture the first harmonic of the instability frequency. 

The relative intensity for the POD coefficients and the sound pressure levels were summed over 

this window. Both cases used 200 ms of data to form their corresponding FFT. A monotonic trend 

between the two FFT maximums can be found, which is what would be expected because the 

instability frequency from both the POD analysis and the sound pressure data should increase as 

the amplitude of the instability grows larger. 

 
Figure 7: Comparison between maximum POD coefficients values and maximum sound pressure 

levels from corresponding FFT between 150 Hz and 500 Hz. 

High-speed images processed with POD and CNN methods compared to signals obtained from 

sound pressure levels indicate promising results for forming a basic framework for image-based 

detection of combustion instability phenomena.  
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4. Conclusions 

The assessment for the use of high-speed image detection for thermo-acoustic instabilities 

compared to signals obtained from sound pressure levels proves promising for laying the 

foundation of an active image-based closed loop control system. Results obtained from POD and 

CNN methods are able to characterize the instability phenomena within a Rijke tube configuration 

in a similar fashion as the sound pressure levels. Furthermore, the CNN method appears to be able 

to characterize the instability of an independent dataset based off of a training dataset to a relatively 

high degree of accuracy. The same methods should be applied to a more realistic combustion 

chamber since a Rijke tube does not take into account the complex geometry or possibility of 

multiple instability modes acting within the tube.  
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