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Abstract— This paper presents a robust and computationally
inexpensive technique of fault detection in aircraft gas-turbine
engines, based on a recently developed statistical pattern recog-
nition tool. The method involves abstraction of a qualitative
description from a general dynamical system structure, using
state space embedding of the output data-stream and dis-
cretization of the resultant pseudo state and input spaces. The
system identification is achieved through grammatical inference
techniques, and the deviation of the plant output from the
nominal estimated language gives a metric for fault detection.
The algorithm is validated on a numerical simulation test-bed
that is built upon the NASA C-MAPSS model of a generic
commercial aircraft engine.

Index Terms: Anomaly Detection, Symbolic Dynamics,

System Identification, Fixed Structure Automata, CMAPSS

I. INTRODUCTION

The modern aircraft propulsion system showcases a coali-

tion of a vast number of complex sub-components. Over

the decades, health monitoring of aircraft propulsion systems

has evolved to be an issue of paramount importance. How-

ever, the inherent complexity and uncertainty in this system

pose a challenging problem to health monitoring, since first

principle models, if available, are commonly oversimplified

lump-parameter models, or in worst cases models may not

be available at all.

For the purpose of efficient health monitoring of complex

interconnected systems, an on-board real-time robust fault

detection tool is necessary. Recent research has extensively

explored the problem of anomaly detection using symbolic

dynamic filtering (SDF) [1]–[4]. But, apparently the system

identification aspect of the health monitoring problem has

not received much attention for systems that are composed

of many smaller components. Since human-engineered multi-

component systems are usually interconnected physically as

well as through the use of feedback control loops, the effect

of any one component degradation may affect the input

streams to the remaining components. Also, in most practical

situations, the system might need to operate in different

operating regimes and thus under diverse input conditions.

It is evident, that in the absence of a high-fidelity

component-level model of the system, the major challenges

here are detection and isolation of faults by developing

a description of the dynamical system purely from the

input/output characteristics, in such a way, that it should

not only be sensitive to changes in the parameters of the

actual dynamical system but also invariant with changes in

the operating/input conditions.

The purpose of the work reported in this paper is to

address this issue, and develop a robust and computationally

inexpensive system identification technique based on formal

language formulation, which achieves the above-mentioned

objectives.

A central step in this kind of identification methodology

is discretization of the raw time-series measurements into a

corresponding sequence of symbols. An important practical

advantage of working with symbols is increased computa-

tional efficiency [1], [2]. The proposed method is designed

to be robust with respect to sensor noise, and also simple

enough to be embedded in the sensors themselves. Thus,

it facilitates construction of a reliable sensor network to

serve as a backbone to higher levels in the decision-making

hierarchy of large-scale complex systems.

The method of real-time diagnostic and fault estimation

technique proposed in this paper has been validated on

the C-MAPSS (Commercial Modular Aero Propulsion Sys-

tem Simulation), which is a tool for simulating a realistic

large commercial turbofan engine. This set-up is particularly

relevant for testing condition-monitoring algorithms, since

it allows users to choose and design operational profiles,

controllers, environmental conditions, thrust levels, etc. to

simulate a scenario of interest. Most importantly, it allows

the user to tune efficiency and flow parameters to simulate

specific fault modes.

II. PROBLEM DESCRIPTION

To apply grammatical inference procedures to identifi-

cation of non-autonomous dynamical systems, a dynamical

system is considered as an entity (i.e., linguistic source) ca-

pable of generating a specific language. Almost all physical

processes can be represented by dynamical systems operating

in continuous time and in continuous state space. It is evident

that estimation of deviation of such a system from its nominal

operating condition with grammatical inference techniques

need to be decomposed into three main tasks:

A. Abstraction

The first task is abstracting a discrete qualitative coun-

terpart of the general dynamical system representing the

physical process.

B. Identification

The learning task is to identify a ‘correct’ grammar for the

unknown target language, given a finite number of examples

of the language.



C. Comparison

On completion of “identification”, the output of the ab-

stracted system can be compared to the actual output in the

sense of some suitably defined metric for detection of any

kind of off-nominality in the system under investigation.

The next section develops these ideas in a systematic

manner, with reference to a CMAPSS model undergoing a

slow degradation in its fan efficiency.

III. THEORETICAL BACKGROUND

Definition The underlying structure of a dynamical system,

can be represented by a General Dynamical System (GDS),

defined as an 8-tuple (see [5] for details)

D = (T,U,W,Q, P, f, g,≤) (1)

where

• T is a time set,

• U and W are input and output sets respectively,

• Q are inner states,

• P denotes the input process P : T → X ,

• f denotes the global state transition

f : T × T ×Q× P → Q time-varying system (2)

f : T ×Q× P → Q time-invariant (3)

• g denotes the output function

g : T ×Q→W time-varying system (4)

g : Q→W time-invariant (5)

Let Di be a dynamical system indexed by i representing

different parametric conditions, D0 being the nominal or

healthy condition of the system, and i = 1, 2, ... signifying

deteriorating health conditions of the plant due to a pro-

gressing anomaly. Let Uk, k = 1, 2, ...,K be K different

input conditions, yi
k be the output from the ith system Di

receiving the kth input Uk.

Let G be the grammatical representation (also called a

Qualitative Dynamical System (QDS)) of the nominal plant

D0.

Definition The quantized abstraction of the GDS, called a

Qualitative Dynamical System (QDS) can be represented as

a 5-tuple

G = {Q,Λ,Σ, δ, γ} (6)

where,

• Q is the finite set of qualitative states of the automaton,

i.e. Q = {q1, q2, ..., qf}.

• Λ = {λ1, λ2, ..., λm}, is the set of qualitative input

events.

• Σ = {σ1, σ2, ..., σn} is the set of output alphabets,

where the output symbols are one-to-one with the

quantized values of output from the dynamical system.

• δ : Q × Λ → Q is the state transition function which

maps the current state into the next state on receiving the

input λ. The transition function can also be stochastic

in which case, δ : Q× Λ → Pr{Q}

• γ : Q → Σ is the output generation function which

determines the output symbol from the current state.

In its full generality, γ can be stochastic as well, i.e.

γ : Q → Pr{Σ}

Let χ denote a set of qualitative abstraction functions

χ : D0 → G (7)

It may be noted that χ is a 3-tuple, consisting of three

individual abstraction functions.

χ = (χTQX , χQ, χW ) , where

χTQX : T ×Q×X → Λ (8)

χQ : Q→ Q (9)

χW : W → Σ (10)

Kokar [5] introduced a set of necessary and sufficient con-

ditions, or ‘consistency postulates’ that the pair G,χ must

satisfy in order to be a valid representation of the general

dynamical system. In this paper, since the transfer of the

QDS, δ is probabilistic, the consistency postulates have been

redefined in a probabilistic sense. The modified consistency

postulates can be stated as follows:

Definition Let D,G and χ represent a GDS, QDS and an

abstraction function respectively. Then the pair (G,χ) form

a consistent representation in a probabilistic sense if, ∀q, x, t,

γ(χQ(q)) = χW (g(q)) (11)

χQ (f(t, q, x)) ∼ δ (χQ(q), χTQX(t, q, x)) (12)

where X ∼ P means the random variable X is distributed

according to the probability distribution P .

A. Abstraction

Theorem 3.1 (Kokar [5]): Let Wπ = W1, ...,Wn be a

finite partition of a GDS’s output space W , given by χ−1
W :

Σ → Wπ . Let Qπ describe a partition of Q defined as an

inverse image of Wπ through g,

Qπ = g−1(Wπ),

and let TQXπ describe a partition of T ×Q×X defined as

an inverse image of Qπ through f ,

TQXπ = f−1Qπ.

Then Qπ is a maximal admissible partition of Q, and TQXπ

is an admissible partition of T ×Q×X [5].

If the system model, i.e the equations governing the gen-

eral dynamical system is known, the critical hypersurfaces

or partitions can be analytically evaluated using theorem 3.1

and utilized as delineated in the preceding section.

However, in the absence of model equations, this scheme

is of little practical use, unless

1) there is an alternate means of constructing the phase

space purely from output, without using the model

equations,



2) there is an alternate means of arriving at the proposed

partition without information about the state transition

function f and the output function g.

The next two subsections delineate a method for achieving

these ends in an approximate way.

1) Phase Space Construction: Starting from the output

signal captured by suitable instrumentation, a pseudo phase

space can be constructed from delay vectors using Taken’s

theorem [6]. The embedded phase space can be denoted by

x(k) = [xk−τ , ..., xk−mτ ] ,

where τ is the time lag, and m is the embedding dimension.

Takens’ theorem guarantees that, at least in the noise-free

case, a system of state dimension s may be embedded using

a maximum of mT lags where mT ≥ 2s+ 1.

In order to find optimum values of the embedding pa-

rameters m and τ , the literature reports many optimization

routines. In this case, following [7] a differential entropy

based method is used to simultaneously estimate the optimal

set of embedding parameters (m∗, τ∗). The method employs

a single criterion - the entropy ratio between the phase space

representation of a signal and an ensemble of its surrogates.
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Fig. 1. Partitioning Scheme

2) Partitioning: Time series sensor data are obtained from

the input and output data streams of the dynamical system

D0 under nominal condition under different input conditions.

Let Y = {y1, y2, ...}, yk ∈ Σ denote the discretized output

sequence. A D-Markov machine is next constructed, with

states defined by symbol blocks of length D from Y . The

reader is referred to references [1] and [2] for an in-depth

description of the procedure.

The state space is constructed from the output space using

Taken’s theorem as discussed in the last section. In the

very next step, this phase space and the input space are

individually discretized. The crux of the method is to place

the partitions in such a way, that there is a change in alphabet

in both, at the exact same instant there is a change in the

already discretized output sequence. The phase space and

input variables hold the last symbol till there is a change

in the output state sequence. Synchronization of input and

output is essential for this step. Periodicity, or at least semi-

periodicity guarantees that the number of phase space and

input symbols will not explode. The partitioning scheme is

illustrated in Fig. 1.

Remark A partition constructed this way is admissible, but

not maximal, since this partition is a subpartition of the

original partition proposed in Theorem 3.1.

Let U = {u(1), u(2), ...} denote the discretized input

data sequence. Similarly let Q = {q(1), q(2), ...} denote the

discretized state variable sequence. It may be noted that

the state space can be multi-dimensional depending on the

embedding dimension m∗.

Once the input and state space are both discretized, they

can be combined to form the discretized augmented input

space Λ = {λ(1), λ(2), ...}, where each λ(i) = {q(i), u(i)}.

The transition function used in the current methodology

has been designed to be stochastic. δ : Q × Λ → Pr{Q}
gives the probability distribution of transition from state

qi to {q1, q2, .., qf} on receiving an input λj . A grammar

constructed in this way has the advantage over the context

sensitive grammar described in [8] in that, the number of

production rules may become inconveniently large in case

of a context sensitive grammar.

However, the function γ : Q→ Σ, which maps the current

state qi to the current output symbol σi is completely deter-

ministic. This is really an artifact of the state construction

procedure [1].

B. Identification

It is assumed that inputs and outputs are time-

synchronized. The state transition function δ can be expanded

into two dimensional matrices δλi , indexed by the input

variable alphabets. That means

δ = {δλ1 , δλ2 , ..., δλm} (13)

where δλi : Q × λi → Pr{Q} maps the current state

and input to the probability distribution over all possible

states. The algorithm for estimating the matrices δλi is

straightforward and involves counting the frequency of each

transition in the training phase. Since the state transition

matrices are constructed simply by counting, this method is

ideal for implementing in the sensor electronics for real-time

prognoses.

The training algorithm has to make sure that the probabil-

ity values of δi converge. The convergence depends on the

length of the input-output symbol sequences. In this work,

a stopping rule [1] has been used for detecting the optimal

data length. Stationarity of the underlying process in the slow

time scale [1] is assumed and essential for this step.

In the training phase, it has to be ensured that the gram-

mar G is trained with sufficient input data belonging to a

particular equivalence class. This is the so-called coverage

problem.

C. Anomaly Detection Scheme

Figure 2 gives a schematic representation of the anomaly

detection philosophy. Input and output time series data from

the actual plant is discretized to form symbol sequences and

is fed to the trained fixed structure automaton. The discretiza-

tion should be performed using the same partitioning as was

done during the training phase.
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Fig. 2. General Anomaly Detection Scheme

It should be noted that, the FSA uses the output from

the actual system in addition to the input, and hence cannot

serve as an independent ‘system identification’ procedure in

the classical sense of the term. The automata can serve as

a system emulator only when the state transition function δ

is fully deterministic, i.e. given the current state qj and the

current input symbol λi,

δ(qj , λi) =
[

pq1
pq2

. . . pq|Σ|

]T
(14)

where pqk
= 1 for one and only one k (15)

= 0 otherwise (16)

In the current scheme, the state transition probability

vectors πλi
qj

, which are the rows of the state transition matrix

δ, serve as feature vectors, and are used for the purpose of

anomaly detection. An extremely convenient feature of using

state transition probabilities as feature vectors, and using

stochastic methods to define distances between nominal and

off-nominal behavior of plants is that this technique is very

robust to noise.

In the present study, a novel intuitive Pseudo-Learning

Technique of utilizing the stochastic state transition function

δ is proposed, for the purpose of Anomaly Detection. In

this method, the actual state transitions inside the fixed-

structure automaton during the anomaly detection phase

occur according to the output symbol sequence obtained from

the actual system, but at each instance of state transition, the

trained automaton produces a State Transition Probability

vector πn [9], which is characteristic of the nominal system.

It may be noted, that the pattern vector πn, produced

by the trained automaton, is characteristic of the nominal

behavior of the plant given the past history of input, state

and output. The current (possibly off-nominal) condition

of the plant is characterized by another state probability

vector π̃n. This is defined for the actual system output at

an instant n, for which only one element of the vector will

be 1, rest are zeros. The next step is to use the sequences

of instantaneous State Probability vectors {πn} and {π̃n}
obtained at each time instant, to construct a pattern vector.

This is followed by calculation of mean State Probability

vectors p and p̃ from the collections {π1,π2, ...,πn} and

{π̃1, π̃2, ..., π̃n} respectively over time instants 1,2,...,n. It

may be noted that in an ideal case, p should converge to

p̃, while they should start to diverge from each other as the

fault progresses. Thus the difference of these two probability

vectors, p− p̃ is a natural choice for constructing the pattern

vector corresponding to that specific fault condition.

Once the pattern vectors for a fault condition are obtained,

a suitable classification algorithm, such as a support vector

machine can be utilized to create the hyperplane separating

the nominal patterns from the possibly off-nominal pattern

vectors.

IV. VALIDATION ON THE C-MAPSS TEST-BED

The C-MAPSS simulation test-bed, developed at NASA,

is built upon the model of a commercial-scale two-spool

turbofan engine and its control system. While the details of

the model are available in [10], a brief outline of C-MAPSS

is provided here for completeness of the paper. The en-

gine under consideration produces a thrust of approximately

400,000 N and is designed for operation at (i) altitudes from

sea level up to 12,200 m, (ii) Mach numbers from 0 to 0.90,

and (iii) sea-level temperatures from approximately −50oC

to 50oC. The throttle resolving angle (TRA) can be set to

any value in the range between 0◦ (minimum power) and

100◦ (maximum power).

As seen in Fig. 3(a) and 3(b), the simulation test-bed

of the gas turbine engine system consists of high pressure

compressor (HPC), combustor, and high pressure turbine

(HPT), which form the core of the engine model; this

subsystem is also referred to as the gas generator. In the

turbofan engine, the engine core is surrounded by the fan

and Low pressure compressure (LPC) in the front and an

additional low pressure turbine (LPT) at the rear; and fan,

LPC and LPT are mechanically connected by an additional

shaft. The hot exhaust gas, called the core airflow, passes

through the core and LPT and then exits through the nozzle;

and the rest of the incoming air passes through the fan and

bypasses, or flows around the engine.

(a) Gas turbine engine schematic (b) Gas turbine engine model configuration

Fig. 3. C-MAPSS engine simulation test-bed



A gain-scheduled control system is incorporated in the

engine system, which consists of (i) a fan-speed controller

for a specified throttle-resolver angle (TRA), (ii) three high-

limit regulators for maintaining core-spool speed, engine-

pressure ratio, and HPT exit temperature, (iii) the fourth limit

regulator for the HPC exit static pressure, (iv) acceleration

and deceleration limiters for the core-spool speed, and (v) a

comprehensive logic structure that integrates these control-

system components. Given the inputs of TRA, altitude (a)

and Mach number (M ), the interactively controlled compo-

nent models at the simulation test-bed compute nonlinear dy-

namics of real-time turbofan engine operation. Both steady-

state and transient operations are simulated in the continuous-

time setting. The entire test-bed code is written on Matlab

and Simulink platform.

This paper addresses estimation of those faults that cause

efficiency degradation in engine components. In the current

configuration of the C-MAPSS simulation test-bed, there

are 13 health parameter inputs, namely, efficiency health

parameters (ψ), flow health parameters (ζ) and pressure

ratio modifiers, that simulates the effects of faults and/or

degradation in the engine components.

For the engine’s five rotating components (i.e., Fan, LPC,

HPC, HPT and LPT), the ten health parameters are: (a) fan

(ψF , ζF ), (b) low pressure compressure (ψLPC , ζLPC), (c)

high pressure compressor (ψHPC , ζHPC), (d) high pressure

turbine (ψHPT , ζHPT ), and (e) low pressure turbine (ψLPT ,

ζLPT ). Out of these, the fan efficiency (ψF ) and flow

modifier (ζF ) has been selected as the health parameter

for fault detection in this paper. The LPC exit/ HPC inlet

pressure and temperature sensors P24 and T24 respectively

have been used for monitoring this fault.

A. Details of the Experiment

Time series data have been collected for different sensors

under persistent excitation of TRA inputs that have truncated

triangular profiles. To simulate different operating conditions,

each TRA input profile has been designed to have a wide

range of mean values, amplitude and frequency of excitation.

Specifically, the algorithm has been tested for a mean TRA
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Fig. 5. Effect of fan efficiency degradation on the P24 sensor data. For all
three fault conditions, SNR=40 dB

angle of 40o, 60o and 80o, with amplitude ranging from ±1o,

±2o and ±3o and the frequency of input excitation varying

between 0.1Hz, 0.06Hz and 0.04Hz. Also the effect of

altitude and aircraft speed have been taken into account by

collecting data while the aircraft is at sea-level (i.e. altitude

a = 0.0, Mach number M = 0.0) when the engine is on

the ground for fault monitoring and maintenance by the

engineering personnel, as well as when it is in flight at

10000ft with Mach number M = 0.3. So the entire training

set comprises of 3 × 3 × 3 × 2 = 54 operating conditions

The engine simulation is conducted at a frequency of

66.67 Hz (i.e., inter-sample time of 15ms) and the length of

the simulation time window is 150 seconds, which generate

10, 000 data points for each training or test case, out of which

the last 8, 000 data points are used to reduce the effects of

initial transience.

An engine component C is considered to be in nominal

condition when both ψC and ζC are equal to 1. Fault is

injected in the fan by simultaneously reducing both ψC and

ζC by same amount in the results reported in this paper. For

both training (i.e., forward problem) and testing (i.e., inverse

problem), time series data from all sensors are generated

with ψF and ζF ranging from 1.0 to 0.96 (i.e., 4% relative

loss in fan efficiency) in steps of 0.005. Figure 5 shows

the effect of efficiency degradation on a relatively noisy

(SNR = 40dB) pressure signal (P24) at the outlet of the

low pressure compressor.

B. Results and Discussion

The training set comprises of the input signal profile of

TRA and the output signal profile of P24 for all 54 operating

conditions. The output data P24 from all these operating

conditions are first normalized and then concatenated to form

the complete output set. This data is then discretized using

a maximum entropy partitioning [1]. The number of states

in the PFSA is selected to be 15. Following the procedure

outlined in section III-B, the augmented input space is

constructed by discretizing the input and phase space. In this

case, the output itself suffices as the phase space, i.e. m∗ = 1.

The input specific probabilistic state transition matrices are

next constructed, which concludes the training of the PFSA.

In the validation part, the input and output data corre-

sponding to a single fault level (for example, when the fan
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Fig. 6. Receiver-Operator Characteristics of the Symbolic Identification
Classifier applied to data contaminated by various noise levels

efficiency level is, say, 0.995) but for all different input

and operating conditions, is fed into the algorithm. The

pattern vector cluster corresponding to this fault condition

is calculated according to the algorithm described in section

III-C. The success or failure of the algorithm depends on the

distinguishability of these patterns from the pattern cluster

generated by the machine when the engine was running in its

nominal health state, albeit at different operating conditions.

A support vector machine with linear kernel is used

to classify the nominal from the off-nominal cases. The

validation is done by choosing one of the data sets as

test data and using the remaining data as the training data,

and noting whether it could be classified correctly. This is

repeated for all the data sets to yield a True Positive Rate

(TPR), True Negative Rate (TNR), False Positive Rate (FPR)

and False Negative Rate (FNR). Here ”positive” denotes

nominal condition and ”negative” denotes off-nominality.

Thus false positive implies a missed event, i.e. a faulty engine

is classified as healthy, and a false negative implies a false

alarm, i.e. a healthy engine is misclassified as faulty.

In order to estimate the robustness of the technique with

noisy data, the data is contaminated with additive white

gaussian noise. The SNR in dB is decreased from 100dB
in the first run to 10dB in steps of 10dB.

Figure 6 shows the result of the SVM classifier when

applied to pattern vectors corresponding to different fan effi-

ciencies. It may be noted (Fig.6a) that even a fan efficiency

decrease of 0.5% can be correctly detected (TPR= 100%,

FPR= 0%) for data contaminated with noise with SNR =

40dB. Even for SNR = 30dB, the ROC curve closely

approaches the left hand top corner. There is a significant

decrease in performance, for SNR = 20dB and beyond.

The corresponding result for a relatively larger fault,

(corresponding to a fan efficiency decrease of 3% is shown

in Fig. 6b. As expected, the noise tolerance for this clas-

sification is much higher, since the fault signature is also

less subtle. It can be seen that a correct classification can be

performed even when SNR = 20dB.

V. SUMMARY, CONCLUSIONS AND FUTURE WORK

In this paper, some of the critical and practical is-

sues regarding the problem of health monitoring of multi-

component human-engineered systems have been discussed,

and a syntactic method has been proposed. The two primary

features of this proposed concept are: (i) Symbolic identifi-

cation and (ii) Pseudo-learning technique.

The reported work is a step toward building a real-time

data-driven tool for estimation of parametric conditions in

nonlinear dynamical systems. Further theoretical, compu-

tational, and experimental work is necessary before the

SDF-based anomaly detection tool can be considered for

incorporation into the instrumentation and control system of

commercial-scale plants. For example, real flight record data,

and environmental condition data need to be incorporated

to investigate the effects of atmospheric temperature and

pressure variations on the fault detection algorithm. At

the same time, the following theoretical aspects are under

investigation:

• Development of a multi-dimensional partitioning for

a MIMO system, which should be computationally

inexpensive.

• Estimation of a theoretical bound on the error incurred

in this process of anomaly detection.
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