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Abstract— Heating, Ventilating and Air-conditioning (HVAC)
control systems play an important role in regulating indoor
air temperature to provide building occupants a comfortable
environment. Design of HVAC control system to provide an
optimal balance between comfort and energy usage is a chal-
lenging problem. This paper presents a framework for control
of building HVAC systems using a methodology based on power
shaping paradigm that exploits passivity theory. The controller
design uses Brayton-Moser formulation for the system dynamics
wherein the mixed potential function is the power function and
the power shaping technique is used to synthesize the controller
by assigning a desired power function to the closed loop
dynamics so as to make the equilibrium point asymptotically
stable. The methodology is demonstrated using two example
HVAC subsystems - a two-zone building system and a heat
exchanger system.

I. INTRODUCTION

Depleting natural energy resources and increasing costs
are forcing all countries to look for technologies that can
improve energy efficiency and not just generation of energy.
It has been well documented that the costs of improving
efficiency are much lower than the cost of generating equal
amount of energy. Nearly 40% [1] of the total energy
consumption in US is due to commercial and residential
buildings. Heating, ventilation and air-conditioning (HVAC)
systems are a major source of energy consumption in build-
ings. Statistics reveal that around 40% [2] of the energy
used in commercial buildings is by HVAC systems. This
makes it necessary to tackle energy related issues, such
as thermal storage, in building systems by proper dynamic
analysis and control design. Energy costs can be reduced
by proper control of buildings thermal storage [3]–[5] and
operating the buildings based on demand response [6]. These
control techniques require accurate models which captures
the thermal dynamics of the building. The models obtained
should be such that they are computationally efficient so as
to provide real time feedback inputs for control purposes,
with conflicting objectives of energy efficiency and user
comfort. The models presented in literature based on finite
element methods for heat transfer dynamics in buildings have
proven to be computationally inefficient [7]. Other prevailing
modeling technique is Model Predictive Control (MPC) [8],
[9]. In most cases, the zone temperatures are controlled
using local controllers to ensure comfort of the occupants
which typically leads to high energy consumption due to
disparate energy demands from individual zones. One of
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the ways to capture the complex interconnection between
mutiple zones, is to approximate the heat transfer model
using an electrical (RC) network analogy [10]. Various zone
modeling approaches have been recently compared in [11].
Once the complex dynamics is represented as an electrical
network, one can use various tools from network theory (e.g.,
passivity-based methods) to devise interesting and novel
control approaches [12].

Passivity [13] is an input-output property of physical
systems that can be used for analysis and synthesis for
complex systems. The underlying idea is to render a closed-
loop system passive, by an appropriate feedback and as-
signing a desired closed loop storage (Lyapunov) function.
In the context of (port-) Hamiltonian systems [14], this
control technique is referred to as “energy shaping” where
the objective is to shape the energy (the Hamiltonian) of
the open-loop system. Another approach is the notion of
power shaping, having its roots in the Brayton-Moser (BM)
framework [15] for modeling of topologically complete
nonlinear electrical networks with sources [16]. Passivity is
derived using a power like function, also called the mixed
potential function, as the storage function and one of the port
variables being the derivative of voltages or currents. In this
framework we describe the dynamics in terms of physical
(or measurable) variables, such as voltages and currents in
case of electrical networks. Moreover, since the derivatives of
currents and voltages are used as measured outputs, it helps
to speed up the transient response of the system. Finally,
it overcomes the “dissipation obstacle” [17] encountered in
classical energy shaping methods. The methodology can be
used to solve the regulation problem in both finite [16] and
infinite dimensional systems [18]–[20].

In this paper, we use the power shaping paradigm to design
controllers for two different HVAC subsystems, namely
thermal zones and heat exchangers. These representative
examples were chosen as they demonstrate most of the
typical complexities found in building HVAC systems. Al-
though the models used are simple, its a good starting point
and provide analysis as proof-of-concept and can be easily
extended to include detailed building modeling which can
serve different tasks. First, the dynamics of these two systems
is transformed into the BM framework, then the input-output
pair is identified that satisfies the passivity property. The
control objective is then to assign a suitable power function
to the closed loop system so as to make the equilibrium point
asymptotically stable.

The organization of the paper is as follows. In Section
II, we discuss power-shaping paradigm given the system
dynamics in the BM form. In Section III, we give BM



formulation for a multi-zone building model, and solve the
temperature regulation problem using power shaping ap-
proach. The heat exchanger example is presented in Section
III-C followed by conclusions presented in Section IV.

II. POWER SHAPING APPROACH

This section briefly describes the underlying idea of power
shaping.

A. Brayton-Moser form

In power shaping the dynamics of the system are written in
gradient form using Brayton-Moser formulation, where the
storage function has units of power. The gradient structure
in the system is exploited to achieve power shaping outputs.
Consider the standard representation of a system in Brayton-
Moser formulation

Q(x)ẋ = ∇xP (x) +G(x)u (1)

the system state vector x ∈ Rn and the input vector u ∈ Rm
(m ≤ n). P : Rn → R is a scalar function of the state, which
has the units of power also referred to as mixed potential
function since in electrical networks it is the combination
of content and co-content functions and the power transfer
between the capacitor and inductor sub systems [21], Q(x) :
Rn → Rn × Rn and G(x) : Rn → Rn × Rm. The time
derivative of the mixed potential functional is

d

dt
P (x) = ∇xP (x) · ẋ

= (Q(x)ẋ−G(x)u) · ẋ
= ẋ>Q(x)ẋ− u>G(x)>ẋ

This suggests that if P (x) ≥ 0 and Q(x) ≤ 0, the system
(1) is passive with storage function P (x) and port power
variables are input u, output y = −G(x)>ẋ. But, in general
P (x) and Q(x) can be indefinite [16].
Assumption:

1) For the given system, there exists P̃ (x) ≥ 0 and
Q̃(x) ≤ 0 and

Q̃(x)ẋ = ∇xP̃ (x) + G̃(x)u (2)

describe the dynamics (1) (procedure for finding such
pair is given in [22]). Such P̃ and Q̃ are called
admissible pairs for (1).

2) G̃(x) is Integrable.
The control objective is to stabilize the system at the

equilibrium point (x∗, u∗) satisfying

∇xP̃ (x∗) + G̃(x∗)u∗ = 0 (3)

Proposition 1: Consider the system (1) in BM form (2)
satisfying assumption 1. Then the system is passive with
input u, output given by yPB = −G̃(x)T ẋ and storage
function P̃ .
Proof: Time differential of P̃ is given by

˙̃P = (∇xP̃ )T ẋ

= ẋT Q̃ẋ+ uT yPB

≤ uT yPB , (4)

where yPB is given by

yPB = −G̃(x)T ẋ (5)

which is referred as power balancing (shaping) output [16].
Proposition 2: The power balancing output yPB given in

(5) is integrable.
Proof: From Assumption 2, we have that G̃(x) is integrable,
Poincaré’s Lemma ensures the existence of a function Γ(x) :
Rn → Rn such that

Γ̇ = −G̃(x)>ẋ (6)

using (5) we conclude the proof.
To achieve the control objective, we need to find a new
storage function Pd of the closed loop system such that

Q̃ẋ = ∇xPd and x∗ = arg minxPd (7)

The closed loop potential function Pd is difference of power
function P̃ and power supplied by the controller. In [23],
the power supplied by controller is found by solving PDE’s.
Here, we adopt the procedure without solving PDE using the
power balancing outputs of the system which is similar to
given in [24]–[26], where they have used for energy shaping
for a class of mechanical systems. Also recently in [27]
similar idea is used for systems in the port-Hamiltonian form,
using the Hamiltonian as the systems stored energy. By ex-
ploiting the Assumption 2, in Proposition 2 we have proved
that the power balancing output is integrable. Using this the
desired closed loop potential function Pd is constructed in
the following way

Pd = kP̃ +
1

2
||Γ(x) + a||2kI (8)

where k > 0, a ∈ Rm, kI ∈ Rm×m with kI > 0. And
further a is chosen such that (7) is satisfied, which implies

∇xPd(x∗) = 0 ∇2
xPd(x

∗) ≥ 0 (9)

which upon solving gives

a := kk−1I G̃†(x∗)∇xP̃ (x∗)− Γ(x∗) (10)

where G̃† represents pseudoinverse of G̃.
Proposition 3: Consider the system (1) satisfying the as-

sumptions 1 and 2. We define the mapping u : Rn → Rm

u :=
1

k

(
v + αG̃>ẋ− kI(Γ(x) + a)

)
. (11)

where α > 0, ∇Γ(x) := −G̃(x). Then system (1) in
closed loop is passive with storage function Pd (8) satisfying
(7), input v and output yPB . Further with v = 0 the
system (1) is stable with Lyapunov function Pd(x) and x∗

as stable equilibrium point. Furthermore, if yPB = 0 =⇒
lim
t→∞

x(t)→ x∗, then x∗ is asymptotically stable.
Proof: The time derivative of closed loop potential function
(8) is

Ṗd = k ˙̃P + yTPBkI(Γ(x) + a)

≤ yTPB [ku+ kI(Γ(x) + a)]

≤ yTPBv − αyTPByPB
≤ yTPBv,



where we used equations (4),(5),(11) in arriving at the result.
This proves that the closed loop is passive with storage
function Pd (8), input v and output yPB . Further for v = 0
we have

Ṗd ≤ −αyTPByPB
and at equilibrium

u∗ = −kI
k

(Γ(x∗) + a) . (12)

Finally from (10) and (12) we can show that (x∗, u∗) satisfy
(3). This concludes the system (1) is asymptotically stable
with Lyapunov function Pd and x∗ as equilibrium point [28].

III. CONTROL OF HVAC SUBSYSTEMS

In typical building HVAC systems, we have Air-side
and Water-side HVAC subsystems. While air side focusses
on delivering conditioned air to the zones, water side is
responsible for various heat exchanging operations. In this
section we apply the proposed approach on examples of both
air-side and water-side subsystems.

A. Building Temperature control
The building thermal model of a multi-zone building based

on first principles such as energy and mass balance equations
will lead to coupled partial differential equations. There are
several difficulties associated with such kind of models in
terms of prediction and control design purpose. Since the
building is an interconnected system with individual zones
as its subsystems and interactions between these zones can
occur due to conduction, convection and radiation. In this
paper, we assume that the interaction between different zones
occurs only through conduction and contribution due to
convection and radiation is negligible. The supplied air to the
zone is modulated at the Variable Air Volume (VAV) boxes
by changing the flow rate and temperature of air through
dampers and reheat coils. In this section, a different view-
point to modeling and regulation of temperature in a multi-
zone building using power is presented. The advantage of
using Brayton-Moser framework is that it naturally describes
the dynamics of systems in terms of measurable quantities. In
the case of building systems the individual zone temperatures
are easily measurable and the controller designed can be used
to improve the transient and the steady state response.

1) Building Zone Model: A building zone model is con-
structed [10] by combining lumped parameter models of ther-
mal interaction between zones separated by a solid surface
(e.g walls). A lumped parameter model of combined heat
flow across a surface is modeled as RC-network, with current
and voltage being analogous of heat flow and temperature. In
this modeling framework, the capacitances are used to model
the total thermal capacity of the wall, and the resistances are
used to represent the total resistance that the wall offers to
the flow of heat from one side to other.
The thermal dynamics of a multi-zone building are given by:

CiṪi =
∑
j∈Ni

(Tj − Ti)
Rij

+ ui +
(T∞ − Ti)

Ri0︸ ︷︷ ︸
Qi

(13)

where Ni denotes all resistors connected to the ith capacitor
(includes zone and surface capacitances), T∞ is the ambient
temperature. ui is the heating/cooling generation input to the
ith zone and Qi is the external heat input due to ambient and
is nonzero only for the zone nodes. In order to illustrate the
proposed idea of power based modeling and regulation of
building systems, we consider the dynamics of simple case
of a two-zone building separated by a surface [29], where the
surface is modeled as a 3R2C network is shown in Figure
(1). The dynamics of the system is given by

Fig. 1: Two zones separated by surface and lumped RC
network model.

C1Ṫ1 =
T3 − T1
R31

+Q1 + u1 (14)

C2Ṫ2 =
T4 − T2
R42

+Q2 + u2

C3Ṫ3 =
T1 − T3
R31

+
T4 − T3
R34

C4Ṫ4 =
T2 − T4
R42

+
T3 − T4
R34

Here T1, T2 are zone temperatures and T3, T4 are surface
temperatures.
The above system of equations (14) can be written in the
Brayton-Moser form (2) with x =

[
T1, T2, T3, T4

]>
, and

P (x) =
(T3 − T1)2

2R31
+

(T4 − T2)2

2R42
+

(T3 − T4)2

2R34

+
(T∞ − T1)2

2R10
+

(T∞ − T2)2

2R20
. (15)

Q(x) = diag[−C1,−C2,−C3,−C4] and

G(x) =

[
−1 0 0 0
0 −1 0 0

]>
.

It is easily verified P (x), Q(x) and G(x) defined in (15)
satisfy assumption 1 and 2. From Proposition 1, system
(14) is passive with input u = [u1, u2]>, power balancing
output y = [Ṫ1, Ṫ2]> and storage function P (x), further from
Proposition 2, we have Γ(T ) = [T1, T2]>.

Control objective: The control objective is to stabilize a
given equilibrium point [T ∗1 , T

∗
2 ] satisfying (3) where

u∗1 = −
(

(T∗3−T
∗
1 )

R31
+

(T∞−T∗1 )
R10

)
u∗2 = −

(
(T∗4−T

∗
2 )

R42
+

(T∞−T∗2 )
R20

) (16)



B. Controller design

Proposition 4: Consider the closed loop storage function
defined in (8) with kI = diag(k1, k2) and a = [a1, a2]>. Pd
defined in (8), takes the form

Pd = kP +
k1
2

(T1 + a1)2 +
k2
2

(T2 + a2)2 (17)

(a) for a1 = − k
k1
u∗1−T ∗1 , a2 = − k

k1
u∗2−T ∗2 , Pd is positive

definite and has a minimum at [T ∗1 , T
∗
2 ].

(b) further with the state feedback controller (11)

u1 = −αk Ṫ1 −
k1
k

(
T1 − T ∗1 − k

k1
u∗1

)
u2 = −αk Ṫ2 −

k2
k

(
T2 − T ∗2 − k

k2
u∗2

)
.

(18)

If the tuning parameters α, k, k1, k2 are nonnegative,
then [T ∗1 , T

∗
2 ] is asymptotically stable equilibrium of the

closed loop system with Pd as Lyapunov function.
Proof:
We need to choose a such that ∇Pd(x∗) = 0 and

∇2Pd(x
∗) ≥ 0 at the desired equilibrium. Therefore, proof

of (a) directly follows from (10) and (12). The proof of (b)
follows from Proposition 3. It can also be proved by taking
the time differential of the Lyapunov functional Pd defined
in (17) as shown below

Ṗd = kṖ + k1(T1 + a1)Ṫ1 + k2(T2 + a2)Ṫ2 (19)
= k(Ṫ1u1 + Ṫ2u2) + k1(T1 + a1)Ṫ1 + k2(T2 + a2)Ṫ2

= Ṫ1(ku1 + k1(T1 + a1)) + Ṫ2(ku2 + k2(T2 + a2))

Using u1 and u2 from (18) the resulting equation (19)
becomes

d

dt
Pd ≤ −α(Ṫ1

2
+ Ṫ2

2
) ≤ 0.

The controller obtained is a PI controller with respective
to power balancing outputs. The controller needs model
information to compute u∗, but the system attains stability for
error in u∗. The analysis provided uses zone heating/cooling
as input, but the proposed approach can be easily extended
to more general model where the zone mass flow rate is the
control variable [29].

Simulations were conducted on the simple two-zone
model, in order to show the effectiveness of the proposed ap-
proach. Different operating conditions are considered, where
the zones temperatures have same and different set points
and with different outside air temperatures. The parameters
used for the simulation can be found in [29]. The objective
is to regulate the zone temperatures such that T1 = T ∗1 ,
T2 = T ∗2 . Figure 2 shows the case where the individual
zones are subjected to constant ambient temperature with
same and different set points. The controller effectiveness in
terms of transient and steady state performance is verified
in regulating the zone temperatures to their corresponding
set points. The important note is that there is no overshoot
in the time response of states before settling to the target
values, which shows the effectiveness of controller compared
to energy based controllers. In order to study the actual
situation, we consider a time varying ambient. Figure 3
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Fig. 2: Zone temperature for constant ambient temperature
a) Same reference b) Different reference.

shows the case where the individual zones are subjected
to time varying sinusoidal ambient temperature (T∞ =
5 sin(2πt/T )+5◦C, T = 24hrs [10]) with same and different
set points, the controller performs reliably under different
ambient temperatures.

C. Heat exchanger

Heat exchangers are one of the most important HVAC
subsystems which transfer heat from one medium (water/air)
to another (water/air). The effectiveness of heat exchangers
strongly influences the thermal performance of building
systems. To illustrate the proposed approach, we consider a
water-to-water heat exchanger where heating is accomplished
either by geothermal or solar energy. We consider a simple
tube-shell water-to-water heat exchanger model given in [21],
and the corresponding schematic is shown in Fig. 4. The inlet
and outlet temperatures of cold stream are given by Tci,Tco
whereas the corresponding temperatures on hot-stream side
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Fig. 3: Zone temperature for varying ambient temperature a)
Same reference b) Different reference.

are denoted by Thi, Tho, respectively. The control variables
are the volumetric flow rates denoted by fc,fh; the thermal
capacities for the cold and hot stream are denoted by Cc,Ch;
and the heat transfer in the system is modeled by a thermal
conductance Ghc. The differential equations governing the
heat exchanger system are given by

CcṪco = −Ghc(Tco − Tho) + γc(Tco − Tci)fc
ChṪho = Ghc(Tco − Tho) + γh(Tho − Thi)fh

(20)

The system of equation (20) can be written in Brayton-
Moser form (2) with x = [Tco, Tho]

> and

P (x) =
Ghc

2
(Tco − Tho)2

Q(x) = diag(−Cc,−Ch) and

G(x) =

[
−γc(Tco − Tci) 0

0 −γh(Tho − Thi)

]
.

(21)

It can easily be verified that P (x), Q(x) and G(x) in (21)
satisfy Assumptions 1 and 2. From Proposition 1, the system

Fig. 4: Heat exchanger model.

defined in (20) is passive with storage function P (x) in (21),
input u = [fc, fh]> and output

y = [γc(Tco − Tci)Ṫco, γh(Tho − Thi)Ṫho]>. (22)

Further from Proposition 2, we have

Γ1 =
γc
2

(Tco − Tci)2

Γ2 =
γh
2

(Tho − Thi)2
(23)

Control objective: The control objective is to stabilize system
(20) at operating point [T ∗co, T

∗
ho, u

∗
1, u
∗
2] satisfying (3) that

is

u∗1 =
Ghc(T

∗
co−T

∗
ho)

γc(T∗co−Tci)
u∗2 = −Ghc(T

∗
co−T

∗
ho)

γh(T∗ho−Thi)
(24)

Similar to Proposition 4, in this example, using Proposition
3 we can show that system (21) in the closed-loop with
feedback controller

u1 = −α
k
γc(Tco − Tci) ˙Tco −

k1
k

(
Γ1 − Γ∗1 −

k

k1
u∗1

)
u2 = −α

k
γc(Tho − Thi) ˙Tho −

k2
k

(
Γ2 − Γ∗2 −

k

k2
u∗2

)
is asymptotically stable at equilibrium [T ∗co, T

∗
ho] with Lya-

punov function (8) defined with kI = diag(k1, k2) and
a = −kk−1I u∗−Γ(x)∗. The objective is to achieve a desired
outlet temperature of cold stream T ∗co = 80◦C. This gives a
desired equilibrium (T ∗co, T

∗
ho), where T ∗ho is determined by

χ and T ∗co, the admissible equilibrium set χ is given by

χ = {(Tco, Tho) ∈ S|Ghc(Tco−Tho)+γh(Tho−Thi)fh = 0}

and S = {(Tco, Tho) ∈ R2|Tco > Tci}. The parameters
values used for the simulation are found in [30]. From Fig.
5, it can been seen that the desired outlet temperature of
cold stream is attained and lies on the equilibrium manifold,
which shows the performance of the controller in regulating
the temperature.

IV. CONCLUSIONS

In this paper, a new paradigm is presented for synthesizing
HVAC control of building systems using power shaping
approach that exploits passivity property of the system.
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Fig. 5: Closed loop trajectory.

The building systems are getting increasingly complex and
model-based control approaches face huge challenges due
to inherent uncertainties and modeling inaccuracies. The
passivity-based approach can offer inherent robustness to
such uncertainties and modeling inaccuracies as long as
input-output passivity property is unaltered. The power shap-
ing paradigm has been found successful in other applications
but has not been used in building systems control. This
paper presented two numerical examples to demonstrate the
applicability of power-shaping approach. It was shown that
dynamics of HVAC systems can be transformed into the
Brayton-Moser form and then power-shaping methodology
can be used to design an effective controller. The follow-
on work will extend the methodology to include additional
dynamics such as occupancy, solar radiation, and also focus
on design and implementation of the control system on an
experimental building energy systems laboratory.
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