Path Planning in GPS-denied Environments:
A Collective Intelligence Approach

Pritthi Chattopadhyaiyt Devesh K. Jhat Soumik Sarkéf Asok Rayt
pritthichatterjee@mail.com dkj5042@su. edu sounmi ks@ astate.edu axr2@su. edu
T Pennsylvania State University, University Park, PA 16803A

1 Authors with equal contribution
$ lowa State University, Ames, IA 50011, USA

Abstract— This paper proposes a framework for reactive lems is to determine the minimum of an unknown signal field
goal-directed navigation without global positioning faclities  (the possible location of the source) using a stochastie gra
in unknown environments. A mobile sensor network is used  gjant descent algorithm. Authors in [2] [4] present a multi-
for localization of regions of interest for path planning of an o . .
autonomous mobile robot in the absence of global positioni agent cqord|nat|0n framework for estimation of the peaks of.
facilities. The underlying theory is an extension of a genalized ~ Sensor field. However, the agents have to communicate their
gossip algorithm that has been recently developed in a langge- sensor measurements and an artificial potential function is
measure-theoretic setting. The gossip algorithm has beersed  required to estimate the gradient of the sensor field. Severa
to propagate local decisions of target detection over a molel e mpts have been made in literature to make use of static
sensor network and thus, it generates aelief for the target .
detected over the network. The proposed concept has been SENSOr networks to guide a robot [], [6]'_ In [6]' a ps_uedo-
validated through numerical experiments with a mobile sener ~ gradient calculated based on sensor readings in a stasorsen
network and a point mass robot. network is used for localization and directed navigatioaiof
autonomous robot in unknown environments. However, the
algorithm presented can't be trivially extended to naviyat

Autonomous robots are becoming ubiquitous and are ensing a mobile sensor network. Mobile sensor networks have
visaged to play an increasingly important role in both @il potential advantage over their static counterparts in $esfin
and military applications. While operating in unknown andcoverage and time-criticality [7].

unstructured environments, they often have limited or linre  The current work builds on a recent work on distributed

able long-range communication and GPS capabilities due #cision propagation in mobile ad-hoc sensor networks pre-
constraints on energy requirements and (or) adversana ensented in [8] where the proximity network of an agent is
ronment. However, with the recent advances in sensing afgbdeled as a probabilistic finite state automaton (PFSA). An
low-complexity signal processing algorithms, sensorsloan 'agent measure functions then defined (based on the re-
cally detect regions of interest with high degree of accyraccently reported language measure theory [9] [10]) for &l th
which reduces the communication overhead significantly. Bagents in the network which signifies itevel of awareness

it limits event awareness which limits performance in theegarding a locally sensethrget in the operational area. In
network capacity. Consider, for example, a search and eescghe current work, thegent measure functiogenerated by a
operation which requires sequential collaboration betweemobile sensor network is used to guide an autonomous robot
the 'search agents(agents with limited sensing abilities) through an unknown and unstructured environment. The

and the fescue agents(agents capable of rescuing anycurrent framework has the following potential advantages
sensed target in a region of interest). The efficacy of sudhver those reported in literature:

missions in the network capacity would depend on how
quickly the network of search agentsan react to the sensed
targets of interest and guide gescue agentto the target
of interest under the constraints of limited communication
and global positioning. The goal of this paper is to present
a framework for navigation of an autonomous agent in an
unknown and GPS-denied environment with the help of a *
(possibly mobile) sensor network which serves the two-fold
purpose of target localization and generating the way+poin
for the autonomous robot.

A lot of work has recently been reported on source seeking This is different from other works present in current
in sensor fields [1] [2] [3] [4]- The objective of such prob-literature [5] in the sense that not all sensors in the ndtwor

1. INTRODUCTION

« The algorithm only requires exchange of local decisions
about sensed targets, and not the actual sensor mea-
surements. This has the potential to significantly reduce
communication overhead and makes the network more
robust to communication flips.

No artificial potential function is required to guide
an agent to the locally detected goal; a gradient is
automatically generated by ttegent measure function
which is maximized at the location of sensed target.



detect the target; an awareness about the presence oprablem setup. In contrast to the faster time-scglef(agent
local target is developed via gossip and it is fed back tmotion, the algorithm for updating the agents’ beliefs rans
a continuous time controller of a robot to find a path. Aa (possibly) slower time-scale (denoted#)y The time-scale
sampling-based algorithm is used to tackle the dynamics &r updating the belief is chosen to be slower as it allows
the robot at a lower continuous control level. for sufficient interactions among the agents, especialtief
It is noted that the termagentis often interchangeably density of agents is low. To capture temporal effects in a
used for mobile sensor and shouldn’t be confused for robatkalistic setting,L,, should be appropriately chosen based
on other network parameters.
2. BACKGROUND ONDISTRIBUTED DECISION With this setup, let a time-dependent (in the slow-sedle
PROPAGATION INPROXIMITY NETWORKS graph be denoted a5 and a few related terms are defined
This section briefly summarizes the concept of reahs follows.
measure of probabilistic regular languages generated by a
PFSA [10] [9] followed by the formulation of generalized Definition 2.2 (Adjacency Matrix [13]) The adjacency ma-

gossip algorithm presented in [8]. trix A of the graphG is defined such that its elemeaj;
) , is unity if the agent communicates with the ageptin the
A. Basic Notions of Language-Measure Theory time period ofL,,, else zero. To eliminate self-loops, each

For brevity, the concept of real measures have beatiagonal element of the adjacency matrix is constrained to
restricted to irreducible Markov Chain. Interested reader be zero.

referred to [9] [10] for further details. Definition 2.3 (Laplacian Matrix [13]) The Laplacian ma-

trix (£) of a graphG is defined as£ = D — A where the
degree matrixD is a diagonal matrix withd’ denoting the
8egree of node.

Definition 2.1 (Real Measure of Irreducible Markov Chain)
Let a stationary Markov chain be denoted by the three-tupl
(Q,I1,x), where@ is the set of states; the state transition
function IT = @ x @ — [0,1] represents theQ| x |Q|  pefinition 2.4 (Interaction Matrix [13]) The agent interac-
stochastic matrix for the Markov chaindf| represents the o matrix IT is defined asil — 7 — 8L

cardinality of the set of states); ang : @ — R is the
vector-valued characteristic function that assigns a sigin
real weight to each state. A real measwgd) for statei is
then defined as

The generalized gossip strategy involves two characteris-
tic variables associated with each agent, namely stage
characteristic functiony and theagent measure function.

x € {0,1} signifies whether an agent has detectetdrget
e = 1) or not (¢ = 0). v € [0,1] signifies the level of
vi(6) = 29(1 - e)kAinX’ =120 @) g\jvaren)ess of agc age%t regar[ding]:l thge presence tafrgget
k=0 in the surveillance region. It is noted thai, » and y are
wheref < (0,1) is a user specified parameter am; is  functions of the slow time-scale. In the above setting, a
defined as a x Q| vector [0;1, 02 . .. d;)0|] which is given decentralized strategy for measure updating in the mobile-
as 6;;=1, if i=j, else zero. The expression for the measuragent population is introduced below in terms of a user-

in Equation 1 can be expressed as/(f) = (I — (1 — defined control parametére (0, 1.
9)II)~1x The inverse is guranteed to exist fére (0,1).
AII" represents the state probability vector at an instant vi(0)lr+1=(1-0) Z Wijle v (O) + Oxil- (2)

n time-steps in the future for a Markov process beginning in JE{HUND()

statei and the expected value of the characteristic functiowhereNb(i) denotes the set of agents that communicate with

is given byA,;I1"y. the agent during the time span betweenandr + 1. It is
o B ) noted that while computing the future (awareness or belief)
B. Background of Distributed Decision Propagation measure of an agent, the parameterontrols the trade-off

This subsection briefly describes the formulation of théetween the effects of current self-observation and ctirren
generalized gossip policy in the context of proximity netmeasures of all agents. In the vector notation, the dynamics
works proposed in [8]. Proximity network [11] is a particula can be expressed ag(0)|,+1 = (1 — O)II|,v(0)|, + x|~
formulation of time-varying mobile-agent networks, ingai  Thus, this policy is simply a gossip algorithm with varying
from social networks where only proximal agents communiinput x|, and varying network topology represented by
cate at any given time epoch [12]. I1|,. The memory of a past input fades as a function of

In the present context, proximal agents exchange informéie paramete. Due to this notion, the above policy can
tion related to their beliefs regarding the environmenteAf be called ageneralized gossip algorithmvith 6 as the
the expiry of a message lifetime,,,, agents possibly update generalizing parameter.
their beliefs based on their own observation and messagedn the following sections, agent measure function is often
from other agents. There are two time-scales involved & threferred to as belief.



3. PROBLEM FORMULATION the proximity network. The idea is that if the autonomous

This section formulates the problem of path planning fofoPot moves in a way so that its belief (based on the belief
an autonomous robot in the absence of GPS. For simplicity 81‘c its nearby_ mobile sensors ) monotonically IMProves (or
exposition, we make certain assumptions to unambiguoudf}c€ases) with movement, then under the condition that the
present the efficacy of the proposed framework for reacti\}éel'ef of the network is maximized at the physical locatidn o

navigation in the absence of GPS, which are outlined beloW'€ 90@l, the robot will eventually reach the goal. Under the
. . constraints of limited communication and sensing horizon,
1) An autonomous robot can locally estimate relative p

. . : V€ POhe robot has access to belief of only the local mobile sensor
sitions of mobile sensors using state-of-art posmonlng1 .
. . owever, due to the presence of a gradient towards the goal,
techniques in sensor networks [14].

2) Mobile sensors and the autonomous robot are local he robot is able to estimate a waypoint where the belief
: . : i greater than its current belief. To this end, the robot
able to coordinate for collision avoidance.

L . . learns an implicit correspondence between a geographical
3) _Commgnlcathn of th? robot with other mobile SENSOT%)cation and the belief in the network by using a multiple
is considered in the time scale >> 7.

. ) ] regression framework. The maximum of the implicit surface
Under these major assumptions, we consider the casegfthe waypoint the robot moves to, over a certain time

a set of mobile sensors performing surveillance in a regioRorizon till the next communication with the network is
where the task is to detect targets in a given region. F@istaplished. This is achieved by following a feasible traje
simplicity, the target (i.e., the goal for the autonomousot)  1ory obtained by sampling from the local configuration space
is modeled as a local region of interest in the surveillancgsing RRTs. These steps are recursively followed till thmto
region such that only a few sensors that search areas withigaches the sensed region of interest i.e., the goal. The ide
the region of interest have a non-zero probability of détect s similar to the commonly studied receding horizon motion
it. For clarity, a simplistic model for target detection ISplanning framework, where a reactive plan is followed by

followed which is described next. A region of interest isthe ropot over a finite time horizon as a reaction to real-time
modeled as a map for probability of detection of a targetnformation.

Let the probability of detection of a target be denoted by

Pp, which attains the maximum at the center of the targets. Decentralized Gossip for Decision Propagation

physical location and decays to zero linearly with distance Based on the framework of generalized gossip algorithm
from the center in a radially symmetric manner. A region o[ '

) . . . his subsection presents an algorithm which creates a bias
interest is then, characterized by the following paranseter . S .
in the proximity network of the mobile sensors towards the

« The maximum probability of detection of the targetgensed region of interest The idea is based on optimal dontro
Ppmaz _ . . . .. theory of a PFSA [10] [15]. Under this umbrella, the belief
. Th_e effective radiusr(,s) of the circular region within ¢ every sensor is maximized by averaging only over the
which Pp > 0.5, set of neighbors that have belief greater than the sensor. In

In [8], a distributed decision propagation algorithm hashe original gossip strategy (see equation 2), a sensingtage
been proposed for dissemination of the sensed target througs influenced by all its neighbors. However, to maximize its
out the mobile sensor network. The aim of the current workheasure, an agent can follow a strategy where it is only
is to develop a distributed navigation algorithm to helpdgui influenced by neighbors that have a higher belief than its own
an autonomous robot to the detected region of interest (i.&elief This strategy is succintly presented in Algorithm 1.
goal for the autonomous robot) where no one is aware dthe key point is that the elements of the interaction matrix
the sensed location of target and there is no GPS. Since t@responding to agents with a lower measure are made zero.
robot has only a finite sensing and communication radius, However, to keep the interaction matrix stochastic, those
can only be aware of the local belief in the network. The:lements are adjusted as a self-loop to the agent (see steps 5
problem of reactive navigation to a locally detected targahrough 11 in Algorithm 1). Based on the results in [10] [15],
is then reduced to the recursive estimation of a sequengfis strategy ensures a maximum in the belief network at the
of way-points which the robot can follow to finally reachgoal region for the autonomous agent and at the same time,
the goal. Even though the broad scope of this research isitacreates a gradient towards the same. This biased approach
allow a robot with any complicated dynamics find a feasiblensures that a mobile sensor which is closer to the sensed
trajectory, for simplicity, this paper is limited to a poimass region of interest will have a higher belief as compared to
robot. those further away from it.

4. PROPOSEDAPPROACH B. Implicit Surface based Interpolation for Navigation

Under the framework presented in [8] and briefly ex- Under the assumption that the robot can localize mobile
plained in section 2, we present an algorithm which guasensors in its neighborhood [14], beliefs of the mobile
antees a unique maxima and a gradient towards the samesansors in the robot’s neighborhood are used to learn an



implicit correspondence between a physical location anidet us assume thatr?  (T1),2%, . (T2),..., 2% . (T.)}
belief. is the sequence of way-points estimated by the robot
in the slow time scale at instantsl'y,Ts,...,T,.
Then, if the robot moves in a way such that
{Vmaz(T1)s Vmaz(T2), .., Vmaz(Tr)} is @ monotonically

increasing set, then the following will hold:
. . R
dlst(nlgrxgo a:mw(Tn),:cS) <e @)

In this work, an inverse multi-quadric form @f was cho-
sen. Specificallyy(||z® —2F||) is chosen to bel, /v/72 + o2
e " indiig , where r =||z — 2|5 and o is chosen as:/f. As it

180 200 220 240 260 280 300 320 340 . . .- . « .
X coordinate was explained before in section 2, is the generalizing
Fig. 1. The robot can use relative locations of sensors imat a local parameter for the gOSSIp algorlthm._ In Order. to Qeterm|ne
implicit correspondence between a physical location inéighborhood and {wi,z =1to M}, a multiple regression algorithm is used.
the measure functiorr. Note that this figure shows an example scenario. The procedure is succinctly presented in Algorithm 2.

In this regard, letryp € R? be the location of the C. RRT based Navigation
robot at some time instarif;,s € N and zg € R? be In the last step. th bot qet timate of th int
the location of the target detected by the mobile sensor n the fast step, the robot gets an estimate of the waypoin

network. LetVb(R) be the local neighborhood of the robotinIt should move to. Based on the current location and the

which it can locally estimate the positions of mobile sessorVaypoint found in the last step, a rapidly exploring random

within its communication range. Let’* denote the relative tre_e (RRT) is built in an anytime _fashion to find a feasible
coordinate of a physical location measured w.r.t. the rabot Irajectory for the robot. _Under thls_ framework, we assume
the regionVb(R). In this setting, let-?, =£. ..., %, be the that. '_[he robot can avoid the static obstacles by building
relative positions of the mobile sensor w.r.t. the robot . W ollision-free trees [17] For completeness of the papeiT RR

assume that the robot can accurately (or with some bound gs been succintly explained in Algorithm 3.

. ; B . . o
uncer_talnty) _estlmatez =12, M? using I0<_:aI|zat|on Algorithm 1 Distributed belief updating strategy for mobile
techniques in sensor network. The interpolation problem
. o . Sensors
is then, formally stated as follows: Given the approximaté -
. . I 5 . 1: while true do

locations of the neighbors of the robofz;* € R*i =
L to M and their corresponding belief ¢ R a 2. for all sensors ‘i’ in the networkio

} ! bonding let v; € b if Nb(i) # 0 then

. . 2 M H i i I
function § : R — R is estimated, such that it satisfies d; = CARD(Nb(i))

the boundary constraints / * * Begin Infinite Asynchronous loop x* /
Fa)=v,i=1,2,....M 3 / = x Queryv(0); *x /
if v;(0)- < v;(0)|, then
Wii|r = Wil + g -

Y coordinate

whereF(x) has the following form

R\ R_ R ILj|- =0
Fa) = wig(|2" - f])) (4) end if
i=1 if 1/7(9)|-,— > Vi(9)|7— & Hile =0 then
w; are weights assigned to the individual RBF’s. It can be, I, = 1/d;
shown that any continuous function on a compact intervaj;. |, = My, — 1/d;
can, in principle, be interpolated with arbitrary accurégy 1». end if
a sum of the form( 4), if a sufficiently large number of 5. end if

RBFs are used [16]. The functidh represents an implicit 4. v, = 0 -0, L v (0)] - +
correspondence between the local physical locations and JEGIUNB(E TR T

belief about region of interest. 15: en%XfJ)rr
Under this setting, 16: end while
B = arg max F(z) (5)
aReNb(R)
and, Remark 4.1 Correctness. The plan will always give the
Vmaz = max  F(z') (6) robot a path to the sensed goal. This is argued by making
»fENB(R) some observations. Due to the biased gossip algorithm based
R

x:t (T;) is then, the estimated waypoint to which theon the optimal control of a weighted PFSA, it is ensured that

max

robot needs to move, over the next time horiZ@h, T;;1]. thereis a gradient towards the goal. Under the assumption of



Fig. 2. The implicit surface estimated by the robot at thriflerént time instants in its local neighborhood during igation to an unknown goal location.

The goal is at [450,250].

Algorithm 2 Navigation of the robot

1: while dist(x g, xg)>¢ do
2 Solveg(x) = 31, wig(|[«” — 2f))

using boundary constrain{s:?, v;}, xf* € Nb(R)

3 Use gF(zf) to estimate =2f

arg max, zc ypr) 3(27) and  vpao
max, e npR) S (27)
4. RRT(zg, K,At,zZ )

/ * * For the function RRT, see Algorithm 8x /
5: end while

Algorithm 3 RRT

=

: Input :(Qinih K, At, q_qoal)

: Output: Tree G with a path P fromy;,: t0 qgoa
:fork=1to Kdo

Grand < RandConf)

Gnear < NearestVertedy,onq, G)

Qnew NeWCOﬂf(qnem«, drand, At)

Add vertexg¢,c., to G

Add edge(qneara Qnew) to G

: end for

! QGnear < NearestVertefy,oar, G)

: Retrace a path P fromg,,cq, t0 ¢inie OVer G.
:return P

© o N ahkwN
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region of aread performed by/N mobile sensors, where each
mobile sensor has a communication radi?s. The robot
has a communication and sensing raditys The individual
mission of the agents is to detect any target and communicate
this to their neighbors. The global mission objective of the
sensor network is to direct a robot with greater capabslitoe
the sensed region with target for neutralization of thredabo
deliver a service. For the simulation study, the parameters
chosen asA = 5002, N = 150, R, = 50, and R, = 100.

For modeling of target, the value d?p, was chosen to be
0.9 andr,s was chosen to be 20. The generalized gossip
parameterd was chosen to be 0.02. The velocity of the
mobile sensors in the network was chosen to5bend the
maximum velocity for the robot wak). The mobile sensors
are moving in the region with a 2-D random walk fashion
with the constant velocity. A slower velocity for the mobile
sensors might result in a slower information propagatian bu
it results in more stable local dynamics for the robot. Targe
is located at[450, 250] while the robot is af1,1] to begin
with. e (see equation 7) is chosen to be equate.

The robot starts moving towards the goal as soon as
its local neighborhood becomes aware of the target de-
tection through gossip. Once the robot becomes aware of
the detection, it makes use of the disseminated distributed
belief about the target to find a path to the target. Figure 2
shows the implicit surface for correspondence between the

bounded uncertainties in the localization estimates o§sen agent measure functioand a geographica] location in its

within its communication radius, the robot can always l@cat jocal neighborhood at different time instants based on the
a way-point which has a higher belief (as found by thommunication with the mobile sensors in its communica-

interpolation function) than its current belief. As the reaee

tion radius. Communication is re-established after theotob

is maximized at the target location, so, as long as the rob@gaches the estimated waypoint corresponding to the local
moves in such a way that its measure (i.e., belief about th@plicit surface. Note that the different surfaces areneatid
presence of a goal) monotonically increases, it will end ufh the slow time scalél. Figure 3(a) shows the monotonic

at the goal.

5. RESULTS FOR ANEXAMPLE PROBLEM

increment in the belief at the estimated waypoint based on
the local implicit surface with the movement of the robot. It
can be seen in Figure 3(a) that as soon as the robot becomes

This section presents results of numerical experimentsvare of a sensed target (belief 0), it is able to move
for an example problem of surveillance and reconnaissange such a fashion that its awareness about the presence of
which involves a mobile sensor network and an autonomotise target monotonically increases and finally converges to
robot which needs to navigate to a target detected by thits maximum value as it reaches the goal. The belief of the
mobile network. We consider a surveillance example for way-points could also be used as a measure for degree of
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Fig. 3. Plates (a) shows the monotonic improvement in beliehe estimated way-points in the slow time scal®;(It is also considered as the degree
of completeness of the mission. Plate (b) shows the moroteirease in the euclidean norm between the robot's locatid the goal, measured in the
slow time scaleT. Plate (c) shows the tree representing the actual trajecbthe robot between two consecutive way-points (see the bhuare and
green circle in plate (b)). Note that for clarity only a paftactual trajectory has been shown.

completion of the mission; convergence of the belief to the[3]
maximum value suggests mission completion. Figure 3(b)
shows the monotonic convergence of the robot’s movement
to the unknown goal location under the proposed framework.
Figure 3(b) shows the inherent goal-directedness in thél
robot’s motion once isniffs(i.e., belief> 0) the presence of

the target Figure 3(b) shows Euclidean distance between the
robot and the goal in the slow time scaleFigure 3(c) shows [5]
the actual trajectory found by the lower level continuous
controller and followed by the robot between two conseeutiv
way-points located aBR7, 125] and [360, 205] (see the blue  [©]
square and green circle in plates (b) and (c). It is noted this
is not the complete path as the initial location of the rolsot i

at [1, 1]. For clarity of presentation, only a part of the entire [7]
path has been shown).

6. CONCLUSIONS ANDFUTURE WORK i8]

The paper presents a framework of hierarchical planning,
where the dynamic knowledge of the goal is propagated ov
a mobile sensor network, which is used as a feedback for
low-level continuous controller to find a feasible path foe t
robot. Using a controlled gossip algorithm and sequentiiﬂol
estimation of the way-points locally, it is shown that the
robot is capable of finding a path to the goal point. Howevef11]
the efficacy of the proposed path planning algorithm is
contingent on the accuracy of the localization techniquegsy;
executed over the sensor network.

The following topics are recommended for future researcr[l13

1) Extension to planning in presence of multiple targets

and multiple regions of interest.

2) Identification of an explicit relationship between im-[14]

perfections in localization in the sensor network and
the navigation of the robot. [15]

]

]
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