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Abstract— This paper proposes a framework for reactive
goal-directed navigation without global positioning facilities
in unknown environments. A mobile sensor network is used
for localization of regions of interest for path planning of an
autonomous mobile robot in the absence of global positioning
facilities. The underlying theory is an extension of a generalized
gossip algorithm that has been recently developed in a language-
measure-theoretic setting. The gossip algorithm has been used
to propagate local decisions of target detection over a mobile
sensor network and thus, it generates abelief for the target
detected over the network. The proposed concept has been
validated through numerical experiments with a mobile sensor
network and a point mass robot.

1. INTRODUCTION

Autonomous robots are becoming ubiquitous and are en-
visaged to play an increasingly important role in both civilian
and military applications. While operating in unknown and
unstructured environments, they often have limited or unreli-
able long-range communication and GPS capabilities due to
constraints on energy requirements and (or) adversarial envi-
ronment. However, with the recent advances in sensing and
low-complexity signal processing algorithms, sensors canlo-
cally detect regions of interest with high degree of accuracy,
which reduces the communication overhead significantly. But
it limits event awareness which limits performance in the
network capacity. Consider, for example, a search and rescue
operation which requires sequential collaboration between
the ’search agents’ (agents with limited sensing abilities)
and the ’rescue agents’ (agents capable of rescuing any
sensed target in a region of interest). The efficacy of such
missions in the network capacity would depend on how
quickly the network of ’search agents’ can react to the sensed
targets of interest and guide a ’rescue agent’ to the target
of interest under the constraints of limited communication
and global positioning. The goal of this paper is to present
a framework for navigation of an autonomous agent in an
unknown and GPS-denied environment with the help of a
(possibly mobile) sensor network which serves the two-fold
purpose of target localization and generating the way-points
for the autonomous robot.

A lot of work has recently been reported on source seeking
in sensor fields [1] [2] [3] [4]. The objective of such prob-

lems is to determine the minimum of an unknown signal field
(the possible location of the source) using a stochastic gra-
dient descent algorithm. Authors in [2] [4] present a multi-
agent coordination framework for estimation of the peaks of
sensor field. However, the agents have to communicate their
sensor measurements and an artificial potential function is
required to estimate the gradient of the sensor field. Several
attempts have been made in literature to make use of static
sensor networks to guide a robot [5], [6]. In [6], a psuedo-
gradient calculated based on sensor readings in a static sensor
network is used for localization and directed navigation ofan
autonomous robot in unknown environments. However, the
algorithm presented can’t be trivially extended to navigation
using a mobile sensor network. Mobile sensor networks have
potential advantage over their static counterparts in terms of
coverage and time-criticality [7].

The current work builds on a recent work on distributed
decision propagation in mobile ad-hoc sensor networks pre-
sented in [8] where the proximity network of an agent is
modeled as a probabilistic finite state automaton (PFSA). An
’agent measure function’ is then defined (based on the re-
cently reported language measure theory [9] [10]) for all the
agents in the network which signifies its ’level of awareness’
regarding a locally sensed ’target’ in the operational area. In
the current work, theagent measure functiongenerated by a
mobile sensor network is used to guide an autonomous robot
through an unknown and unstructured environment. The
current framework has the following potential advantages
over those reported in literature:

• The algorithm only requires exchange of local decisions
about sensed targets, and not the actual sensor mea-
surements. This has the potential to significantly reduce
communication overhead and makes the network more
robust to communication flips.

• No artificial potential function is required to guide
an agent to the locally detected goal; a gradient is
automatically generated by theagent measure function
which is maximized at the location of sensed target.

This is different from other works present in current
literature [5] in the sense that not all sensors in the network



detect the target; an awareness about the presence of a
local target is developed via gossip and it is fed back to
a continuous time controller of a robot to find a path. A
sampling-based algorithm is used to tackle the dynamics of
the robot at a lower continuous control level.

It is noted that the termagent is often interchangeably
used for mobile sensor and shouldn’t be confused for robot.

2. BACKGROUND ON DISTRIBUTED DECISION

PROPAGATION INPROXIMITY NETWORKS

This section briefly summarizes the concept of real
measure of probabilistic regular languages generated by a
PFSA [10] [9] followed by the formulation of generalized
gossip algorithm presented in [8].

A. Basic Notions of Language-Measure Theory

For brevity, the concept of real measures have been
restricted to irreducible Markov Chain. Interested readeris
referred to [9] [10] for further details.

Definition 2.1 (Real Measure of Irreducible Markov Chain)
Let a stationary Markov chain be denoted by the three-tuple
(Q,Π,χ), whereQ is the set of states; the state transition
function Π : Q × Q → [0, 1] represents the|Q| × |Q|
stochastic matrix for the Markov chain (|Q| represents the
cardinality of the set of states); andχ : Q → R is the
vector-valued characteristic function that assigns a signed
real weight to each state. A real measureνi(θ) for statei is
then defined as

νi(θ) ,

∞
∑

k=0

θ(1− θ)k∆iΠ
k
χ, i = 1, 2, · · · , |Q| (1)

where θ ∈ (0, 1) is a user specified parameter and∆i is
defined as a1× |Q| vector [δi1, δi2 . . . δi|Q|] which is given
as δij=1, if i=j, else zero. The expression for the measure
in Equation 1 can be expressed as :ν(θ) = θ(I − (1 −
θ)Π)−1

χ The inverse is guranteed to exist forθ ∈ (0, 1).
∆iΠ

n represents the state probability vector at an instant
n time-steps in the future for a Markov process beginning in
statei and the expected value of the characteristic function
is given by∆iΠ

n
χ.

B. Background of Distributed Decision Propagation

This subsection briefly describes the formulation of the
generalized gossip policy in the context of proximity net-
works proposed in [8]. Proximity network [11] is a particular
formulation of time-varying mobile-agent networks, inspired
from social networks where only proximal agents communi-
cate at any given time epoch [12].

In the present context, proximal agents exchange informa-
tion related to their beliefs regarding the environment. After
the expiry of a message lifetimeLm, agents possibly update
their beliefs based on their own observation and messages
from other agents. There are two time-scales involved in this

problem setup. In contrast to the faster time-scale (t) of agent
motion, the algorithm for updating the agents’ beliefs runson
a (possibly) slower time-scale (denoted byτ ). The time-scale
for updating the belief is chosen to be slower as it allows
for sufficient interactions among the agents, especially ifthe
density of agents is low. To capture temporal effects in a
realistic setting,Lm should be appropriately chosen based
on other network parameters.

With this setup, let a time-dependent (in the slow-scaleτ )
graph be denoted asG and a few related terms are defined
as follows.

Definition 2.2 (Adjacency Matrix [13]) The adjacency ma-
trix A of the graphG is defined such that its elementaij
is unity if the agenti communicates with the agentj in the
time period ofLm, else zero. To eliminate self-loops, each
diagonal element of the adjacency matrix is constrained to
be zero.

Definition 2.3 (Laplacian Matrix [13]) The Laplacian ma-
trix (L) of a graphG is defined as:L = D − A where the
degree matrixD is a diagonal matrix withdi denoting the
degree of nodei.

Definition 2.4 (Interaction Matrix [13]) The agent interac-
tion matrixΠ is defined as:Π = I − βL

The generalized gossip strategy involves two characteris-
tic variables associated with each agent, namely thestate
characteristic functionχ and theagent measure functionν.
χ ∈ {0, 1} signifies whether an agent has detected atarget
(χ = 1) or not (χ = 0). ν ∈ [0, 1] signifies the level of
awareness of an agent regarding the presence of atarget
in the surveillance region. It is noted that,Π, ν andχ are
functions of the slow time-scaleτ . In the above setting, a
decentralized strategy for measure updating in the mobile-
agent population is introduced below in terms of a user-
defined control parameterθ ∈ (0, 1].

νi(θ)|τ+1 = (1− θ)
∑

j∈{i}∪Nb(i)

Πij |τ νj(θ)|τ + θχi|τ (2)

whereNb(i) denotes the set of agents that communicate with
the agenti during the time span betweenτ andτ + 1. It is
noted that while computing the future (awareness or belief)
measure of an agent, the parameterθ controls the trade-off
between the effects of current self-observation and current
measures of all agents. In the vector notation, the dynamics
can be expressed as:ν(θ)|τ+1 = (1− θ)Π|τν(θ)|τ + θχ|τ .
Thus, this policy is simply a gossip algorithm with varying
input χ|τ and varying network topology represented by
Π|τ . The memory of a past input fades as a function of
the parameterθ. Due to this notion, the above policy can
be called ageneralized gossip algorithmwith θ as the
generalizing parameter.

In the following sections, agent measure function is often
referred to as belief.



3. PROBLEM FORMULATION

This section formulates the problem of path planning for
an autonomous robot in the absence of GPS. For simplicity of
exposition, we make certain assumptions to unambiguously
present the efficacy of the proposed framework for reactive
navigation in the absence of GPS, which are outlined below.

1) An autonomous robot can locally estimate relative po-
sitions of mobile sensors using state-of-art positioning
techniques in sensor networks [14].

2) Mobile sensors and the autonomous robot are locally
able to coordinate for collision avoidance.

3) Communication of the robot with other mobile sensors
is considered in the time scaleT >> τ .

Under these major assumptions, we consider the case of
a set of mobile sensors performing surveillance in a region,
where the task is to detect targets in a given region. For
simplicity, the target (i.e., the goal for the autonomous robot)
is modeled as a local region of interest in the surveillance
region such that only a few sensors that search areas within
the region of interest have a non-zero probability of detecting
it. For clarity, a simplistic model for target detection is
followed which is described next. A region of interest is
modeled as a map for probability of detection of a target.
Let the probability of detection of a target be denoted by
PD, which attains the maximum at the center of the target’s
physical location and decays to zero linearly with distance
from the center in a radially symmetric manner. A region of
interest is then, characterized by the following parameters:

• The maximum probability of detection of the target,
PDmax

• The effective radius (rhs) of the circular region within
which PD > 0.5,

In [8], a distributed decision propagation algorithm has
been proposed for dissemination of the sensed target through-
out the mobile sensor network. The aim of the current work
is to develop a distributed navigation algorithm to help guide
an autonomous robot to the detected region of interest (i.e.,
goal for the autonomous robot) where no one is aware of
the sensed location of target and there is no GPS. Since the
robot has only a finite sensing and communication radius, it
can only be aware of the local belief in the network. The
problem of reactive navigation to a locally detected target
is then reduced to the recursive estimation of a sequence
of way-points which the robot can follow to finally reach
the goal. Even though the broad scope of this research is to
allow a robot with any complicated dynamics find a feasible
trajectory, for simplicity, this paper is limited to a pointmass
robot.

4. PROPOSEDAPPROACH

Under the framework presented in [8] and briefly ex-
plained in section 2, we present an algorithm which guar-
antees a unique maxima and a gradient towards the same in

the proximity network. The idea is that if the autonomous
robot moves in a way so that its belief (based on the belief
of its nearby mobile sensors ) monotonically improves (or
increases) with movement, then under the condition that the
belief of the network is maximized at the physical location of
the goal, the robot will eventually reach the goal. Under the
constraints of limited communication and sensing horizon,
the robot has access to belief of only the local mobile sensors.
However, due to the presence of a gradient towards the goal,
the robot is able to estimate a waypoint where the belief
is greater than its current belief. To this end, the robot
learns an implicit correspondence between a geographical
location and the belief in the network by using a multiple
regression framework. The maximum of the implicit surface
is the waypoint the robot moves to, over a certain time
horizon till the next communication with the network is
established. This is achieved by following a feasible trajec-
tory obtained by sampling from the local configuration space
using RRTs.These steps are recursively followed till the robot
reaches the sensed region of interest i.e., the goal. The idea
is similar to the commonly studied receding horizon motion
planning framework, where a reactive plan is followed by
the robot over a finite time horizon as a reaction to real-time
information.

A. Decentralized Gossip for Decision Propagation

Based on the framework of generalized gossip algorithm,
this subsection presents an algorithm which creates a bias
in the proximity network of the mobile sensors towards the
sensed region of interest The idea is based on optimal control
theory of a PFSA [10] [15]. Under this umbrella, the belief
of every sensor is maximized by averaging only over the
set of neighbors that have belief greater than the sensor. In
the original gossip strategy (see equation 2), a sensing agent
is influenced by all its neighbors. However, to maximize its
measure, an agent can follow a strategy where it is only
influenced by neighbors that have a higher belief than its own
belief This strategy is succintly presented in Algorithm 1.
The key point is that the elements of the interaction matrix
corresponding to agents with a lower measure are made zero.
However, to keep the interaction matrix stochastic, those
elements are adjusted as a self-loop to the agent (see steps 5
through 11 in Algorithm 1). Based on the results in [10] [15],
this strategy ensures a maximum in the belief network at the
goal region for the autonomous agent and at the same time,
it creates a gradient towards the same. This biased approach
ensures that a mobile sensor which is closer to the sensed
region of interest will have a higher belief as compared to
those further away from it.

B. Implicit Surface based Interpolation for Navigation

Under the assumption that the robot can localize mobile
sensors in its neighborhood [14], beliefs of the mobile
sensors in the robot’s neighborhood are used to learn an



implicit correspondence between a physical location and
belief.
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Fig. 1. The robot can use relative locations of sensors to estimate a local
implicit correspondence between a physical location in itsneighborhood and
the measure functionν. Note that this figure shows an example scenario.

In this regard, letxR ∈ R
2 be the location of the

robot at some time instantTi, i ∈ N and xS ∈ R
2 be

the location of the target detected by the mobile sensor
network. LetNb(R) be the local neighborhood of the robot in
which it can locally estimate the positions of mobile sensors
within its communication range. LetxR denote the relative
coordinate of a physical location measured w.r.t. the robotin
the regionNb(R). In this setting, letxR

1 , x
R
2 , . . . , x

R
M be the

relative positions of the mobile sensor w.r.t. the robot . We
assume that the robot can accurately (or with some bounded
uncertainty) estimatexR

i , i = 1, 2, . . . ,M , using localization
techniques in sensor network. The interpolation problem
is then, formally stated as follows: Given the approximate
locations of the neighbors of the robot,{xR

i ∈ R
2,i =

1 to M} and their corresponding beliefs{ νi ∈ R }, a
function F : R

2 → R is estimated, such that it satisfies
the boundary constraints

F(xR
i ) = νi, i = 1, 2, . . . ,M (3)

whereF(xR) has the following form

F(xR) =

M
∑

i=1

wiφ(||xR − xR
i ||) (4)

wi are weights assigned to the individual RBF’s. It can be
shown that any continuous function on a compact interval
can, in principle, be interpolated with arbitrary accuracyby
a sum of the form( 4), if a sufficiently large number of
RBFs are used [16]. The functionF represents an implicit
correspondence between the local physical locations and
belief about region of interest.

Under this setting,

xR
max = arg max

xR∈Nb(R)
F(xR) (5)

and,
νmax = max

xR∈Nb(R)
F(xR) (6)

xR
max(Ti) is then, the estimated waypoint to which the

robot needs to move, over the next time horizon(Ti,Ti+1].

Let us assume that{xR
max(T1), x

R
max(T2), . . . , x

R
max(Tn)}

is the sequence of way-points estimated by the robot
in the slow time scale at instantsT1,T2, . . . ,Tn.
Then, if the robot moves in a way such that
{νmax(T1), νmax(T2), . . . , νmax(Tn)} is a monotonically
increasing set, then the following will hold:

dist
(

lim
n→∞

xR
max(Tn), xS

)

< ǫ (7)

In this work, an inverse multi-quadric form ofφ was cho-
sen. Specifically,φ(||xR−xR

i ||) is chosen to be,1/
√
r2 + σ2

, where r = ||xR − xR
i ||2 and σ is chosen ask/θ. As it

was explained before in section 2,θ is the generalizing
parameter for the gossip algorithm. In order to determine
{wi, i = 1 to M}, a multiple regression algorithm is used.
The procedure is succinctly presented in Algorithm 2.

C. RRT based Navigation

In the last step, the robot gets an estimate of the waypoint
it should move to. Based on the current location and the
waypoint found in the last step, a rapidly exploring random
tree (RRT) is built in an anytime fashion to find a feasible
trajectory for the robot. Under this framework, we assume
that the robot can avoid the static obstacles by building
collision-free trees [17] For completeness of the paper, RRT
has been succintly explained in Algorithm 3.

Algorithm 1 Distributed belief updating strategy for mobile
sensors

1: while true do
2: for all sensors ‘i’ in the networkdo
3: if Nb(i) 6= 0 then
4: di = CARD(Nb(i))

/ ∗ ∗ Begin Infinite Asynchronous loop∗ ∗ /
/ ∗ ∗ Queryν(θ)j ∗ ∗ /

5: if νj(θ)|τ ≤ νi(θ)|τ then
6: Πii|τ = Πii|τ +Πij |τ
7: Πij |τ = 0
8: end if
9: if νj(θ)|τ > νi(θ)|τ & Πij |τ = 0 then

10: Πij |τ = 1/di
11: Πii|τ = Πii|τ − 1/di
12: end if
13: end if
14: νi(θ)|τ = (1 − θ)

∑

j∈{i}∪Nb(i) Πij |τνj(θ)|τ +

θχi|τ
15: end for
16: end while

Remark 4.1 Correctness: The plan will always give the
robot a path to the sensed goal. This is argued by making
some observations. Due to the biased gossip algorithm based
on the optimal control of a weighted PFSA, it is ensured that
there is a gradient towards the goal. Under the assumption of
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Fig. 2. The implicit surface estimated by the robot at three different time instants in its local neighborhood during navigation to an unknown goal location.
The goal is at [450,250].

Algorithm 2 Navigation of the robot
1: while dist(xR, xS)>ǫ do
2: SolveF(xR) =

∑M

i=1 wiφ(||xR − xR
i ||)

using boundary constraints{xR
i , νi}, xR

i ∈ Nb(R)
3: Use F(xR) to estimate xR

max =
arg maxxR∈Nb(R)F(x

R) and νmax =
maxxR∈Nb(R)F(x

R)
4: RRT(xR,K,∆t, xR

max)
/ ∗ ∗ For the function RRT, see Algorithm 3∗ ∗ /

5: end while

Algorithm 3 RRT
1: Input :(qinit,K,∆t, qgoal)
2: Output : TreeG with a path P fromqinit to qgoal
3: for k = 1 to K do
4: qrand ← RandConf()
5: qnear ← NearestVertex(qrand, G)
6: qnew ← NewConf(qnear , qrand,∆t)
7: Add vertexqnew to G
8: Add edge(qnear , qnew) to G
9: end for

10: qgnear ← NearestVertex(qgoal, G)
11: Retrace a path P fromqgnear to qinit over G.
12: return P

bounded uncertainties in the localization estimates of sensors
within its communication radius, the robot can always locate
a way-point which has a higher belief (as found by the
interpolation function) than its current belief. As the measure
is maximized at the target location, so, as long as the robot
moves in such a way that its measure (i.e., belief about the
presence of a goal) monotonically increases, it will end up
at the goal.

5. RESULTS FOR ANEXAMPLE PROBLEM

This section presents results of numerical experiments
for an example problem of surveillance and reconnaissance
which involves a mobile sensor network and an autonomous
robot which needs to navigate to a target detected by the
mobile network. We consider a surveillance example for a

region of areaA performed byN mobile sensors, where each
mobile sensor has a communication radiusRs. The robot
has a communication and sensing radiusRr. The individual
mission of the agents is to detect any target and communicate
this to their neighbors. The global mission objective of the
sensor network is to direct a robot with greater capabilities to
the sensed region with target for neutralization of threat or to
deliver a service. For the simulation study, the parametersare
chosen as:A = 5002, N = 150, Rs = 50, andRr = 100.
For modeling of target, the value ofPD was chosen to be
0.9 andrhs was chosen to be 20. The generalized gossip
parameterθ was chosen to be 0.02. The velocity of the
mobile sensors in the network was chosen to be5 and the
maximum velocity for the robot was10. The mobile sensors
are moving in the region with a 2-D random walk fashion
with the constant velocity. A slower velocity for the mobile
sensors might result in a slower information propagation but,
it results in more stable local dynamics for the robot. Target
is located at[450, 250] while the robot is at[1, 1] to begin
with. ǫ (see equation 7) is chosen to be equal torhs.

The robot starts moving towards the goal as soon as
its local neighborhood becomes aware of the target de-
tection through gossip. Once the robot becomes aware of
the detection, it makes use of the disseminated distributed
belief about the target to find a path to the target. Figure 2
shows the implicit surface for correspondence between the
agent measure functionand a geographical location in its
local neighborhood at different time instants based on the
communication with the mobile sensors in its communica-
tion radius. Communication is re-established after the robot
reaches the estimated waypoint corresponding to the local
implicit surface. Note that the different surfaces are estimated
in the slow time scaleT. Figure 3(a) shows the monotonic
increment in the belief at the estimated waypoint based on
the local implicit surface with the movement of the robot. It
can be seen in Figure 3(a) that as soon as the robot becomes
aware of a sensed target (belief> 0), it is able to move
in such a fashion that its awareness about the presence of
the target monotonically increases and finally converges to
its maximum value as it reaches the goal. The belief of the
way-points could also be used as a measure for degree of
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Fig. 3. Plates (a) shows the monotonic improvement in beliefof the estimated way-points in the slow time scale (T); It is also considered as the degree
of completeness of the mission. Plate (b) shows the monotonic decrease in the euclidean norm between the robot’s location and the goal, measured in the
slow time scaleT. Plate (c) shows the tree representing the actual trajectory of the robot between two consecutive way-points (see the blue square and
green circle in plate (b)). Note that for clarity only a part of actual trajectory has been shown.

completion of the mission; convergence of the belief to the
maximum value suggests mission completion. Figure 3(b)
shows the monotonic convergence of the robot’s movement
to the unknown goal location under the proposed framework.
Figure 3(b) shows the inherent goal-directedness in the
robot’s motion once itsniffs(i.e., belief> 0) the presence of
the target Figure 3(b) shows Euclidean distance between the
robot and the goal in the slow time scaleT. Figure 3(c) shows
the actual trajectory found by the lower level continuous
controller and followed by the robot between two consecutive
way-points located at [327, 125] and [360, 205] (see the blue
square and green circle in plates (b) and (c). It is noted this
is not the complete path as the initial location of the robot is
at [1, 1]. For clarity of presentation, only a part of the entire
path has been shown).

6. CONCLUSIONS ANDFUTURE WORK

The paper presents a framework of hierarchical planning,
where the dynamic knowledge of the goal is propagated over
a mobile sensor network, which is used as a feedback for a
low-level continuous controller to find a feasible path for the
robot. Using a controlled gossip algorithm and sequential
estimation of the way-points locally, it is shown that the
robot is capable of finding a path to the goal point. However,
the efficacy of the proposed path planning algorithm is
contingent on the accuracy of the localization techniques
executed over the sensor network.

The following topics are recommended for future research.
1) Extension to planning in presence of multiple targets

and multiple regions of interest.
2) Identification of an explicit relationship between im-

perfections in localization in the sensor network and
the navigation of the robot.
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[12] M. C. González, P. G. Lind, and H. J. Herrmann, “Networks based on
collisions among mobile agents,”Physica D: Nonlinear Phenomena,
vol. 224, no. 1, pp. 137–148, 2006.

[13] S. Patterson, B. Bamieh, and A. El Abbadi, “Convergencerates of
distributed average consensus with stochastic link failures,” Automatic
Control, IEEE Transactions on, vol. 55, pp. 880–892, April 2010.

[14] G. Mao, B. Fidan, and B. Anderson, “Wireless sensor network local-
ization techniques,”Computer networks, vol. 51, no. 10, pp. 2529–
2553, 2007.

[15] I. Chattopadhyay, “Scalableǫ-optimal decision-making and stochastic
routing in large networks via distributed supervision of probabilistic
automata,”SIAM Journal on Control and Optimization, vol. 52, no. 4,
pp. 2512–2547, 2014.

[16] G. Turk, H. Q. Dinh, J. F. O’Brien, and G. Yngve, “Implicit surfaces
that interpolate,” inProceedings of the International Conference on
Shape Modeling & Applications, SMI ’01, IEEE Computer Society,
2001.

[17] S. M. LaValle,Planning algorithms. Cambridge university press, 2006.


