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Abstract— This paper presents a hierarchical feature
extraction technique for non-stationary time-series data
that is considered to be a slow-time scale mixture of time-
series segments which are quasi-stationary at a faster time-
scale. The problem is to model an unknown number of
unique stationary segments at the low level while capturing
their switching characteristics at a higher level. Symbolic
Dynamic Filtering (SDF) has been recently reported in
literature as a tool for extracting spatiotemporal features
from stationary time-series data. It has been shown to very
efficient for early detection of anomalies (i.e., deviations
from the nominal behavior) in complex dynamical systems.
This paper extends the concept to develop an online (i.e.,
using streaming data) method that can handle quasi-
stationary data to model both low and high level character-
istics as Probabilistic Finite State Automata (PFSA) in an
unsupervised manner (i.e., without knowing the number of
unique stationary characteristics present at the low level).
The algorithm is evaluated on simulated time series data
generated from a nonlinear active electronic system based
on the chaotic Duffing equation.

1. INTRODUCTION

The problem of hierarchical feature extraction appear
as a key problem in many application areas such as
robotics, complex system modeling and image pro-
cessing. For autonomous perception issues in robotics
applications, environmental features are extracted in a
hierarchical manner where lower level features may
signify objects in the scene and higher level features rep-
resent contextual information needed for planning [1].
Similarly, hierarchical feature extraction in complex
systems falls under the category of switched and hybrid
system modeling approaches [2]. Recent success of deep
learning in image, video and speech processing applica-
tions shows the efficacy of hierarchical feature extraction
as a machine learning approach [3], [4]. One of the key
innovations that came out of the deep learning commu-
nity is learning hierarchical features in an unsupervised

manner with deep Boltzmann machines [5]. Similar
problems are being investigated in the nonparametric
modeling community as well. For example, hierarchical
Dirichlet process over hidden Markov models (HDP-
HMM) have been shown to be efficient for automatic
speaker diarisation problems [6], where ‘who spoke
when’ [7] have to be identified from a audio time-
series without knowing how many speakers there are.
Cognitive processes in humans also show that ideas
are generated in an adaptive and hierarchical manner.
This conjecture has seen a lot of interest and success in
modeling human learning and reasoning processes using
probabilistic programming concepts [8].

In the context of time-series feature extraction, re-
cently developed symbolic dynamic filtering (SDF) [9],
[10] has been shown to be an efficient tool for data-
driven modeling of dynamical systems. This nonlinear
feature extraction tool has been shown to yield superior
performance in terms of early detection of anomalies
and robustness to measurement noise in comparison to
other techniques such as Principal Component Analysis
(PCA), Neural Networks (NN) and Bayesian filtering
techniques [11]. Successful applications of SDF includes
a variety of complex systems such as nuclear power
plants [12], coal-gasification systems [13], ship-board
auxilliary systems [14] and gas turbine engines [15],
[16]. One of the primary advantage of this method is
memory and computational efficiency as it provides a
low-dimensional representation of the underlying dy-
namical system using the time-series data of the observ-
able variables [17]. It does not involve a space of hidden
(latent) variables as in HMM type models. Therefore, it
can be used for on-line real-time learning and adaptation
which may be an issue for deep learning and nonpara-
metric techniques. However, SDF approximates of a
symbolic time-series as a Markov chain of certain order
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(in the form of a Probabilistic Finite State Automaton
(PFSA)) and therefore involves an assumption that the
time-series is statistically stationary [9]. This assumption
limits SDF to model non-stationary time-series data that
can be considered as a slow-time scale mixture of time-
series segments which may be quasi-stationary at a faster
time-scale. But SDF can model each unique character-
istics present in the time-series as one PFSA. The entire
time-series in that case can be expressed as a higher-
level PFSA whose states are the automata obtained for
different unique characteristics. This paper proposes a
novel algorithm to learn such a model using streaming
data in an unsupervised manner (i.e., without knowing
how many unique characteristics or classes are present
in data). Note, such modeling architecture is notionally
similar to that of switched linear dynamical systems
(SLDS) [18]. However, SDF is inherently a nonlinear
approach and therefore, the learnt model in this case can
be considered as a switched nonlinear dynamical system.
To validate the efficacy of the proposed approach, a
nonlinear active electronic system based on the chaotic
Duffing equation [19] is chosen to be the underlying
dynamical system generating the time-series data.

The paper is organized in five sections including the
present one. Section 2 presents a brief background of
the SDF framework along with other statistical tools
used in the proposed algorithm. The on-line SDF-based
hierarchical feature extraction formulation and algorithm
are presented in Section 3. Section 4 provides validation
results and discussions based experiments on the chaotic
Duffing system. Finally, the paper is summarized and
concluded in Section 5 with recommendations of future
work.

2. BACKGROUND AND MOTIVATION

Extraction of statistical features from time-series data
generated from a dynamical system can be posed as a
two time-scale problem. The fast time-scale is related to
response time of the process dynamics. Let us assume
that over a window of data acquisition, the dynamic
behavior of the system remains invariant, i.e., the process
is quasi-stationary at the fast time-scale. Such a fast
time-scale window can be called an epoch in a slow
time-scale. The slow time-scale is related to the time
span over which deviations (e.g., parametric changes)
may occur and the system may exhibit non-stationary
dynamics. The original formulation of SDF involves
modeling a single quasi-stationary characteristics with a
Probabilistic Finite State Automaton (PFSA). However,
a general dynamical system typically produces non-
stationary data (by switching among different quasi-
stationary behaviors) due to change in operating point
or parametric condition over the slow time-scale. There-
fore, the goal here is to automatically capture different

quasi-stationary characteristics with different PFSA. At
a higher logical level, each of such PFSA can act as
states and a higher level PFSA can capture transition
characteristics among those states as shown in Fig. 1.
Thus, a SDF based non-stationary time-series feature
extraction problem is posed as learning a hierarchical
PFSA representation. The primary technical challenge
is to learn such a model in an unsupervised manner,
i.e., without knowing the number of unique stationary
characteristics present in the data (or, the number of
states needed for the higher-level PFSA).

While details of the original SDF formulation can
be found in [9], [16], a brief review is presented in
the sequel for completeness. The section also discusses
the concepts of the Chinese Restaurant Process (CRP)
and stickiness factor that are used in the proposed
formulation.

A. Mathematical Formulation of SDF

The first step of SDF is an abstraction process that
symbolizes the continuous space time-series data ob-
tained from a dynamical systems. In Symbolic Dynamics
literature, this quantization process is known as parti-
tioning [9]. There are many ways of partitioning re-
ported in the literature [20], [21] depending on different
objective functions. However, the focus of this paper
is modeling a symbol sequence (using PFSA) obtained
after partitioning.

A PFSA is a 4-tupleG , (Q,Σ, δ,Π). The alphabet
Σ is a nonempty finite set of symbols. The set of states
Q is nonempty and finite. As a simplifying assumption,
this paper considers only a class of PFSA, known as D-
Markov machines [9]. InD-Markov machines, the states
are strings of the pastD symbols, where the positive
integer D is is called the depth of the machine and
the number of states|Q| ≤ |Σ|D. The state transition
function δ : Q × Σ → Q indicates the new state given
the previous state and an observed symbol. In addition,
the morph functionπ : Q × Σ → [0, 1] is an output
mapping that satisfies the condition:

∑
σ∈Σ π(q, σ) = 1

for all q ∈ Q. The morph functionπ has a matrix
representationΠ, called the (probability) morph matrix,
whereΠij , π(qi, σj), ∀qi ∈ Q and∀σj ∈ Σ. Note that
Π is a (|Q| × |Σ|) matrix where each element ofΠ is
non-negative and each row sum ofΠ is equal to1. Due
to the assumption of quasi-stationarity of the observed
sensor data, the PFSAG , (Q,Σ, δ,Π) is not dependent
on the initial stateq0 ∈ Q.

With this setup,Π acts a low-dimensional represen-
tation of the original quasi-stationary time-series which
can be learnt using simple frequency counting from a
set of training data. At the testing phase, if data orig-
inates from a different (possibly anomalous) condition
of the system,Π (computed in the same manner) will
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be significantly different from the training stage. Thus
SDF can be used to detect changes in the underlying
dynamical system.

B. Chinese Restaurant Process and Stickiness Factor

This subsection briefly describes a couple of basic
statistical concepts used in the proposed formulation,
namely the Chinese Restaurant Process (CRP) and the
stickiness factor. Recently, these ideas have been ex-
tensively used in nonparametric modeling and therefore
details can be found in the related literature [22], [6].

CRP is an induced distribution over partitions or
clusters which is based on De Finetti’s theorem [22]. The
illustrative example given for CRP (the reason behind
its name) involves a fictitious Chinese restaurant with
potentially an infinite number of tables [23]. Given this
setup the discrete time stochastic process is described
by a probability distribution that determines the table
assignment of a new (k + 1th) customer. The new
customer can choose an already occupied (by previous
k customer(s)) tableo within the set of occupied tables
O with a probability

Prγ(o ∈ O) =
C(o)

[
∑

x∈O C(x)] + γ
(1)

where,C(·) denotes a concentration or strength function.
Or, the new customer can choose a new (previously
unoccupied) table with a probability

Prγ(onew) =
γ

[
∑

x∈O C(x)] + γ
(2)

Note that this is one simple definition of CRP among
many variations available in literature. This paper uses
the definition mentioned above to decide whether a new
data segment should be modeled with an existing PFSA
or a new PFSA should be created.

While induction of CRP can help in deciding the need
for a new PFSA model, noise and spurious disturbance
present in real data can drive the decision system un-
stable. That is many unnecessary new PFSA may get
generated and the decision may then fluctuate between
different PFSA that are close to each other based on
an appropriate metric. Similar situation arises in other
unsupervised techniques as well such as HDP-HMM.
To prevent this scenario, [6] included a stickiness factor
in the formulation as counter measure while assigning
class (or cluster) to a new data point. The basic idea
is to introduce a positive bias on the class assigned
to the previous data point. In the present study, the
overall time-series is composed of segments of quasi-
stationary time-series data that can span over many slow
time epochs. Therefore, this is a realistic assumption as
a new slow time epoch data most likely has the same
quasi-stationary characteristics as the previous slow time

epoch data. This also aligns with the fact that typically
a real system remains in a certain operating point or
parametric condition for some time before switching to
a new one.

3. METHODOLOGY

The section describes the proposed algorithm to build
a two tier PFSA model for a streaming non-stationary
time-series data as shown in Fig. 1. At the lower tier,

t
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Fig. 1. Schematics of Hierarchical PFSA based Feature Extraction

the goal is to create one PFSA model for each unique
quasi-stationary characteristics present in the data. Those
PFSAs act as states for the second tier and another
PFSA is identified to capture the transition of the system
among those states. Therefore the second tier PFSA can
be thought of as PFSA of PFSAs. The unsupervised
online algorithm is initialized with learning a PFSA
with data from the first slow time epoch. Let that PFSA
class be denoted byC1. Now, from the second slow
time epoch onwards, the problem becomes identifying
whether a new epoch belongs toC1 or there should
be a new class representing that data. Therefore, the
affinity of a new slow time epoch toC1 needs to be
quantified. In general, when there are more classes of
PFSA present, this problem can be formulated as a
classification problem that computes the probability of
a new slow time epoch belonging to a certain class.
However, a typical slow time epoch may not have
sufficient data points to estimate a PFSAΠ matrix as dis-
cussed in Section 2. Therefore, an inference algorithm is
required that can perform classification using relatively
small length of data. Such an algorithm was developed
recently in [24] and briefly outlined in Section 3-A
for completeness. Once the probabilities of a new slow
time epoch belonging to different existing classes are
obtained, a decision is made to either assign the slow
time epoch to an existing class or to create a new class.
This process uses CRP and the stickiness factor which
as described in Section 3-B. Once a slow time epoch is
assigned to a classCi, the data of that epoch gets used
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as a part of the training data for that class from the next
iteration.

A. Online Classification of a Slow Time Epoch

Let there beK classes of quasi-stationary charac-
teristics already identified in the data. They are de-
noted byC1, C2, . . . , CK , over the same alphabetΣ
and each classCi is modeled by an ergodic (equiva-
lently, irreducible) PFSAGi = (Qi,Σ, δi,Πi), where
i = 1, 2 . . . ,K. Also for each classCi, let a symbol
string Si , si1s

i
2 . . . s

i
Ni

be already identified from the
streaming data. The state transition functionδ and the
set of statesQ of the D-Markov machine are fixed by
choosing an appropriate depthD and let the (probability)
morph matrix be denoted byΠi. To perform inference
with small length of data, each row ofΠi is treated as
a random vector. Let themth row of Πi be denoted as
Πi

m and thenth element of themth row asΠi
mn ≥ 0

and
∑|Σ|

n=1 Π
i
mn = 1. The a priori probability density

function fΠi
m|Si of the random row-vectorΠi

m, con-
ditioned on a symbol stringSi, follows the Dirichlet
distribution [25] [26] as described below.

fΠi
m|Si(θi

m|Si) =
1

B(αi
m)

|Σ|∏

n=1

(θimn)
αi

mn−1 (3)

where θ
i
m is a realization of the random vectorΠi

m,
namely,

θ
i
m =

[
θim1 θim2 . . . θi

m|Σ|

]

and the normalizing constant is

B(αi
m) ,

∏|Σ|
n=1 Γ(α

i
mn)

Γ(
∑|Σ|

n=1 α
i
mn)

(4)

whereΓ(•) is the standard gamma function, andαi
m =[

αi
m1 αi

m2 . . . αi
m|Σ|

]
with

αi
mn = N i

mn + 1 (5)

whereN i
mn is the number of times the symbolσn in Si

is emanated from the stateqm, i.e.,

N i
mn ,

∣∣{(sik, vik) : sik = σn, v
i
k = qm}

∣∣ (6)

wheresik is thekth symbol inSi andvik is thekth state
as derived from the symbolic sequenceSi. Recall that
a state is defined as a string of D past symbols. The
the number of occurrence of the stateqm in the state
sequence is given byN i

m ,
∑|Σ|

n=1 N
i
mn. It follows from

Eqs. (4) and (5) that

B(αi
m) =

∏|Σ|
n=1 Γ(N

i
mn + 1)

Γ(
∑|Σ|

n=1 N
i
mn + |Σ|)

=

∏|Σ|
n=1(N

i
mn)!

(N i
m + |Σ| − 1)!

(7)

by use of the relationΓ(n) = (n− 1)! ∀n ∈ N1.
By the Markov property of the PFSAGi, the (1 ×

|Σ|) row-vectors,{Πi
m},m = 1, . . . |Q|, are statistically

independent of each other. Therefore, it follows from
Eqs. (17) and (7) that thea priori joint densityfΠi|Si

of the probability morph matrixΠi, conditioned on the
symbol stringSi, is given as

fΠi|Si(θi|Si) =

|Q|∏

m=1

fΠi
m|Si

(
θ
i
m|Si

)

=

|Q|∏

m=1

(
N i

m + |Σ| − 1
)
!

|Σ|∏

n=1

(θi
m)N

i
mn

(N i
mn)!

(8)

whereθi =
[
(θi

1)
T (θi

2)
T · · · (θi

|q|)
T
]
∈ [0, 1]|Q|×|Σ|

With this setup, let a new slow time epoch con-
tains a symbol string̃S. Now, the probability that the
symbol string belonging to a particular class of PFSA,
(Q,Σ, δ,Πi) is a product of independent multinomial
distribution [27] given that the exact morph matrixΠi

is known.

Pr
(
S̃|Q, δ,Πi

)

=

|Q|∏

m=1

(Ñm)!

|Σ|∏

n=1

(
Πi

mn

)Ñmn

(Ñmn)!
(9)

, Pr
(
S̃|Πi

)
asQ andδ are kept invariant (10)

Similar to N i
mn defined earlier forSi, Ñmn is the

number of times the symbolσn is emanated from the
stateqm ∈ Q in the symbol string̃S in the testing phase,
i.e.,

Ñmn ,
∣∣{(s̃k, ṽk) : s̃k = σn, ṽk = qm}

∣∣ (11)

where s̃k is the k-th symbol in the observed string̃S
and ṽk is thek-th state derived from̃S. It is noted that
Ñm ,

∑|Σ|
n=1 Ñmn.

Now, equations 8 and 9 can be combined to obtain
the probability of a symbol string̃S belonging to a
class characterized by already observed symbol string
Si. With the derivation presented in [24], the following
expression can be obtained for the probability.

Pr(S̃|Si) =

|Q|∏

m=1

(Ñm)!
(
N i

m + |Σ| − 1
)
!(

Ñm +N i
m + |Σ| − 1

)
!

×

|Σ|∏

n=1

(Ñmn +N i
mn)!

(Ñmn)!(N i
mn)!

(12)

In practice, it might be easier to compute the log-
arithm of Pr(S̃|Si) by using Stirling’s approximation
formula log(n!) ≈ n log(n) − n [28] because, in most
cases, bothN i andÑ would consist of statistically large
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enough numbers (but still not be enough to directly
estimate aΠ at the testing phase).

B. Class Assignment of a Slow Time Epoch

After the inference step, the probability that̃S is
assigned to an existing classCi (in the set of existing
classesC = {C1, C2, . . . , CK}) need to be determined.
Essentially, the quasi-stationary characteristics demon-
strated bySi is denoted byCi. From inference com-
putation, the likelihood functionPr(S̃|Si) is obtained
and can also be written asPr(S̃|Ci). The posterior
Pr(Ci|S̃) then can be expressed as

Pr(Ci|S̃) ∝ Pr(S̃|Ci)× Pr(Ci) (13)

wherePr(Ci) denotes a known prior for classCi. Now,
in the current unsupervised context knowing prior for
a class may not be possible. However, when a time-
series segment at slow time epochτ − 1 belongs to
classCj , then the probability that data at epochτ will
belong to the same classCj may be higher compared
to probabilities for other classes. This is a realistic
assumption as a real system typically may not change
operating point or parametric condition for every slow
time epoch. As a consequence the distributionPr(Ci)
at τ can be considered skewed in favor ofCj . With K

existing classes this is realized as

Pr(Ci) =

{
κ

K−1+κ
for i = j

1
K−1+κ

for i 6= j

whereκ > 1 as a stickiness factor.

After computingPr(S̃|Ci)Pr(Ci) for all K existing
classes, a decision is made regarding the class assign-
ment using CRP as mentioned in Section 2-B. Naturally,
the concentration or strength functionC(·) is chosen as

C(Ci) = Pr(S̃|Ci)Pr(Ci) (14)

Therefore, the CRP formulation with parameterγ can
be written as

Prγ(C
i|S̃) =






C(Ci)
[
∑

Cj∈C C(Cj)]+γ
for i = 1, · · · ,K

γ
[
∑

Cj∈C C(Cj)]+γ
for i = K + 1

(15)
where,Prγ(C

i|S̃) is the probability with whichS̃ is
assigned to classCi and CK+1 is a new unforeseen
class. The online algorithm for learning Tier 1 PFSAs
is summarized below:

Algorithm 1 : Online Learning of Tier 1 PFSAs
Input Parameters: Stickiness parameterκ

and CRP parameterγ
Data Input : Symbol sequence segmentsS̃τl

for slow time epochsτ1, τ2, · · ·
Initialize : C = {C1}
Initialize : All N1

mn = 0 (m, n chosen based
on |Q| and |Σ|)

ComputeN1
mn using S̃τ1

FORALL τ2, τ3, · · · DO
ComputeÑmn using S̃τl

EvaluatePrγ(C
i|S̃τl) using Eqn. 3-B

∀Ci ∈ C = {C1, C2, . . . , CK} andCK+1

Assign S̃τl to a classCj according toPrγ
IF j ∈ {1, 2, . . . ,K}

UpdateN j
mn by appending̃Sτl to Sj

ELSEIF j = K + 1
UpdateC as{C1, C2, . . . , CK , CK+1}

ComputeNK+1
mn using S̃τl

ENDIF
ENDFOR

The algorithm described above identifies different
classes of quasi-stationary characteristics in an online
fashion and Tier 1 PFSAs can represent those character-
istics by differentΠ matrices. However, due to noise
and spurious disturbances present in data, redundant
classes may appear during the online learning process.
Therefore, a periodic (with a much slower time-scale,
i.e., after many slow time epochs), a revision step can be
included to merge different PFSAs that are close enough
based on a metric [29] defined below.

Definition 3.1: (Distance Metric for PFSA) LetP1 =
(Q1,Σ, δ1,Π1 and P2 = (Q2,Σ, δ2,Π2 be two PFSA
with a common alphabetΣ. Let P1(Σ

j) andP2(Σ
j) be

the steady state probability vectors of generating words
of lengthj from the PFSAP1 andP2, respectively, i.e.,
P1(Σ

j) , △[P (w)]w∈Σj for P1 andP2 , [P (w)]w∈Σj

for P2. Then, the metric for the distance between the
PFSAsP1 andP2 is defined as

Φ(P1,P2) , lim
n→inf

n∑

j=1

‖P1(Σ
j)− P2(Σ

j)‖l1
2j+1

(16)

where the norm‖ ⋆ ‖l1 indicates the sum of absolute
values of the elements in the vector⋆.
Thus, the revision step can merge two Tier 1 PFSAsP1

andP2 whenΦ(P1,P2) < η, whereη > 0 is a suitable
threshold for checking similarity. In this paper, only
symbols (i.e., words of length1) have been considered
for calculating the above metric. As Tier 1 PFSAs get
identified online, the Tier 2 PFSA can be learnt simply
by keeping track of the transitions of the system from
one Tier 1 PFSA to another.
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4. VALIDATION

A. Simulated Duffing System

The Duffing equation is a nonlinear active system
that shows chaotic behavior [30]. It can be implemented
on a real experimental test bed involving an electronic
circuit [19]. The equation is stated as:

d2x(t)

dt2
+ β

dx(t)

dt
+ α1x(t) + x3(t) = Acos(ωt) (17)

where A = 22.0 is the amplitude of the forcing function,
ω = 5.0 rad/s is its excitation frequency andα1 =
1.0 and the dissipation parameterβ. Variation of β is
known to change the system characteristics and a sudden
mode shift happens aroundβ = 0.3 [11]. Therefore,
this system is considered with twoβ values0.1 and
0.4 (one before bifurcation and one after) to generate
two different quasi-stationary classes. With these two
classes a streaming non-stationary time-series is gener-
ated by randomly selectingβ ∈ {0.1, 0.4} for different
segments. A phase plot of the outputy vs the forcing
function for a typical non-stationary data set is shown
in Fig. 2.

Fig. 2. Phase plot of non-stationary dynamics for Duffing System

B. Results and Discussion

A randomly generated (as described above) time-
series ofy with 400000 has been used for the results
provided here. As every slow time epoch is considered
to have1000 points, the accuracy plots are based on
400 epochs. The raw time-series is symbolized using
8 uniform data space partitions. Figure 3 demonstrates
the performance of Hierarchical SDF (HSDF) algorithm
by plotting class labels from ground truth and HSDF
for streaming data epochs. It is observed that a lot of
redundant classes are created due to noise and spuri-
ous disturbances present in the data when the decision

system uses only CRP. The performance improves sig-
nificantly when stickiness factor is imposed, i.e., number
of uniquely identified classes come down from22 to 5.
However, with close observation it can be seen that class
2 actually gets split between class2, 3, 4 and 5 during
online learning process. And as a matter of fact they are
represented by PFSAs that are very similar. Therefore,
the periodic revision process can easily merge them to
obtain nearly perfect accuracy by identifying not more
than2 classes.

Fig. 4. Phase plot of non-stationary dynamics for Duffing System
with SNR =10

One of the advantages of SDF-based tools is that
primarily due to the partitioning process, it is typically
very robust to the change in noise characteristics in
the data. To investigate similar property of the present
hierarchical extension algorithm the experiments are
repeated with significant increase in noise content of
the data. The same time-series is considered now with
signal to noise ratio (SNR) as10. The phase plot in
Fig. 4 shows the significant increase in noise compared
to that in Fig. 2. Figure 5 demonstrates the performance
of HSDF before and after revision. The algorithm ob-
tains similar accuracy after revision and only a few
more (increased from5 to 8 classes) redundant classes
appear before revision. For all the results shown here,
a few manual iterations were required to choose the
correct set of hyper-parameters (i.e., CRP parameter
γ, stickiness parameterκ and revision thresholdη)
to achieve the demonstrated performance. Therefore,
automated selection of hyper-parameters would be the
next technical problem for investigation. Also, quan-
titative performance metrics will be defined in order
to obtain numerical comparison purposes. Also, the
algorithm could achieve this performance in real-time
with a simple MATLAB implementation on a 3.40 GHZ
Intel Xeon(R) CPU with Windows OS and 16GB RAM.
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Fig. 3. Plots of class labels from ground truth and Hierarchical SDF (HSDF) for streaming data epochs; Plate (a) shows performance using only
CRP, Plate (b) shows performance improvement with use of stickiness factor and Plate (c) shows the best performance withperiodic revision
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Fig. 5. Plots of class labels from ground truth and Hierarchical SDF (HSDF) for streaming data epochs with increased noise content, SNR =
10; Plate (a) shows performance before the revision step and Plate (b) shows the performance with periodic revision

5. SUMMARY, CONCLUSIONS ANDFUTURE WORK

This paper extends the concepts of Symbolic Dy-
namic Filtering (SDF) of quasi-stationary time-series to
develop a hierarchical feature extraction technique for
non-stationary time-series data. In the present context, a
non-stationary time-series is considered to be a slow-
time scale mixture of time-series segments that are
quasi-stationary at a faster time-scale. While PFSAs
at the lower level capture the fast time-scale quasi-
stationary dynamics, a PFSA at the upper level capture
the slow time-scale transitions of the system among
different quasi-stationary dynamics. The algorithm de-
veloped here is an unsupervised tool that allows to
analyze data with an unknown number of unique quasi-
stationary characteristics (or the number of states for
the upper level PFSA). Essentially, the learning process
uses a Bayesian inference scheme for short data length
classification using SDF for a new segment of streaming
data. The inference process determines whether the data
segment belongs to an already existing quasi-stationary
class or it represents an unforeseen characteristics. The
assignment decision-making process also involves a Chi-
nese Restaurant Process (CRP) along with a stickiness
factor. The online algorithm is validated using a nonlin-
ear active electronic system based on the chaotic Duffing

equation. It has been shown that a simple revision
algorithm can be used periodically to merge different
PFSAs at the lower level that are very similar to each
other to reduce unnecessary model complexity. While
further tests using real-life data sets are being performed
to evaluate the efficacy of the algorithm, the major future
theoretical research directions are mentioned below.

• Formulation of hierarchical PFSA learning as an
optimization problem with model accuracy and
complexity as competing objectives; this will en-
able optimization of hyper-parameters (such as,
CRP parameterγ and stickiness parameterκ) and
provide quantitative justification for hierarchical
models instead of single tier ones

• Currently, homogeneous PFSAs (i.e., with same
structure) are learnt at the lower level. Future
research will investigate adaptive PFSA learning
at the lower level to fit the exact need of different
quasi-stationary characteristics

• Performance comparison (i.e., accuracy, computa-
tion time and complexity) with other hierarchical
feature extraction tools using benchmark data sets

• Extension of the algorithm to fuse multiple time-
series information during feature extraction
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