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Abstract— This paper presents a hierarchical feature
extraction technique for non-stationary time-series data
that is considered to be a slow-time scale mixture of time-
series segments which are quasi-stationary at a faster time
scale. The problem is to model an unknown number of
unique stationary segments at the low level while capturing
their switching characteristics at a higher level. Symbolc
Dynamic Filtering (SDF) has been recently reported in
literature as a tool for extracting spatiotemporal features
from stationary time-series data. It has been shown to very
efficient for early detection of anomalies (i.e., deviatios
from the nominal behavior) in complex dynamical systems.
This paper extends the concept to develop an online (i.e.,
using streaming data) method that can handle quasi-
stationary data to model both low and high level character-
istics as Probabilistic Finite State Automata (PFSA) in an
unsupervised manner (i.e., without knowing the number of
unique stationary characteristics present at the low levél
The algorithm is evaluated on simulated time series data
generated from a nonlinear active electronic system based
on the chaotic Duffing equation.

1. INTRODUCTION

manner with deep Boltzmann machines [5]. Similar
problems are being investigated in the nonparametric
modeling community as well. For example, hierarchical
Dirichlet process over hidden Markov models (HDP-
HMM) have been shown to be efficient for automatic
speaker diarisation problems [6], where ‘who spoke
when’ [7] have to be identified from a audio time-
series without knowing how many speakers there are.
Cognitive processes in humans also show that ideas
are generated in an adaptive and hierarchical manner.
This conjecture has seen a lot of interest and success in
modeling human learning and reasoning processes using
probabilistic programming concepts [8].

In the context of time-series feature extraction, re-
cently developed symbolic dynamic filtering (SDF) [9],
[10] has been shown to be an efficient tool for data-
driven modeling of dynamical systems. This nonlinear
feature extraction tool has been shown to yield superior
performance in terms of early detection of anomalies
and robustness to measurement noise in comparison to

The problem of hierarchical feature extraction appeasther techniques such as Principal Component Analysis

as a key problem in many application areas such g®CA), Neural Networks (NN) and Bayesian filtering
robotics, complex system modeling and image protechniques [11]. Successful applications of SDF includes
cessing. For autonomous perception issues in robotiesvariety of complex systems such as nuclear power
applications, environmental features are extracted in @ants [12], coal-gasification systems [13], ship-board
hierarchical manner where lower level features mawuxilliary systems [14] and gas turbine engines [15],
signify objects in the scene and higher level features rept6]. One of the primary advantage of this method is
resent contextual information needed for planning [1Jmemory and computational efficiency as it provides a
Similarly, hierarchical feature extraction in complexlow-dimensional representation of the underlying dy-
systems falls under the category of switched and hybridamical system using the time-series data of the observ-
system modeling approaches [2]. Recent success of desple variables [17]. It does not involve a space of hidden
learning in image, video and speech processing appliclatent) variables as in HMM type models. Therefore, it
tions shows the efficacy of hierarchical feature extractionan be used for on-line real-time learning and adaptation
as a machine learning approach [3], [4]. One of the kewhich may be an issue for deep learning and nonpara-
innovations that came out of the deep learning commumetric techniques. However, SDF approximates of a
nity is learning hierarchical features in an unsupervisesymbolic time-series as a Markov chain of certain order



(in the form of a Probabilistic Finite State Automatonquasi-stationary characteristics with different PFSA. At
(PFSA)) and therefore involves an assumption that the higher logical level, each of such PFSA can act as
time-series is statistically stationary [9]. This assuimpt states and a higher level PFSA can capture transition
limits SDF to model non-stationary time-series data thatharacteristics among those states as shown in Fig. 1.
can be considered as a slow-time scale mixture of timé&hus, a SDF based non-stationary time-series feature
series segments which may be quasi-stationary at a fasextraction problem is posed as learning a hierarchical
time-scale. But SDF can model each unique charactdPFSA representation. The primary technical challenge
istics present in the time-series as one PFSA. The entiig to learn such a model in an unsupervised manner,
time-series in that case can be expressed as a highee:, without knowing the number of unique stationary
level PFSA whose states are the automata obtained fonaracteristics present in the data (or, the number of
different unique characteristics. This paper proposes sates needed for the higher-level PFSA).

novel algorithm to learn such a model using streaming While details of the original SDF formulation can
data in an unsupervised manner (i.e., without knowinge found in [9], [16], a brief review is presented in
how many unique characteristics or classes are preseahe sequel for completeness. The section also discusses
in data). Note, such modeling architecture is notionallghe concepts of the Chinese Restaurant Process (CRP)
similar to that of switched linear dynamical systemsand stickiness factor that are used in the proposed
(SLDS) [18]. However, SDF is inherently a nonlinearformulation.

approach and therefore, the learnt model in this case can

be considered as a switched nonlinear dynamical systeh. Mathematical Formulation of SDF

To validate the efficacy of the proposed approach, a The first step of SDF is an abstraction process that
nonlinear active electronic system based on the Chao@?mbolizes the continuous space time-series data ob-
Duffing equation [19] is chosen to be the underlyingained from a dynamical systems. In Symbolic Dynamics
dynamical system generating the time-series data. |iterature, this quantization process is known as parti-
The paper is organized in five sectiqns including th%oning [9]. There are many ways of partitioning re-
present one. Section 2 presents a brief background gyted in the literature [20], [21] depending on different
the SDF framework along with other statistical t00|50bjective functions. However, the focus of this paper
used in the proposed algorithm. The on-line SDF-basgd modeling a symbol sequence (using PFSA) obtained
hierarchical feature extraction formulation and algarith gfter partitioning.
are presented in Section 3. Section 4 provides validation o pEsA is a 4-tupleG £ (Q, 3,6, 11). The alphabet
results and discussions based experiments on the chactiGs g nonempty finite set of symbols. The set of states
Duffing system. Finally, the paper is summarized ang) js nonempty and finite. As a simplifying assumption,
concluded in Section 5 with recommendations of futurgpisg paper considers only a class of PFSA, known as D-
work. Markov machines [9]. IlD-Markov machines, the states
are strings of the pasb symbols, where the positive
2. BACKGROUND AND MOTIVATION integer D is is called the depth of the machine and
Extraction of statistical features from time-series datéhe number of stateg)| < |X|P. The state transition
generated from a dynamical system can be posed adumctiond : Q x ¥ — (@ indicates the new state given
two time-scale problem. The fast time-scale is related tthe previous state and an observed symbol. In addition,
response time of the process dynamics. Let us assuriee morph functionr : @ x ¥ — [0,1] is an output
that over a window of data acquisition, the dynamianapping that satisfies the conditioy; .y, 7(¢,0) = 1
behavior of the system remains invariant, i.e., the processr all ¢ € Q. The morph functiont has a matrix
is quasi-stationary at the fast time-scale. Such a fastpresentatiofl, called the (probability) morph matrix,
time-scale window can be called an epoch in a slowherell;; £ 7(g;, 0;),Vq; € Q andVo; € %. Note that
time-scale. The slow time-scale is related to the timé&l is a (|Q| x |X|) matrix where each element &f is
span over which deviations (e.g., parametric changeapn-negative and each row sumIdfis equal tol. Due
may occur and the system may exhibit non-stationaryp the assumption of quasi-stationarity of the observed
dynamics. The original formulation of SDF involvessensor data, the PFSA& = (Q, ¥, §, IT) is not dependent
modeling a single quasi-stationary characteristics with an the initial stateyy € Q.
Probabilistic Finite State Automaton (PFSA). However, With this setup,Il acts a low-dimensional represen-
a general dynamical system typically produces nortation of the original quasi-stationary time-series which
stationary data (by switching among different quasiean be learnt using simple frequency counting from a
stationary behaviors) due to change in operating poirset of training data. At the testing phase, if data orig-
or parametric condition over the slow time-scale. Thereinates from a different (possibly anomalous) condition
fore, the goal here is to automatically capture differendf the system]I (computed in the same manner) will



be significantly different from the training stage. Thusepoch data. This also aligns with the fact that typically

SDF can be used to detect changes in the underlyirmyreal system remains in a certain operating point or

dynamical system. parametric condition for some time before switching to
a new one.

B. Chinese Restaurant Process and Stickiness Factor

This subsection briefly describes a couple of basic
statistical concepts used in the proposed formulation, The section describes the proposed algorithm to build
namely the Chinese Restaurant Process (CRP) and thdwo tier PFSA model for a streaming non-stationary
stickiness factor. Recently, these ideas have been éime-series data as shown in Fig. 1. At the lower tier,
tensively used in nonparametric modeling and therefore
details can be found in the related literature [22], [6].

CRP is an induced distribution over partitions or
clusters which is based on De Finetti’'s theorem [22]. Th:
illustrative example given for CRP (the reason behins
its name) involves a fictitious Chinese restaurant witl / / / \ \‘\ t
potentially an infinite number of tables [23]. Given this L1 RRRREIINRRRR RN R Y
setup the discrete time stochastic process is describ
by a probability distribution that determines the table
assignment of a newk(+ 1**) customer. The new
customer can choose an already occupied (by previo
k customer(s)) table within the set of occupied tables
O with a probability

3. METHODOLOGY

Fast time
instants

Slow time epochs

(C( ) Fig. 1. Schematics of Hierarchical PFSA based Feature &idra
0

[>seo Cl@)] +v ) the goal is to create one PFSA model for each unique

where,C(-) denotes a concentration or strength functionduasi-stationary characteristics present in the datasd'ho

Or. the new customer can choose a new (previousFFSAS act as states for the second tier and another
un'occupied) table with a probability IXFSA is identified to capture the transition of the system

among those states. Therefore the second tier PFSA can
Pry(onew) = v (2) be thought of as PFSA of PFSAs. The unsupervised
Dozeo Cl@) +7 online algorithm is initialized with learning a PFSA
Note that this is one simple definition of CRP amongvith data from the first slow time epoch. Let that PFSA
many variations available in literature. This paper useslass be denoted by;. Now, from the second slow
the definition mentioned above to decide whether a netime epoch onwards, the problem becomes identifying
data segment should be modeled with an existing PFS&hether a new epoch belongs &, or there should
or a new PFSA should be created. be a new class representing that data. Therefore, the
While induction of CRP can help in deciding the needaffinity of a new slow time epoch t@’; needs to be
for a new PFSA model, noise and spurious disturbanaguantified. In general, when there are more classes of
present in real data can drive the decision system ufFSA present, this problem can be formulated as a
stable. That is many unnecessary new PFSA may gelassification problem that computes the probability of
generated and the decision may then fluctuate betweannew slow time epoch belonging to a certain class.
different PFSA that are close to each other based diowever, a typical slow time epoch may not have
an appropriate metric. Similar situation arises in othesufficient data points to estimate a PFHAnatrix as dis-
unsupervised techniques as well such as HDP-HMMtussed in Section 2. Therefore, an inference algorithm is
To prevent this scenario, [6] included a stickiness factatequired that can perform classification using relatively
in the formulation as counter measure while assigningmall length of data. Such an algorithm was developed
class (or cluster) to a new data point. The basic idesecently in [24] and briefly outlined in Section 3-A
is to introduce a positive bias on the class assignddr completeness. Once the probabilities of a new slow
to the previous data point. In the present study, theéme epoch belonging to different existing classes are
overall time-series is composed of segments of quasibtained, a decision is made to either assign the slow
stationary time-series data that can span over many sldiime epoch to an existing class or to create a new class.
time epochs. Therefore, this is a realistic assumption ahis process uses CRP and the stickiness factor which
a new slow time epoch data most likely has the samas described in Section 3-B. Once a slow time epoch is
quasi-stationary characteristics as the previous slow tinassigned to a class;, the data of that epoch gets used

Pry(o€O)=




as a part of the training data for that class from the nexXty use of the relatiod'(n) =

iteration.

A. Online Classification of a Slow Time Epoch

Let there beK classes of quasi-stationary charac-
teristics already identified in the data. They are de,

noted by Ci,Cs,...,Ck, over the same alphabét

and each clasg’; is modeled by an ergodic (equiva-

lently, irreducible) PFSAG! = (Q%, %, 6¢,11%), where
1 = 1,2...,K. Also for each clasg’;, let a symbol
string S° £ stsh ..
streaming data. The state transition functibmand the

set of stateg) of the D-Markov machine are fixed by

choosing an appropriate depthand let the (probability)
morph matrix be denoted bi‘. To perform inference
with small length of data, each row &F is treated as
a random vector. Let the:* row of I’ be denoted as
II¢, and then'" element of then'® row aslII¢,, > 0
and Z'E‘ Y, = 1. The a priori probability density
function fr: 5 of the random row- vectotl’,, con-
ditioned on a symbol strings?, follows the Dirichlet
distribution [25] [26] as described below.

1=

1 % a:nn—
B(ai ) H(emn) !

m/ n=1

frii 15:(07,18) = 3

where 0! is a realization of the random vectdr’ ,
namely,
— (6l 6, s |
and the normalizing constant is
[Z] N
B(ay,) = % (4)
L0l Ahn)
whereT (o) is the standard gamma function, ang}, =
[O‘inl Qo m|2\j| with
by =Nl +1 (6)
whereN is the number of times the symbe), in S°

is emanated from the statg,, i.e.,

(6)

wheresi is thek! symbol inS? andvi, is thek!” state
as derived from the symbolic sequensé Recall that

ann = ‘{(S%,’U}c) : 82 = Umvlic = QWH

a state is defined as a string of D past symbols. The

the number of occurrence of the statg in the state
sequence is given by} £ Z'E‘ N . It follows from
Egs. (4) and (5) that

I P(Nh, +1)
D0 N, +12) - (N

Loz (M)
+ 5] -1)!

B(ey,) =

.s%. be already identified from the

(n — 1)' Vn € Nl.

By the Markov property of the PFSA, the (1 x
|2|) row-vectors {IT%, },m = 1,...|Q|, are statistically
independent of each other. Therefore it follows from
Egs. (17) and (7) that tha priori joint density fi:|g:

‘of the probability morph matriXI?, conditioned on the
Symbol stringS?, is given as

Q|
Sfriijs:(0°1SY) H fri, s (6),157)
- (01,
= i —1)! _
AL 0% =0 TG
8
wheref’ = [(Gi)T (05)" -~ (8],) } € [0, 1]1QIxIZl

With this setup, let a new slow time epoch con-
tains a symbol stringsS. Now, the probability that the
symbol string belonging to a particular class of PFSA,
(Q,%,6,11%) is a product of independent multinomial
distribution [27] given that the exact morph matii¥
is known.

Pr (§|Q, 5, Hi)
Q| 51 i N
N (Hinn)
= TT (N TT o, @)
T 55

£ Ppr (§|Hi) as(@ andJ are kept invariant (10)

Similar to N{ , defined earlier forS?, Nmn is the
number of times the symbet, is emanated from the
stateg,, € @ in the symbol string in the testing phase,
ie.,

Non 2 {31, Tr) = 8 = 0, Ok = G }| (11)

where 5, is the k-th symbol in the observed strlné
andvk is the k-th state derived frons. It is noted that
Z| \ N

Now equatlons 8 and 9 can be_combined to obtain
the probability of a symbol strings belonging to a
class characterized by already observed symbol string
St. With the derivation presented in [24], the following
expression can be obtained for the probability.

Q= ,
. (N)! (NE, + [ = 1)!
Pr(S|S%) =
o g(ﬁmwwm-l)!
Ry ,
) };[1 (N /(N Y1 (12)

In practice, it might be easier to compute the log-
arithm of Pr(S|S%) by using Stirling’s approximation
formulalog(n!) ~ nlog(n) — n [28] because, in most
cases, bottvi and N would consist of statistically large



enough numbers (but still not be enough to directly

estimate dlI at the testing phase).

B. Class Assignment of a Slow Time Epoch

After the inference step, the probability that is

Algorithm 1: Online Learning of Tier 1 PFSAs

Input Parameters: Stickiness parameter
and CRP parameter

Data Input: Symbol sequence segmerﬁg
for slow time epochs, 7o, - - -

Initialize : C = {C'}

Initialize : Al N} =0 (m, n chosen based
on |Q| and|[x])

assigned to an existing clagg (in the set of existing
classeC = {C',C?,...,C¥}) need to be determined.
Essentially, the quasi-stationary characteristics demon
strated byS* is denoted byC;. From inference com-
putation, the likelihood functiorPr(S]S%) is obtained
and can also be written aBr(S|C*). The posterior
Pr(C%S) then can be expressed as
Pr(C*|S) o< Pr(S|C%) x Pr(C?) (13)
wherePr(C*) denotes a known prior for clags;. Now,
in the current unsupervised context knowing prior for

a class may not be possible. However, when a time-
series segment at slow time epoech— 1 belongs to

ComputeN}, . using S,

FORALL 5,73,--- DO
Computeﬁmn using §n
EvaluatePr. (C?|S,,) using Eqn. 3-B
vCie C={C",C?...,CK} andCKH!
Assign §n to a classC? according toPr.,
IFje{1,2,. .. K}
UpdateN/, by appendingS,, to S
ELSEIF j =K +1
UpdateC as{C',C?,...,CK CK+1}
ComputeNX+1 using S,
ENDIF

ENDFOR

classC7, then the probability that data at epochwill

The algorithm described above identifies different

belong to the same clags’ may be higher compared ¢jasses of quasi-stationary characteristics in an online
to probabilities for other classes. This is a realistiGashion and Tier 1 PESAs can represent those character-
assumption as a real system typically may not changgtics by differentII matrices. However, due to noise

operating point or parametric condition for every slowang spurious disturbances present in data, redundant

time epoch. As a consequence the distributin(C?)
at 7 can be considered skewed in favor@f. With K
existing classes this is realized as

; —=— fori=y
Pr(C") = K-ltr .
() { o fori#

wherex > 1 as a stickiness factor.
After computingPr(S|C*) Pr(C?) for all K existing

classes, a decision is made regarding the class assi

classes may appear during the online learning process.
Therefore, a periodic (with a much slower time-scale,
i.e., after many slow time epochs), a revision step can be
included to merge different PFSAs that are close enough
based on a metric [29] defined below.
Definition 3.1: (Distance Metric for PFSA) LeP; =
(Qh Z, 51, 11, and Py = (QQ, Z, 52, 1, be two PFSA
with a common alphabet. Let P;(¥7) and P (¥7) be
the steady state probability vectors of generating words
lengthj from the PFSAP; andP,, respectively, i.e.,

ment using CRP as mentioned in Section 2-B. Naturally (27) = A[P(w)]exs for Py and Py = [P(w)]yes
the concentration or strength functi@{-) is chosen as for P2. Then, the metric for the distance between the

C(CY) = Pr(S|CY)Pr(Ch) (14)

Therefore, the CRP formulation with parametercan
be written as

L fori=1.--- . K
i\ e, ec CCHIFY =5
Prl@9= 200 foric k41
¢, ec CONTHY '
(15)

where,PrV(Ci|§) is the probability with whichS' is

PFSAsP; andP; is defined as
zn: |P(37) = Po(39) |y
j=1

(P, P2) £ lim o

n—inf

(16)

where the norm| x ||;, indicates the sum of absolute
values of the elements in the vectar

Thus, the revision step can merge two Tier 1 PF$As
andP, when®(Py,Py) < n, wheren > 0 is a suitable
threshold for checking similarity. In this paper, only
symbols (i.e., words of lengtl) have been considered
for calculating the above metric. As Tier 1 PFSAs get

assigned to clas§’ and C¥*! is a new unforeseen identified online, the Tier 2 PFSA can be learnt simply
class. The online algorithm for learning Tier 1 PFSAdy keeping track of the transitions of the system from

is summarized below:

one Tier 1 PFSA to another.



4. VALIDATION system uses only CRP. The performance improves sig-
nificantly when stickiness factor is imposed, i.e., number
] T ) ) of uniquely identified classes come down fr@nto 5.

The Duffing equation is a nonlinear active systemy,yever, with close observation it can be seen that class
that shows chaotic behavior [30]. It can be implementegd actually gets split between clags3, 4 and 5 during
on a real experimental test bed involving an electronigpine learning process. And as a matter of fact they are

A. Simulated Duffing System

circuit [19]. The equation is stated as: represented by PFSAs that are very similar. Therefore,
A2 (t) dx(t) 5 the periodic revision process can easily merge them to
o T B taz(t) +a°(t) = Acos(wt) (17)  obtain nearly perfect accuracy by identifying not more

where A = 22.0 is the amplitude of the forcing function,than2 classes.

w = 5.0 rad/s is its excitation frequency and =
1.0 and the dissipation parameter Variation of 3 is
known to change the system characteristics and a sudd
mode shift happens around@ = 0.3 [11]. Therefore,
this system is considered with tw6é values0.1 and 1t
0.4 (one before bifurcation and one after) to generat _
two different quasi-stationary classes. With these tw g
classes a streaming non-stationary time-series is gen 3
ated by randomly selecting € {0.1,0.4} for different
segments. A phase plot of the outputvs the forcing Al
function for a typical non-stationary data set is showt
in Fig. 2.

%]

. §
2 . ; = : ’
= -20 -10 0 10 20
15f Forcing function
1t Fig. 4. Phase plot of non-stationary dynamics for Duffing t8ys
with SNR =10
_ 05}
= One of the advantages of SDF-based tools is that
g ° primarily due to the partitioning process, it is typically
05 very robust to the change in noise characteristics in
the data. To investigate similar property of the present
At hierarchical extension algorithm the experiments are
151 repeated with significant increase in noise content of
the data. The same time-series is considered now with
-2

signal to noise ratio (SNR) as0. The phase plot in
Fig. 4 shows the significant increase in noise compared
to that in Fig. 2. Figure 5 demonstrates the performance
Fig. 2. Phase plot of non-stationary dynamics for Duffingteys ~ Of HSDF before and after revision. The algorithm ob-
tains similar accuracy after revision and only a few
more (increased fror to 8 classes) redundant classes
appear before revision. For all the results shown here,
A randomly generated (as described above) timea few manual iterations were required to choose the
series ofy with 400000 has been used for the resultscorrect set of hyper-parameters (i.e., CRP parameter
provided here. As every slow time epoch is considereq, stickiness parameter and revision threshold))
to have 1000 points, the accuracy plots are based oo achieve the demonstrated performance. Therefore,
400 epochs. The raw time-series is symbolized usingutomated selection of hyper-parameters would be the
8 uniform data space partitions. Figure 3 demonstratesext technical problem for investigation. Also, quan-
the performance of Hierarchical SDF (HSDF) algorithntitative performance metrics will be defined in order
by plotting class labels from ground truth and HSDRo obtain numerical comparison purposes. Also, the
for streaming data epochs. It is observed that a lot aflgorithm could achieve this performance in real-time
redundant classes are created due to noise and spuwvith a simple MATLAB implementation on a 3.40 GHZ
ous disturbances present in the data when the decisiontel Xeon(R) CPU with Windows OS and 16GB RAM.

-20 -10 0 10 20
Forcing function

B. Results and Discussion
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Fig. 3. Plots of class labels from ground truth and Hieraah8DF (HSDF) for streaming data epochs; Plate (a) showisrpeasince using only
CRP, Plate (b) shows performance improvement with use cifiséiss factor and Plate (c) shows the best performancepeitiodic revision
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Fig. 5. Plots of class labels from ground truth and Hieram@hEDF (HSDF) for streaming data epochs with increasedenmstent, SNR =
10; Plate (a) shows performance before the revision step aae ) shows the performance with periodic revision

5. SUMMARY, CONCLUSIONS AND FUTURE WORK equation. It has been shown that a simple revision
algorithm can be used periodically to merge different

This paper extends the concepts of Symbolic DyPFSAs at the lower level that are very similar to each
namic Filtering (SDF) of quasi-stationary time-series t@ther to reduce unnecessary model complexity. While
develop a hierarchical feature extraction technique fdtrther tests using real-life data sets are being performed
non-stationary time-series data. In the present contextt@evaluate the efficacy of the algorithm, the major future
non-stationary time-series is considered to be a slovheoretical research directions are mentioned below.
time scale mixture of time-series segments that are
guasi-stationary at a faster time-scale. While PFSAs
at the lower level capture the fast time-scale quasi- « Formulation of hierarchical PFSA learning as an
stationary dynamics, a PFSA at the upper level capture Optimization problem with model accuracy and
the slow time-scale transitions of the system among complexity as competing objectives; this will en-
different quasi-stationary dynamics. The algorithm de- ~ able optimization of hyper-parameters (such as,
veloped here is an unsupervised tool that allows to ~CRP parametery and stickiness parametes) and
ana|yze data with an unknown number of unique quasi- provide quantitative justification for hierarchical
stationary characteristics (or the number of states for ~Mmodels instead of single tier ones
the upper level PFSA). Essentially, the learning process « Currently, homogeneous PFSAs (i.e., with same
uses a Bayesian inference scheme for short data length structure) are learnt at the lower level. Future
classification using SDF for a new segment of streaming ~ research will investigate adaptive PFSA learning
data. The inference process determines whether the data at the lower level to fit the exact need of different
segment belongs to an already existing quasi-stationary ~quasi-stationary characteristics
class or it represents an unforeseen characteristics. Thee Performance comparison (i.e., accuracy, computa-
assignment decision-making process also involves a Chi- tion time and complexity) with other hierarchical
nese Restaurant Process (CRP) along with a stickiness feature extraction tools using benchmark data sets
factor. The online algorithm is validated using a nonlin-  Extension of the algorithm to fuse multiple time-
ear active electronic system based on the chaotic Duffing ~ Series information during feature extraction
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