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Abstract— Optimal tradeoff between energy efficiency and
thermal comfort is a critical aspect for building heating,
ventilation, and air-conditioning (HVAC) systems. Traditional
optimization and control schemes such as, PID and rule-based
control (RBC), may not sufficiently address this issue in smart
buildings. Moreover, most optimization-based previous works
have only considered either water-side HVAC or air-side HVAC
separately while both of these systems significantly affect the
performance of each other. This paper presents a hierarchical
optimization approach to take water-side and air-side HVAC
systems into account simultaneously for energy efficiency and
thermal comfort requirements. We establish an outer-inner loop
algorithmic framework and develop the hierarchical gradient
descent algorithm and its variants to search for optimal set
points. A notion of communication period is also introduced
to control the computational complexity of the algorithm. A
numerical case study is used for demonstrating the efficacy of
the proposed approach.

1. INTRODUCTION

Smart buildings have received considerable attentions re-
cently both from academia and industry and thus energy
efficiency is one of correspondingly emerging topics in
building heating, ventilation, and air-conditioning (HVAC)
systems as well as grids. Conventional sensing and control
techniques, such as PID [1] and rule-based control (RBC) [2]
may not sufficiently satisfy requirements by such building
energy systems and grids. In addition, past work has primar-
ily focused on either water-side, air-side HVAC, or power
systems separately [3], [4], [5], [6], [7]. However, there
exists an inherent hierarchical structure between grid and
buildings [8] such that developing hierarchical control and
optimization approaches become essential.

This paper presents a hierarchical optimization framework
by taking water-side and air-side subsystems into account.
Specifically, we develop a hierarchical gradient descent
approach to iteratively find out the optimal set point in
water-side subsystem (i.e., chilled water temperature) and
the optimal set point in air-side subsystem (i.e., supply air
temperature), respectively. An outer-inner loop algorithmic
framework is accordingly established and a communication
period parameter is identified for controlling the computa-
tional complexity. In this context, while a simple numerical
case study is used to validate the proposed approach, the
extension of the hierarchical optimization framework can be

made by incorporation of PID and RBC to satisfy different
building configurations.

Related Work: The authors in [9] presented global opti-
mization technologies for overall HVAC systems transform-
ing and simplifying the original problem into a compact
form. Three levels fuzzy controllers were developed for low-
energy buildings and compared with a supervisory control
strategy based on expert rules [10]. [11] presented a model-
based hierarchical optimal control scheme for regulating air
flow, comfort, and energy consumption. In [12], the authors
proposed a hierarchical combined heat and power optimal
control algorithm which had the potential for energy savings.
In [13], the authors developed a hierarchical design optimiza-
tion model for facilitating large-scale and simulation-based
design tasks in architecture. Additional works on hierarchical
control methods [14], [15], [16], and bi-level optimization
based on hierarchical evolutionary algorithm [17] were pro-
posed to find the good-quality control and optimization
strategy.

2. PROBLEM FORMULATION

This section states the problem formulation for the hi-
erarchical optimization in building energy systems. Figure 1
shows the general layout for HVAC systems with air handling
unit (AHU), zone, chilled water system, and boiler system.

Outside air and return air from the zone, whose air flows
are controlled by dampers, is combined to produce mixed
air. Mixed air passes through the cooling or heating coil to
be cooled down or heated up by the chilled water system
or boiler system based on requirements to generate supply
air, which is pumped into the local zone. Before entering
the local zone, supply air may be reheated by reheat coil
in variable air volume (VAV). Return air from local zone is
circulated back to AHU for next cycle.

In this study, only cooling mode is considered for the
analysis. However, it is noted that heating mode follows
similar procedures for analysis. Therefore, inlet chilled water
temperature set point is the variable to be optimized in the
outer loop of hierarchical optimization framework. Note, the
dynamics of the chilled water system is not considered here
for simplicity. Therefore, the actual chilled water temperature
is the same as the chilled water temperature set point. For the
inner loop, supply air temperature set point is the variable to



be optimized. In this paper, energy consumption is primarily
the energy consumed in the chilled water system and cooling
coil. It should be noted that in VAV reheat energy can be
taken into account. However, it is omitted in this paper for
simplicity.

The generic hierarchical optimization problem typically
involves two levels of optimization problems in which one
optimization problem contains the other. These two levels
of optimization problems have their own objective functions
and constraints, which thus results in two classes of variables,
i.e., the upper level [18] variables (denoted by x ∈ Rn)
and the lower level (or follower level) variables (denoted
by y ∈ Rm). Equivalently, the lower level optimization can
be regarded as a parametric optimization problem which is
solved with respect to y while x acts as parameters. On
the other hand, the lower level optimization problem acts
as a constraint to the upper level optimization problem.
Therefore, it implies that the feasible solutions for the lower
level optimization problem need to satisfy the upper level
constraints.

Definition 2.1 Given an upper level objective function F :
Rn × Rm → R and a lower level objective function f :
Rn × Rm → R, the hierarchical optimization problem is
given by

minx∈X ,y∈YF(x,y)

s.t. Gl(x,y) ≤ 0, l = 1, . . . , L

y ∈ argmin
y∈Y{f(x,y) : gq(x,y) ≤ 0, q = 1, . . . ,M}

where X ⊂ Rn is convex and compact, Y ⊂ Rm is convex
and compact, Gl : X × Y → R, l = 1, . . . , L signifies the
upper level constraints, gq : X × Y → R, q = 1, . . . ,M
represents the lower level constraints.

We further simplify the problem formulation stated above
using set-valued mapping. The equivalent expression can be
as follows

Definition 2.2 Give that Φ : Rn
⇒ Rm be a set-valued

mapping such that

Φ(x) = argmin
y∈Y{f(x,y) : gq(x,y) ≤ 0, q = 1, . . . ,M}

which indicates the constraint defined by the lower level
optimization problem, namely, Φ(x) ⊂ Y for each x ∈ X .
We have,

minx∈X ,y∈YF(x,y)

s.t. Gl(x,y) ≤ 0, l = 1, . . . , L

y ∈ Φ(x)

The Definition 2 shows that Φ can be intuitively regarded as
a parameterized range-cosntraint for the lower level variable
y.

Solving the hierarchical optimization problem in either
Definition 2.1 or Definition 2 can be NP-hard [19] and state-
of-the-art can be found in [20]. Note, that in this context

the upper and lower level variables are vectors while they
degenerate to scalars when defined for the HVAC system.
We have shown the problem formulation while there is still
a lack of clarity regarding which optimal solution should
be adopted for solving the upper level optimization problem
given multiple lower optimal solutions. In literature [21], two
scenarios in which the leader in the upper level optimization
problem defines two different positions, i.e., optimistic po-
sition and pessimistic position, respectively, are widely and
well studied.

Optimistic Position: In this scenario, in the presence of
multiple lower level optima, the leader takes its expectation
on the follower to select a certain solution from the optimal
lower level set Φ∗(x), which results in the optimal objective
function value at the upper level. The optimal choice from
the feasible set of the lower level optimization problem in
this context can be defined as follows:

Φ∗(x) = argmin
y∈Y{F(x,y) : y ∈ Φ(x)} (1)

Thus, the hierarchical optimization problem in an optimistic
position scenario is defined below:

minx∈X ,y∈YF(x,y)

s.t. Gl(x,y) ≤ 0, l = 1, . . . , L

y ∈ Φ∗(x)

Pessimistic Position: In a pessimistic position, the leader
in upper level optimization problem chooses the worst lower
level optimal solution from the optimal set which leads to the
worst objective function value at the upper level. Hence, we
similarly define such a worst case choice function as follows:

Φp(x) = argmax
y∈Y{F(x,y) : y ∈ Φ(x)} (2)

The hierarchical optimization framework in a pessimistic
position can be cast below:

minx∈X ,y∈YF(x,y)

s.t. Gl(x,y) ≤ 0, l = 1, . . . , L

y ∈ Φp(x)

Typically, when hierarchical optimization problem is in an
optimistic position, with a strictly convex lower level prob-
lem, it degenerates to a single level using the variational in-
equality. However, for a scenario with a pessimistic position,
such a single level reduction is essentially intractable. Hence,
we only consider the implementable optimistic position case
in this paper.

Assumption 2.1 a) For any y ∈ Y , F is Lipschitz continu-
ous with respect to (w.r.t) x ∈ X and is sufficiently smooth;
b) for any x ∈ X , f is strictly convex w.r.t y ∈ Y and
is sufficiently smooth; c) for any l and q, Gl and gq are
sufficiently smooth; d) constraint set Φ is non-empty and
compact.

In the main result, a constraint qualification called
Mangasarian-Fromovitz constraint qualification [22] is used
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Fig. 1. General layout of HVAC systems in buildings

such that we introduce the definition as follows for com-
pleteness.

Definition 2.3 Given an optimization problem in the form

minx∈Xf(x) (3)

in which
X ={x ∈ Rn|gu(x) ≤ 0, hv(x) = 0;

u = 1, . . . , U, v = 1, . . . , V }
(4)

and all functions are continuously differentiable. Then a
valid point x̂ is with Mangasarian-Fromovitz constraint
qualification if the two following conditions are satisfied: 1)
the gradients of the equilibrium conditions hv(x) are linearly
independent at the point x̂; 2) there is a vector d ∈ Rn, such
that ∇hv(x̂)

T d = 0 and ∇gu(x̂)Td<0, if gu(x̂) = 0.

We are now ready to state the main result for the hierar-
chical optimization in an optimistic position.

Proposition 2.1 Let Assumption 2.1 hold. If the
Mangasarian-Fromowitz constraint qualification holds
at all points, then the hierarchial optimization problem
with the optimistic position is guaranteed to have optimal
solutions.

Convergence to optimal points was discussed using bi-
level direct search method [23] and bi-level stochastic gradi-
ent method [20], respectively. In this paper, a new algorith-
mic framework with a user-defined communication period is
proposed in the next section. In this context, the hierarchical
optimization problem associated with HVAC systems can be
obtained as follows

minTCW∈X ,TSA∈YF(TCW , TSA)

s.t. Gl(TCW , TSA) ≤ 0, l = 1, . . . , L

TSA ∈ Φ∗(TCW )

It is noted that, the dimension of X and Y is 1. In this
context, constraints can be box constraints due to capacities
of actuators and zone comfort requirements in the HVAC
system.

3. METHODOLOGY AND FRAMEWORK

This section presents the proposed scheme using hierarchi-
cal projected gradient descent with a communication period
to control the computational complexity. The procedure for

solving the problem is described briefly as follows: 1) the
leader on upper level makes the decisions; 2) the leader
asks followers on lower level to calculate their optima
independently (in this study the number of followers is 1) if
communication is “activated”; 3) followers on lower level
send their decisions to the leader; 4) the leader modifies
decisions obtained with consideration of overall benefit (min-
imization of energy consumption).

The specific algorithmic framework is introduced in this
context.

Algorithm 1: Hierarchical Projected Gradient Descent
(HPGD)

1 Initialization: x0,y0, α, τ

2 k, j ← 0
3 if (stopping criteria (σ) not satisfied) then
4 Calculate gradient ∇xk

F
5 Projection: xk+1 ← PX (xk − α∇xk

F)
6 if mod(τ, k) = 0 then
7 if (stopping criteria (ǫ) not satisfied) then
8 Calculate gradient ∇yj

f

9 Projection: yj+1 ← PY(yj − α∇yj
f)

10 end
11 j ← j + 1
12 end
13 k ← k + 1
14 end

Remark 3.1 From the algorithmic framework, it can be ob-
served that a user-defined parameter τ , i.e., communication
period, is used for controlling the frequency of solving the
lower level problem (inner loop). Such a setup is capable
of lowering the computational complexity. For example, in
the HVAC system, if one needs O(p) to find out the optimal
chilled water temperature, without communication period,
the computational complexity may be O(p × q) given that
the computational complexity of finding the optimal supply
air temperature is O(q). Introduction of the communication
period can reduce the computational complexity to O(p×q

τ
).

The momentum variant and averaging gradient variant of
hierarchical projected gradient descent algorithm as well as
the mix of them. The algorithmic frameworks of momentum
variants are omitted in this paper due to the space limits.

Specifically, in the HVAC system, we have the following
algorithm flow chart shown in Fig. 2. The proposed hierarchi-
cal projected gradient descent algorithm is applied to find out
the optimal chilled water temperature set point and supply
air temperature set point. Objective functions are energy
consumption, which, however, may not be convex in practice.
In this paper, on the purpose of validating the proposed
approach, we use quadratic energy consumption function
that is assumed to be strictly convex and continuously
differentiable.
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Algorithm 2: Hierarchical Projected Averaging Gradient
Descent (HPAGD)

1 Initialization: x0,y0, α, τ

2 k, j ← 0
3 if (stopping criteria (σ) not satisfied) then
4 Averaging gradient ∆k = 1

k+1

∑k

i=0
∇xk
F

5 Projection: xk+1 ← PX (xk − α∆k)
6 if mod(τ, k) = 0 then
7 if (stopping criteria (ǫ) not satisfied) then
8 Averaging gradient ∆j =

1

j+1

∑j
i=0
∇yj

f

9 Projection: yj+1 ← PY(yj − α∆j)
10 end
11 j ← j + 1
12 end
13 k ← k + 1
14 end
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Fig. 2. Algorithm flow chart of HVAC system using hierarchical projected
gradient descent: CWT: chilled water temperature; HWT: hot water tem-
perature; MAT: mixed air temperature; SAT SP: supply air temperature set
point; SAT: supply air temperature; K: the number of iterations of outer
loop; N: the number of iterations of inner loop; τ : communication period.

The cooling and heating dynamics describes the relation
between mixed air temperature and supply air temperature,
which is affected accordingly by the chilled water temper-
ature or hot water temperature. For simplicity, we omit the
reheat dynamics while using a linear function to describe
the relation between supply air temperature and discharge
air temperature in zone thermal dynamics for this study.
As shown in the figure, communication period is used to
“activate” the inner loop, which can reduce the computational
complexity. Now we state the algorithm flow in detail.

After appropriate initializations, the outer loop is im-
plemented subsequently by first updating the chilled water
temperature, hot water temperature, and mixed air temper-
ature. Then, whenever the communication period divides
the number of iterations (this is checked with the modulo
operator) the inner loop is carried out. Inside the inner loop,
supply air temperature is updated with the initialization being

the end value from the last loop. Inside the outer loop, the
optimal supply air temperature obtained from the inner loop
is used as the supply air temperature set point, which is used
to activate the controller to control valve positions. From
the figure, the cooling or heating coil cools down or heats
up mixed air to become supply air based on the difference
between mixed air temperature and supply air temperature
set point. Therefore, the supply air temperature is used for
calculating thermal dynamics and energy cost. The outer loop
is repeatedly implemented before the number of iterations
exceeds the total K .

Mathematically, the cooling dynamics for supply air tem-
perature is a function of mixed air temperature, chilled water
temperature, mixed air mass flow rate, and chilled water mass
flow rate. Formally, it can be described as follows

TSA = G(TMA, TCW , ṁMA, ṁCW ) (5)

Typically, G is represented by a nonlinear differential equa-
tion and solving such an equation is essentially intractable.
For convenience, we do not directly solve it, but rather
linearize and convert it into a transfer function based on
which a control block diagram is established for the cooling
dynamics.

We next discuss the thermal dynamics. It can be formally
expressed by the following formula

T = H(TSA, ṁSA) (6)

As mentioned above, in this study the thermal dynamics for
zone is simplified such that we use a simple linear function
to indicate discharge air temperature. To avoid applying a
physical model, we also use an autoregressive model in
thermal dynamics which results in the following equation:

T (k + 1) = H(T (k), TSA(k), ṁSA(k)) (7)

In this paper, energy cost is primarily considered as energy
consumption in the chilled water system and the cooling
coil in AHU. Due to the simplified reheat dynamics in VAV,
reheat energy is omitted accordingly. We assume that energy
cost is of quadratic form for validation of the proposed
schemes.

4. NUMERICAL CASE STUDY

This section presents a numerical case study based on an
HVAC system involving chilled water system, boiler system,
AHU, and local zone. In this case the upper level variable is
chilled water temperature (for simplicity, we do not consider
hot water temperature optimization while in simulation it
is fixed if using heating dynamics) and the lower level
variable is supply air temperature. White noise processes are
incorporated into gradient updates.

Results and Discussion: The upper level and lower level
objective functions are energy cost in chilled water system
and cooling coil in AHU, respectively. Moreover, in this case,
the thermal comfort is required by maintaining zone temper-
ature in between 69◦F and 74◦F. Figure 3 shows the zone
temperature evolution during optimization in which the initial
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zone temperature is 63◦F and the thermal comfort require-
ment is maintained as the stable zone temperature is approx-
imately 73◦F. Figure 4 depicts the energy cost which reduces
along iterations using five different methods, i.e., HPGD,
M-HPGD (the momentum variant of HPGD), HPAGD, and
M-HPAGD (the momentum variant of HPAGD). We also
consider M-HPGD with dynamic momentum term. It is noted
that the momentum term constant is set 0.95. In these five
approaches, M-HPGD outperforms the other four in terms
of convergence rate, which suggests that the momentum
term involving the previous step information speeds up the
convergence of the proposed algorithm. While HPAGD is
able to improve the convergence speed compared to HPGD,
along iterations the accuracy may be worse than that of
HPGD since it can be observed that the curve of HPAGD
is not monotonically decreasing. M-HPAGD has better con-
vergence rate than both HPGD and HPAGD, and the curve
oscillates with smaller variance. Another observation that can
be made is that M-HPGD with dynamic momentum term
performs quite similarly compared to M-HPGD with constant
momentum term, but outperforms the other three schemes.
In summary, the proposed scheme is effective in reducing
energy consumption for hierarchical structure of the building
HVAC system.

Figures 5 - 7 show the evolution of chilled water temper-
ature set point and supply air temperature set point along
iterations using different approaches with different commu-
nication periods. The optimal chilled water temperature set
point in our case is 43◦F while the optimal supply air
temperature set point is 74◦F. Unsurprisingly, for the chilled
water temperature set point, its evolution has a similar trend
as objective function value. However, the effect of communi-
cation period is small since it only controls the iterations of
the lower level variable, i.e., the supply air temperature set
point. Moreover, averaging gradient can to some extent speed
up the convergence to the optimal chilled water temperature
set point at the beginning while it eventually causes a large
deviation from the optimal solution. Such a phenomenon can
be observed from the curves of HPAGD and M-HPAGD. In
addition, dynamic momentum term may introduce variance
to the convergence of the upper level optimizer from the
comparison between M-HPGD and M-HPAGD.

We now analyze the properties of lower level optimizer.
For the supply air temperature set point, the communication
period has a significant impact on it. By visualizing the
difference when τ is diverse (10, 50, and 500 respectively
in Figures 5 - 7), it can be concluded that with a larger
communication period, the supply air temperature set point
can be constant for a longer time, as shown in Figure 7.
This may be helpful for maintaining the stability of building
HVAC systems. Frequently varying the supply air temper-
ature set point may result in a highly time-varying supply
air temperature in the HVAC system such that the valve
associated with the heating or cooling coil should frequently
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change its position under the controller. This may damage
some physical actuators correspondingly.

5. CONCLUSIONS AND FUTURE WORKS

This paper presents a hierarchical optimization framework
for building HVAC system using hierarchical projected gra-
dient descent approach and a user-defined communication
period. Such a framework has been shown to be applicable
in an HVAC system involving chilled water system, boiler
system, AHU, and zone. A numerical case study is used to
validate the proposed algorithms and it shows the energy con-
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Fig. 5. Optimized (a) chilled water temperature set point and (b) supply
air temperature set point using different methods with τ = 10; dynamic
momentum term is k

k+3
, where k is the number of iterations
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Fig. 6. Optimized (a) chilled water temperature set point and (b) supply
air temperature set point using different methods with τ = 50; dynamic
momentum term is k

k+3
, where k is the number of iterations
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Fig. 7. Optimized (a) chilled water temperature set point and (b) supply
air temperature set point using different methods with τ = 500; dynamic
momentum term is k

k+3
, where k is the number of iterations

sumption optimization and effect of communication period.
Beyond the existing work, several future work directions can
include: 1) using real test bed system data and controller
in the hierarchical optimization framework and 2) showing
theoretical convergence analysis for the proposed algorithm;
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